The Paradox of Hypertension: a pellet in hypertrophic myocardium

Yun Kyeong Cho, M.D., Hyung Seop Kim, M.D., Hyun Ok Cho, M.D., Chang Wook Nam, M.D., Seong Wook Han, M.D., Seung Ho Hur, M.D., Yoon Nyun Kim, M.D., Kwon Bae Kim, M.D.

Department of Internal Medicine,
Keimyung University School of Medicine, Daegu, Korea

Abstract: In general, because hypertension is an important risk factor for cardiovascular disorders blood pressure should be adequately controlled. However, paradoxically, untreated hypertension revealed unexpected result in a patient of gunshot wound. A pellet embedded in the left ventricular myocardium did not cause to deteriorate any clinical course and after 1 week, any change in location of the pellet was not noticed on follow-up echocardiography. Herein we report a patient with a retained pellet in the heart who was discharged from hospital without operative therapy.

Key Words: Heart, Hypertension, Pellet

Introduction

Recently there has been an increased incidence of gunshot injuries with increased use of guns in hunting. In general, it is known that all cardiac gunshot injuries demand operative therapies to prevent subsequent complications such as endocarditis, pericarditis, embolization, fistula formation and myocardial damage[1]. However we experienced one patient with gunshot injury in myocardium who was recovered without surgical management because of the hypertrophic myocardium by long untreated hypertension.

Case

A 69-year-old man, who had history of hypertension for 13 years without treatment, was brought to emergency department after sustaining gunshot wound to face, left anterior chest and right thigh in a hunting accident. On
arrival to emergency department, the patient
had no sign of respiratory distress and cardiac
murmur with blood pressure of 180/100
mmHg, pulse rate of 98 beats/min, and
respiratory rate of 16 breaths/min. In physical
examination, he did not show any
abnormalities except for 0.5 cm sized wounds
over right eyebrow, right submandibular area,
left mid−clavicular line at the 9th intercostal
space, and medial side of right thigh.
Electrocardiography showed a complete
bundle branch block and chest radiography
showed a small pellet that appeared to be
within the heart (Fig. 1A). Chest computed
tomography and transthoracic echo−
cardiography revealed the intracardiac
location of a pellet embedded in the apico−
lateral wall of the left ventricle without
pericardial effusion (Fig. 1B). Interestingly,
echocardiography showed the pellet located at
1.0 cm below epicardium in the apico−lateral
wall, which had thickened and hypertrophied
myocardium with the resultant of
hypertension of long duration (Fig. 2).
Because the patient was hemodynamically
stable and showed no specific symptom, he
was hospitalized in intensive care unit to
evaluate the need of surgical intervention.
After 1 week, on follow−up echocardi−
ography, any change was not noted in the
location of the pellet. Thus, he was discharged
without any complication.

Discussion

Hypertension is one of the most prevalent
and powerful contributors to cardiovascular
diseases and also contributes to pathogenesis
of systolic or diastolic heart failure with
increased ventricular mass and impaired
filling[2]. In the untreated hypertensive
patients, the progressive accumulation of
interstitial collagen fibers in ventricular
hypertrophy can be expected to cause
ventricular dysfunction involving either the

Fig. 1. Radiological findings in a patient with gunshot wound in the heart. (A) The chest radiograph shows a round
metallic opacity on the left side overlying the cardiac apex. (B) Computed tomographic scan shows
intensely bright, metallic density within left ventricular myocardium associated with a stellate pattern of
streak artifact.
diastolic or systolic phase. Thus, hypertrophy has been shown to be an independent predictor of cardiovascular events which included new-onset coronary artery disease (myocardial infarction, unstable angina with documentation of ischemic electrocardiographic changes, sudden cardiac death, or coronary revascularization procedure), stroke, transient cerebral ischemic attack, symptomatic aortoiliac occlusive disease verified with angiography, thrombotic occlusion of a retinal artery documented with fluoroangiography, progressive heart failure that required hospitalization, and renal failure that required dialysis[3-5]. However, in the present case, the fortunate part about the gunshot injury to heart is that a pellet was not completely passed through the heart, although he was shot through the chest.

Management options including surgical, percutaneous and conservative therapy should be individualized after the risk evaluation of removal of foreign bodies[6]. Generally the clinical course was excellent except aortoesophageal fistula, which was induced by foreign bodies in the esophagus and was life-threatening, but no effective therapy is available now[6]. The proper timing of surgical management of these retained pellets or bullets in the heart was reported to be individualized according to the hemodynamic states such as tamponade or hemothorax[7]. Since Doctor Daniel Williams’s first report of the operative management of penetrating injury to the heart in 1893, many authors have advocated operative therapy for all cardiac missile injuries. Fyfe et al.[1] advocated the surgical removal of all intracardiac foreign bodies to prevent the subsequent complications of endocarditis, pericarditis, embolization, fistula formation and myocardial damage. But the question remains whether to remove all intracardiac bullets. Symbas et al.[8] reported that large, intracavitary and intrapericardial missiles, including even those that were partially embedded in the myocardium, should be removed. Thompson et al.[9] suggested nonoperative management of intramyocardial pellet injuries in the stable patient with use of
immediate initial echocardiography to make an accurate diagnosis. They recommended 12 to 24 hour monitoring in the intensive care unit and hospitalization for 3 to 5 days to ensure stability. Repeated echocardiography should be performed before discharge to document the migration of bullets or the progress of pericardial effusion. Echocardiography and electrocardiography should be repeated at 2 weeks and then 3 months after discharge for complete follow-up.

Although there is no regular clinical follow-up after discharge, our limited experience supports expecting a benign clinical course from the retained pellet with no incidence of pericardial tamponade or rhythmic disturbances.

In the present case, it is tempting to speculate that this is a consequence of increased wall thickness from long-standing progression of hypertension without treatment that the pellet could not penetrate the whole myocardium into left ventricular cavity.

References


