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ABSTRACT We investigated the population pharmacokinetics (PK) of doripenem in
Korean patients with acute infections and determined an appropriate dosing regi-
men using a Monte Carlo simulation for predicting pharmacodynamics (PD). Patients
(n � 37) with a creatinine clearance (CLCR) of 20 to 50 ml/min or �50 ml/min who
received a 250-mg or 500-mg dose of doripenem over the course of 1 h every 8 h,
respectively, were included in this study. Blood samples were taken predosing and
0 h, 0.5 h, and 4 to 6 h after the fourth infusion. A nonlinear mixed-effect modeling
tool was used for the PK analysis and pharmacodynamic simulation; doripenem PK
were well described by a one-compartment model. The population mean values of
the body weight (WT)-normalized clearance (CL/WT) and the body weight-normalized
volume of distribution (V/WT) were 0.109 liter/h/kg of body weight (relative standard
error, 9.197%) and 0.280 liter/kg (relative standard error, 9.56%), respectively. Dorip-
enem CL was significantly influenced by CLCR. The proposed equation to estimate
doripenem CL in Korean patients was CL/WT � 0.109 � WT � (CLCR/57)0.688, where
CL/WT is in liters per hour per kilogram. CL in Korean patients was expected to be
lower than that in Caucasian patients, regardless of renal function. The Monte Carlo
simulation showed that 90% attainment of target PK/PD magnitudes could be
achieved with the usual dosing regimens when the MIC was �1 mg/liter. However,
prolonged infusions (4 h) should be considered, especially when patients have aug-
mented renal function and for patients infected with pathogens with a high MIC.
Our results provide an individualized doripenem dosing regimen for patients with
various renal functions and for patients infected with bacteria with decreased sus-
ceptibility.
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Doripenem is the latest available carbapenem and has a broad antibacterial spec-
trum against Gram-positive and Gram-negative pathogens. It is indicated for the

treatment of complicated intra-abdominal infections, complicated urinary tract infec-
tions, and/or nosocomial pneumonia, including ventilator-associated pneumonia (1).
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Doripenem has potency similar to that of imipenem against Gram-positive bacteria and
potency similar to that of meropenem against Gram-negative bacteria in vitro (2–5).
Moreover, in nonclinical and clinical studies, the risk that it would cause seizures was
shown to be lower than that for other carbapenems (6, 7).

To improve clinical efficacy and prevent the development of resistance or adverse
events, the dosing of doripenem is important. The recommended dose of doripenem
is initially determined on the basis of the glomerular filtration rate (GFR) and is
maintained to achieve a maximized time in which the free drug concentrations exceeds the
MIC (fTMIC) (8, 9). However, the doripenem dosing regimen should be individualized on
the basis of each patient’s characteristics. For example, when sepsis and, in particular,
when septic shock induce a greater volume of distribution (V) and a greater total body
clearance (CL), which contribute to lower plasma concentrations of hydrophilic antibi-
otics, such as doripenem, the probability of target attainment (PTA) may be compro-
mised due to a shorter fTMIC (10–12). In addition, race is an important individual
characteristic that may affect the pharmacokinetics (PK) or pharmacodynamics (PD) of
antimicrobials, possibly owing to differences in fat distribution, metabolism, and anti-
biotic CL (13, 14).

Several recent studies analyzing the PK of doripenem in Asian populations (15, 16)
reported equations for calculating antibiotic CL according to renal function, reflected
by creatinine clearance (CLCR); however, most studies have been conducted in Western
populations (12, 17, 18). To our knowledge, there are no studies that have specifically
addressed the population PK of doripenem in Korean patients with infections. Inves-
tigations using this type of approach to characterize interethnic differences in PK
models may be worthwhile to provide physicians with information that will help them
optimize antimicrobial therapies in various populations.

We have previously performed studies to develop and validate the individualized
dosing of important antibiotics in Korean patients (19). In this study, we aimed to
determine the PK profiles of doripenem and equations for doripenem CL in Korean
patients with acute infections and various renal functions and investigated appropriate
dosing regimens for doripenem using population PK analysis and a Monte Carlo
simulation for predicting the PD of doripenem.

(This study was presented in part at the 55th Interscience Conference on Antimi-
crobial Agents and Chemotherapy/International Congress of Chemotherapy and Infec-
tion 2015, San Diego, CA, 17 to 21 September 2015.)

RESULTS
Patients. The demographic characteristics of the 37 patients (10 male and 27 female

patients) are described in Table 1. For this analysis, 36 and 112 plasma samples from the
250-mg and 500-mg groups, respectively, were used. Serum creatinine levels were
1.25 � 0.470 and 0.800 � 0.220 mg/dl for the 250-mg and 500-mg groups, respectively.
CLCRs (as determined by the Cockcroft-Gault equation) were 38.3 � 10.9 and 75.9 �

34.5 ml/min for the 250-mg and 500-mg groups, respectively.
Population PK analysis. The time course of the doripenem concentrations was well

described by a one-compartment model. The basic PK parameters were weight (WT),
body weight-normalized total body clearance (CL/WT), and body weight-normalized
volume of distribution (V/WT). CLCR was the only significant covariate for CL/WT
(change in the objective function values [ΔOFV] � �9.89).

Population mean values for CL/WT and V/WT were 0.109 liter/h/kg (relative standard
error, 8.57%) and 0.280 liter/kg (relative standard error, 9.60%), respectively (Table 2).
The proposed equation to estimate the CL of doripenem in Korean patients in this
study was CL/WT � 0.109 � WT � (CLCR/57)0.688 (where CL/WT is in liters per hour per
kilogram), which differed from an equation developed for Caucasian patients, CL �

13.6 � (CLCR/98)0.659 (where CL is in liters per hour) (17) (Fig. 1). The coefficients of
variation (CVs) of the interindividual variability for CL/WT and V/WT were 55.0% (relative
standard error, 14.4%) and 47.3% (relative standard error, 21.6%), respectively (Table 2).
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Residual variability was best explained by a Poisson error model, defined as Yij �

Yij,PRED � �ij � Yij,PRED, where Yij is the jth concentration in individual i, Yij,PRED is the jth
predicted concentration in individual i, and �ij is the random residual effect for the jth
concentration in individual i distributed as a normal distribution with a mean of 0 and
a variance of �2.

Goodness-of-fit plots for the final PK model indicated unbiased results, although
there was underprediction for a few high concentrations (Fig. 2).

Most of the observed data were within the 90% prediction interval in the visual
predictive check, and 50th percentile lines for observations and simulated concentra-
tions nearly overlapped, indicative of an adequate model (Fig. 3).

PD target. When the PTA for the current dosing regimens (for a CLCR of �50 ml/min,
500 mg every 8 h by intravenous [i.v.] infusion over 1 h; for 30 ml/min � CLCR � 50
ml/min, 250 mg by i.v. infusion every 8 h over 1 h; for 10 ml/min � CLCR � 30 ml/min,
250 mg by i.v. infusion every 12 h) were simulated using a Monte Carlo simulation with
the final model, the current empirical dosing regimens were optimum when the MICs
were below 1 �g/ml (Fig. 4). Since the four CVs (0%, 10%, 20%, and 30%) for MICs
represented insignificant differences, the next Monte Carlo simulations investigated
dosing regimens for personalized treatment and were conducted with a 0% CV.

TABLE 1 Demographics of study patientsa

Characteristic

Value(s) for the following group:

Total 250-mg dose 500-mg dose

Sex (no. of males/no. of females) 10/27 3/6 7/21
Mean � SD age (yr) 61.7 � 17.9 70.9 � 16.1 58.8 � 17.7
Mean � SD wt (kg) 59.8 � 12.4 55.1 � 13.3 61.3 � 11.9
Mean � SD ht (cm) 161 � 9.20 159 � 8.40 162 � 9.40
Mean � SD BMI (kg/m2) 22.9 � 3.60 21.6 � 3.30 23.3 � 3.60
Mean � SD Scr concn (mg/dl) 0.910 � 0.350 1.25 � 0.470 0.800 � 0.220
Mean � SD CLCR (ml/min) 66.7 � 34.4 38.3 � 10.9 75.9 � 34.5
Median (range) APACHE II score 7 (0–15) 9 (6–13) 6 (0–15)
Median (range) Glasgow coma scale 15 (8–15) 15 (14–15) 15 (8–15)

No. of patients with:
Sepsis 30 6 24
Severe sepsis 7 3 4
Infection

Pyelonephritis 27 6 21
Intra-abdominal infection 9 3 6
Neutropenic fever 1 0 1

aAbbreviations: BMI, body mass index; Scr, serum creatinine; APACHE II, Acute Physiology and Chronic Health
Evaluation II.

TABLE 2 Population PK parameter estimates of final model for doripenema

Parameter Estimates RSE (%) Bootstrap median (95% CIb)

Structural model
CL � �1 � WT � �CLCR/57��2

�1 (liter/h/kg) 0.109 8.57 0.109 (0.0903–0.128)
�2 0.688 22.9 0.693 (0.334–1.04)

V (liter/kg) 0.280 9.60 0.276 (0.235–0.342)

Interindividual variability
	CL (%) 55.0 14.4 52.5 (37.6–69.2)
	V (%) 47.3 21.6 45.3 (29.7–70.0)

Residual error (
Poisson) 0.633 7.50 0.624 (0.532–0.716)
aRSE, relative standard error; CL, doripenem CL; WT, weight (in kilograms); CLCR, creatinine clearance;

V, volume of distribution; CI, confidence interval.
bThe 95% confidence intervals were estimated with 1,000 resampled data sets using the final population PK
model.
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Figure 5 describes the Monte Carlo simulation results, which were generated for a
fixed weight of 60 kg, three doses (125, 250, and 500 mg), four ranges of renal function
(10 ml/min � ml/min CLCR � 30 ml/min, 30 ml/min � CLCR � 50 ml/min, 50 ml/min �

CLCR � 90 ml/min, 90 ml/min � CLCR � 130 ml/min, and 130 ml/min � CLCR � 170
ml/min), two infusion times (1 h and 4 h), two dosing intervals (8 h and 12 h), and seven
MICs (0.5, 1, 2, 4, 8, 16, and 32 �g/ml). In the case of patients with a CLCR of 10 to 30
ml/min, a dosing regimen of 125 mg every 8 h by i.v. infusion over 1 h was optimum

FIG 1 Comparison of doripenem clearances between Caucasian and Korean patients (when calculated
for patients with a body weight of 70 kg). *, data are from reference 17.

FIG 2 Goodness-of-fit plots: (A) conditional weighted residuals (CWRES) versus time; (B) conditional weighted residuals (CWRES) versus
population model-predicted concentration (PRED); (C) observed concentration versus population model-predicted concentration
(PRED); (D) observed concentration versus individual model-predicted concentration (IPRED). Gray lines, smooth curves.
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when the MIC was 2 �g/ml or less. In the case of patients with a CLCR of 30 to 50
ml/min, a dosing regimen of 250 mg every 8 h by i.v. infusion over 1 h was suboptimal
when the MIC was equal to or greater than 4 �g/ml. If the patient had a normal renal
function (CLCR � 90 ml/min), a dosing regimen of 500 mg every 12 h by i.v. infusion
over 4 h was superior to one of 500 mg every 8 h by i.v. infusion over 1 h. The infusion
of 500 mg every 8 h by i.v. infusion for 1 h was inappropriate for patients with
augmented renal clearance (130 ml/min � CLCR � 170 ml/min) (20), whereas the
infusion of 500 mg every 8 h by i.v. infusion over 4 h was appropriate.

Safety. No patients experienced adverse events after the administration of dorip-
enem.

FIG 3 Visual predictive check for 250-mg (left) and 500-mg (right) dosing groups by the use of simulated concentrations and
1,000 virtual data sets. Open circles, observed concentrations; solid lines, 95th, 50th, and 5th percentiles for observations;
dashed lines, 95th, 50th, and 5th percentiles for simulated concentrations; shaded areas, 95% confidence intervals for the 95th,
50th, and 5th percentiles for simulated concentrations.

FIG 4 Probabilities of target attainment (fTMIC above 40%) with current dosing regimens for simulated patients and various
MICs with CVs of 0%, 10%, 20%, and 30% (1,000 patients for each MIC).
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DISCUSSION

In the present study, population PK data for doripenem in Korean patients with
acute infections were analyzed. The final PK model was best described by a one-
compartment model in the sparse sampling scheme, although doripenem PK were
usually explained by a two-compartment model (11, 12, 21–23). CLCR was the only
significant covariate for CL/WT in this study. Notably, the CL of doripenem in Korean
patients with both normal and lower levels of renal function was expected to be lower
than that in Caucasian patients. In addition, our results suggest that current dosing
regimens might be optimum when MICs are below 1 �g/ml, and patients with augmented
renal function should be administered 4-h infusions of doripenem to attain a probability of
target attainment above 90%.

Administration of antibiotics on the basis of an understanding of PK/PD profiles can
maximize patients’ clinical outcomes through the individualization and optimization of
dosing regimens. Growing evidence suggests that the prolonged infusion of �-lactams
improves clinical outcomes in critically ill patients with severe infections (24), and
previous studies revealed that the use of prolonged doripenem infusions more effec-
tively achieved the target blood concentrations (11, 17, 21, 25, 26). It is noteworthy that
the infusion of doripenem over 4 h in patients with augmented renal function led to
more optimal antibiotic exposure in this study. Although there are conflicting results
regarding the association between low or undetectable blood �-lactam levels and poor
clinical outcomes in infected patients (27, 28), the increased glomerular filtration and
drug elimination caused by augmented renal function is known to predict subthera-
peutic �-lactam concentrations (20, 29). Limited data evaluating doripenem PK in
patients with augmented renal function indicate a decreased PTA in such patients,
which favors the use of extended infusions (16, 21). Furthermore, one recent study
comparing the clinical outcomes of patients with ventilator-associated pneumonia due
to Gram-negative bacteria treated with doripenem versus imipenem-cilastatin sug-
gested that doripenem-treated patients with a supranormal renal function (CLCR � 150
ml/min) had poor clinical cure rates (44%, 8/18 patients) (30). Our study highlights and
reinforces the importance of prolonged infusion in this particular population, and
further clinical studies to identify the benefit of this strategy would provide clinicians
with the information that they need to help treat such patients.

FIG 5 Probabilities of target attainment (fTMIC above 40%) with various dosing regimens (a dosing interval of 8 or
12 h, an infusion time of 1 or 4 h, and a dose of 125, 250, or 500 mg) for simulated 60-kg patients infected with
bacteria with various MICs (CVs of 0%) and with various CLCRs.
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Our study results also indicate that bacterial susceptibility may be an important
issue when the use of doripenem, either empirically or definitely, is considered because
the PTA rapidly declines when MICs are above 2 �g/ml under current treatment
regimens. As two recent studies have suggested, the carbapenem MIC might influence
the clinical outcome in patients with Gram-negative bacterial infections (31, 32);
therefore, optimization of the doripenem dosing regimen according to the MIC for
the causative organism is required. In this context, the application of PK profiles to
adjust the dosing regimen and the mode of administration is particularly important
for infections caused by pathogens with decreased in vitro susceptibility and higher
MICs, such as Pseudomonas aeruginosa (33). From our point of view, local susceptibility
data could be precious. Recent data from an Asia-Pacific surveillance study and a
Korean tertiary care center indicate that doripenem has excellent in vitro activity against
Enterobacteriaceae, while the MIC values of doripenem for nonfermentative Gram-
negative pathogens (Pseudomonas aeruginosa and Acinetobacter baumannii) were wor-
risome (34, 35). Therefore, we suggest that empirical dosing of doripenem without
determination of an MIC would result in treatment failure.

Because of evidence that the efficacy of doripenem is influenced by appropriate
dosing, the mode of administration, and the MIC, the current dosing regimens would
be appropriate only in patients who are not in a state of septic shock and who are
infected by a pathogen with a MIC below 1 �g/ml. Since doripenem has a time-
dependent antibiotic effect and our results indicate that an extended 4-h infusion
produces a better PD profile than a 1-h infusion, we recommend the use of extended
infusions to bring about better clinical outcomes, especially when patients have either
normal or augmented renal function or the MIC for the pathogen is above 2 �g/ml.
Recent data on the in vitro activity of doripenem against P. aeruginosa, an important
pathogen in both intensive care units (ICU) and non-ICU, in the Asia-Pacific region
indicated that the MIC90 was 8 mg/liter (34). Thus, from the simulated data used in our
study, we consider that 250 mg of doripenem should be administered by i.v. infusion
over 4 h in the case of patients with a CLCR of 10 to 50 ml/min (every 8 h in the case
of patients with a CLCR of 30 to 50 ml/min and every 12 h in the case of patients with
CLCR of 10 to 30 ml/min). If the patients have a CLCR of �50 ml/min, the regimen of at
least 500 mg every 8 h by i.v. infusion over 4 h would be appropriate. However, a
dose of more than 1,000 mg every 8 h by infusion over 4 h should be considered
in patients with augmented renal clearance (130 ml/min � CLCR � 170 ml/min), as
several previous studies recommended (36, 37). Furthermore, dose optimization
using therapeutic drug monitoring to improve the clinical success rate in patients
receiving doripenem needs consideration on the basis of the findings of previous
studies (38).

It is of interest to note that the estimated CL of doripenem in Korean patients was
lower than that in Western subjects, regardless of renal function, suggesting that the
optimized dosing of doripenem in Korean patients might be different from that in
Western patients. Because doripenem is exclusively eliminated in urine and the renal
clearance of doripenem is controlled by glomerular filtration, which is a passive process
with minimal interethnic differences (39, 40), there is limited evidence that carbapen-
ems have different pharmacokinetics between races (41). However, the possibility of
ethnic differences in doripenem clearance was already raised in a previous study, in
spite of the difficulty with the interpretation of the results (17). From our point of view,
physiological differences, such as body size, may contribute to interethnic differences
in the pharmacokinetics of carbapenems (42–45), which would help to explain the
results of our study. The lower doripenem CL in Korean patients with either normal or
lower levels of renal function, possibly due to differences in BW and body mass
between Korean and other populations (42, 43), may result in a greater chance of
attaining a PK or PD target, even with lower doripenem doses. Nevertheless, a cautious
interpretation of our results is necessary until a firmer understanding of the interethnic
differences in the pharmacokinetics of doripenem is obtained, because several recent
studies did not show significant differences in doripenem PK among different popu-
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lations (15, 16). Data regarding ethnic differences in PK/PD would be precious for the
optimization and individualization of doripenem dosing regimens. Further clinical trials
to evaluate if clinical outcomes are influenced by different doses of doripenem in
Korean patients may allow more conclusive recommendations to be made.

This study has several limitations. First, we did not include patients who had septic
shock or who were on continuous renal replacement therapy. Such factors could alter
the PK profiles of doripenem (10, 46). Second, our data do not include doripenem
concentrations at the target site of infection. Third, we used a sampling design with
only three samples on the basis of practical clinical considerations. The three samples
seemed to be appropriate to determine the elimination rate constant and make a
one-compartment model, although they would not be appropriate to make a PK model
with the best design. Finally, we did not try to validate the clinical outcomes on the
basis of the study results. Despite these limitations, our study is valuable because we
included a relatively large number of patients (n � 37) for the PK study, and to the best
of our knowledge, the present study is the first to describe data on the population PK
of doripenem in Korean patients with acute infections. We plan to perform a clinical
trial to confirm and validate the individualized dosing of doripenem on the basis of the
equation established for CL and the Monte Carlo simulations performed in this study.

In conclusion, this study appropriately explains the PK profile of doripenem in
Korean patients with acute infections using population analysis. Our data suggest
that patients without septic shock or patients with infections caused by pathogens
with doripenem MICs below 1 �g/ml can be treated using the currently recom-
mended dosing regimen. However, patients with an augmented renal function or
those infected by pathogens with doripenem MICs above 2 �g/ml should be
treated with 4-h infusions of doripenem to attain a PTA above 90% in order to
improve clinical outcomes. Further, therapeutic drug monitoring may be helpful if the
MIC is above 2 �g/ml or renal function is augmented. This model will be useful for
personalized medicine after appropriate model validation using more data.

MATERIALS AND METHODS
Patients. From June 2013 to May 2014, adult patients (ages, �18 years) with acute infections, such

as pyelonephritis, intra-abdominal infections, or neutropenic fever, were eligible for this study. Patients
were included if they had sepsis or severe sepsis, as defined by the ACCP/SCCM Consensus Conference
(47), and acute-phase infections caused by microorganisms against which doripenem had activity or
pathogens that were at least expected to be susceptible to doripenem. The following exclusion criteria
were used: a history of hypersensitivity to �-lactam antibiotics, severe cardiovascular or hepatic disorders,
a central nervous system infection or pneumonia, pregnancy or nursing, and the use of drugs with the
potential for interaction with doripenem. Patients who had septic shock or who were receiving renal
replacement therapy were excluded.

This study protocol was reviewed and approved by the Institutional Review Board of the Inje
University Haeundae Paik Hospital (Busan, Republic of Korea). Informed consent was obtained from each
patient or legally authorized representative prior to study inclusion.

Study design. Four consecutive 250-mg or 500-mg doses of doripenem were intravenously (i.v.)
infused over the course of 1 h every 8 h in patients with a CLCR of �50 or �50 ml/min, respectively. In
patients with CLCRs ranging from 10 to 30 ml/min, we planned to administer 250-mg doses over the
course of 1 h every 12 h; however, no patients were administered this dosing regimen.

Blood samples were taken from 37 patients before and at 0 h, 0.5 h, and 4 h after the fourth infusion;
in patients with CLCRs of �50 ml/min, samples were taken at 6 h instead of 4 h. The window for taking
blood samples to estimate population PK parameters was 10 min for the samples obtained predosing
and at 0 h, 20 min for the sample obtained at 0.5 h, and 60 min for the samples obtained at 4 and 6 h.

Drug assay. Plasma doripenem concentrations were determined using a validated liquid chromato-
graphy-tandem mass spectrometry assay (48, 49). In brief, 50-�l aliquots were vortexed with 10 �l
internal standard solution (meropenem sodium salt, 20 �g/ml) and acetonitrile (250 �l) and then
centrifuged (5415R centrifuge; Eppendorf, Germany) at 16,000 � g for 5 min. The supernatant was
injected for liquid chromatography-tandem mass spectrometry analysis using a mobile phase consisting
of a mixture of 10 mM ammonium formate containing 0.1% formic acid and acetonitrile containing 0.1%
formic acid in a ratio of 90:10 at a flow rate of 0.2 ml/min (Agilent 1200 series; Agilent Technologies, USA).
Mass spectrometry analysis was conducted using electrospray ionization in the positive (ESI�) mode with
multiple reaction monitoring (Agilent 6410 triple-quad tandem mass spectrometry system; Agilent
Technologies, USA). The lower limit of quantification was 0.2 �g/ml. The assay was linear over a range
of 0.2 �g/ml to 50 �g/ml (R2 � 0.9965). The interday precision and the accuracy of the validation
concentration range (0.2, 0.6, 10, and 40 �g/ml), analyzed with standard samples for 3 days, were 2.75
to 8.16% and 92.59 to 106.67%, respectively.
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Population PK analysis. The population PK analysis and PD simulations were conducted using a
nonlinear mixed-effect modeling tool, NONMEM (version 7.3; Icon Development Solutions, USA). The
first-order conditional estimation with interaction (FOCE-I) method with interactions between interindi-
vidual and residual variabilities was used for this study.

One- and two-compartment models were tested using ADVAN1 and ADVAN3 from the PRED
(population model-predicted concentrations) population PK library. Interindividual variabilities for
PK/PD parameters were assumed to be log-normally distributed and were simulated using an exponen-
tial error model, defined as �i � � � exp(�i), where � is the typical value of the PK parameter, �i is an
individual parameter, and �i is the interindividual random effect, distributed as a normal distribution with
a mean of 0 and a variance of 	2. An additive error model, a proportional error model, a combined
additive and proportional error model, or a Poisson error model was tested for intraindividual variability.
Diagnostic goodness-of-fit plots, NONMEM objective function values (OFVs), and relative standard errors
for parameter estimates were evaluated for model selection. A decrease in the OFV (ΔOFV) between two
nested models of greater than 3.84 with 1 degree of freedom or 5.99 with 2 degrees of freedom was
considered a significant model improvement on the basis of the chi-square test.

To search for significant covariates for PK parameters, including covariates that had a correlation with
empirical Bayes estimates for the interindividual variability of a PK parameter and a physiological
relationship with the PK parameter, stepwise forward selection and backward elimination were con-
ducted. A likelihood ratio test was applied to investigate significant covariates with a significance level
with a P value of �0.05 (ΔOFV � 3.84 with 1 degree of freedom) for selection and a P value of �0.01
(ΔOFV � 6.64) for elimination (50). In stepwise covariate modeling, the effects of age, sex, height, CLCR,
the blood urea nitrogen concentration, and the Acute Physiology and Chronic Health Evaluation II
(APACHE II) score on CL were evaluated. Further, the effects of age, sex, height, plasma protein levels, and
the APACHE II score on V were evaluated.

The final PK model was evaluated using Perl-speaks-NONMEM software (version 3.4.2; http://psn.
sourceforge.net). Diagnostic plots and a visual predictive check were performed by comparing the
observed plasma concentrations with the 90% prediction intervals from 1,000 simulated data sets using
the final PK parameters and significant covariates.

PD target attainment. To simulate the steady-state concentration-time profiles of doripenem for the
current dosing regimens used in South Korea (for a CLCR of �50 ml/min, 500 mg every 8 h by i.v. infusion
over 1 h; for 30 ml/min � CLCR � 50 ml/min, 250 mg every 8 h by i.v. infusion over 1 h; for 10 ml/min �
CLCR � 30 ml/min, 250 mg every 12 h by i.v. infusion over 1 h), Monte Carlo simulations for various MICs
with coefficients of variation (CVs) of 0%, 10%, 20%, and 30% were conducted using the final PK
parameter estimates, the selected covariates, and their distributions to evaluate the current regimen. All
PK parameters and the selected covariates were assumed to be log-normally distributed. The steady-
state concentrations (Css) after multiple intermittent infusions were used to calculate the percentage of
a dosing interval during which the free drug concentrations exceeded the MIC (percent fTMIC). The times
above the MIC before and after the steady-state maximum concentration (Css,max) were calculated
separately and summed.

The peak (maximum) concentration at the end of the infusion (Css,max) was determined using the
following equation:

Css,max �
D

V � kel
�

�1  ekel � Tinf �
�1  ekel � Tint �

where D is dose, V is the volume of distribution, kel is elimination rate constant, Tinf is the infusion time,
and Tint is the dosing interval. The trough (minimum) concentration (Css,min) before the next dose was
calculated using the following equation:

Css,min �
D

V � kel
�

�1  ekel � Tinf �
�1  ekel � Tint � � ekel � �Tint  Tinf �

The equation for the change in the concentration over time after Css,min without the administration of a
new dose (Css) becomes

Css �
D

V � kel
�

�1  ekel � Tinf �
�1  ekel � Tint � � ekel � �Tint  Tinf � � ekel � time

Then, changes in the concentration over time after the administration of a new dose (Css,inf) were
calculated by

Css,inf �
D

V � kel
�

�1  ekel � Tinf �
�1  ekel � Tint � � ekel � �Tint  Tinf � � ekel � time �

D

V � kel
� 1  ekel � time (1)

On the other hand, the equation for the concentrations after Css,max is achieved becomes

Css �
D

V � kel
�

�1  ekel � Tinf �
�1  ekel � Tint � � ekel � time (2)

The total time above the MIC (in minutes) was summed by the use of simulated individual PK
parameters through the application of equations 1 and 2 and duration. Actual MICs were not available;
therefore, the MICs for the pathogens were evaluated by increasing the concentration twice from 0.5 to
32 �g/ml. For each MIC in each data set, the probability that patients would have a percentage of a
dosing interval in which the free drug concentrations exceeded the MIC (fTMIC) of �40% (8, 51–53) was
calculated with 1,000 simulated patients. The free drug concentration (f) was fixed to 0.919, as the level
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of binding of doripenem to plasma proteins is approximately 8.1% (54). The PTA should be over 90% for
a regimen to be considered optimal. An unbound plasma concentration of 91.9% was used for the
simulations (54).

Monte Carlo simulations were also performed to investigate dosing regimens for personalized
medicine, which may prevent a patient with augmented renal clearance from being underdosed or keep
a patient with decreased renal clearance from overdosing. The covariate of the final PK model, CLCR, was
assumed to be uniformly distributed within various stratified renal function ranges (10 ml/min � CLCR �
30 ml/min, 30 ml/min � CLCR � 50 ml/min, 50 ml/min � CLCR � 90 ml/min, 90 ml/min � CLCR � 130
ml/min, and 130 ml/min � CLCR � 170 ml/min), while all the PK parameters were assumed to follow a
log-normal distribution. Different doses (125, 250, and 500 mg), infusion times (1 h and 4 h), and dosing
intervals (8 h and 12 h) were evaluated. These dosing simulations were performed by use of a fixed body
weight of 60 kg.
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