
Dermoscopy guided dark-field multi-functional 
optical coherence tomography 

SOONJAE KWON,1,5 YEOREUM YOON,1,5 BUMJU KIM,2 WON HYUK JANG,2 
BYUNGHO OH,3 KEE YANG CHUNG,4,6 AND KI HEAN KIM

1,2,7 
1Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-

dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea 
2Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 

San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea 
3Department of Dermatology, Keimyung University, College of Medicine, 56, Dalseong-ro, Jung-gu, 

Daegu, 41931, South Korea 
4Departments of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei 

University College of Medicine, Seoul, 03722, South Korea 
5These authors contributed equally to this work 
6kychung@yuhs.ac 
7kiheankim@postech.ac.kr 

Abstract: Dermoscopy is a skin surface microscopic technique allowing specular reflection 

free observation of the skin, and has been used to examine pigmented skin lesions. However, 

dermoscopy has limitations in providing depth information due to lack of 3D resolution. In 

order to overcome the limitations, we developed dermoscopy guided multi-functional optical 

coherence tomography (MF-OCT) providing both high-contrast superficial information and 

depth-resolved structural, birefringent, and vascular information of the skin simultaneously. 

Dermoscopy and MF-OCT were combined by using a dichroic mirror, and dark-field 

configuration was adapted for MF-OCT to reduce specular reflection. After characterization, 

dermoscopy guided MF-OCT was applied to several human skin lesions such as the scar, 

port-wine stain (PWS) as well as the normal skin for demonstration. Various features of the 

scar and PWS were elucidated by both dermoscopy and MF-OCT. Dermoscopy guided MF-

OCT may be useful for evaluation and treatment monitoring of skin lesions in clinical 

applications. 

© 2017 Optical Society of America 

OCIS codes: (170.4500) Optical coherence tomography; (170.1870) Dermatology; (130.5440) Polarization-selective 

devices; (170.0170) Medical optics and biotechnology. 
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1. Introduction 

Dermoscopy is a skin surface microscopic technique allowing specular reflection free 

observation of subsurface structures in the skin, and it has been widely employed by 

dermatologists for evaluating pigmented skin lesions including melanoma [1–4]. Usage of 

dermoscopy has been recently extended to diagnose non-pigmented skin lesions [5–7] as well 

as to monitor the treatment response in various skin lesions [8–10]. However, dermoscopy 

can visualize only superficial features in the skin with inaccurate depth information due to 

lack of 3D resolution. 

Optical coherence tomography (OCT) is a 3D imaging technique based on low coherence 

interferometry, and provides depth-resolved information of tissue microstructure down to 1 - 

2 mm with high-resolution and high-imaging speed [11]. Feasibility of OCT for skin 

examinations has been proven in various dermatological studies [12–15], and functional OCT 

techniques which can provide additional information such as polarization and vasculature 

have been developed. Polarization-sensitive OCT (PS-OCT) provides polarization properties 

of tissues such as birefringence, and it is useful for distinguishing lesions from normal tissues 

if the normal ones have polarization properties. PS-OCT has been applied to studying various 

organs including the skin [16–23]. Angiographic OCT based on flow characteristics provides 

additional vascular information within tissue, such as diameter, shape and distribution of 

blood vessels and their perfusion. Angiographic OCT has been applied to detecting abnormal 

vasculature of skin lesions such as port-wine stain (PWS) and basal cell carcinoma (BCC) 

[24–26]. 

Dermoscopy and OCT provide complementary information of the skin, and their 

combination can overcome the limitations of each method: Dermoscopy offers high-contrast 

superficial information and OCT offers accurate depth information of skin lesions. In 

previous studies, additional use of OCT to dermoscopy showed improvement of sensitivity 

and specificity in diagnosing non-pigmented BCC [27] and provided more precise pre-

surgical margin of BCC [28]. Recently, a technical combination of dermoscopy and OCT 

using a dichroic mirror (DM) was demonstrated [29]. However, it did not utilize augmented 

functional OCT techniques such as polarization-sensitive and angiographic OCTs. 

Suppressing specular reflection from the sample surface is another technical consideration 

in combining dermoscopy and OCT. Standard OCT using Gaussian beam in both illumination 

and detection suffers from specular reflection from the sample. This problem hinders the 

proper detection of sample reflection due to saturation, thus degrades image quality and 
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makes polarization calculation difficult. In order to avoid this problem, samples are usually 

slanted from the normal of illumination beam. However, when combining dermoscopy and 

OCT, the sample slanting method may not be applicable due to the requirement of 

dermoscopy imaging. To reduce specular reflection without the sample slanting, dark-field 

OCT methods separating the illumination and detection light paths might be useful [30–34]. 

In this study, we developed dermoscopy guided multi-functional OCT (MF-OCT) which 

can simultaneously provide both high contrast superficial information and depth-resolved 

structural, birefringent, and vascular information of the skin. Dark-field configuration was 

adapted in MF-OCT to reduce specular reflection. System design and implementation were 

described and system performance was characterized. The newly developed dermoscopy 

guided MF-OCT was applied to several human skin lesions such as the scar and PWS 

together with the normal skin for demonstration. 

2. Materials and methods 

2.1 Instrumentation 

A schematic of dermoscopy guided MF-OCT is shown in Fig. 1. The OCT setup is similar to 

the previously reported dark-field PS-OCT [31] and the sample arm was modified to use a 

10x dermoscopy (DermLite DL3, 3Gen, USA) as the objective lens. The OCT light source 

was a wavelength swept source (SSOCT-1310, AXSUN Technologies) with the center 

wavelength of 1310 nm, bandwidth of 107 nm, sweeping speed of 50 kHz, 45.1% duty cycle, 

and imaging depth range of 6 mm in the air. Light from the source was split with 95:5 ratio: 

95% of light went into the interferometry setup, and the remaining 5% was directed to a fiber 

Bragg grating (FBG, λ0 = 1307.8 nm, Reflectivity = 97%, Δλ = 0.08 nm, OE Land) to 

generate an external trigger signal for data acquisition. For PS-OCT imaging, a passive delay 

unit (PDU) was used to generate two orthogonal polarization states with 3 mm optical path 

length separation each other [31, 35, 36]. In the sample arm, light was collimated to 1.8 mm 

in diameter by a fiber collimator (HPUCO-13A-1300/1550-S-11AS, OZ optics). Beam profile 

of the collimated light was converted from Gaussian beam to Bessel beam by an axicon lens 

(AX255-C, Thorlabs) with 170° apex angle. The converted Bessel beam was relayed to the 

object plane by lenses (L1-L5) and the dermoscopy lens. L1-L4 (AC254-060-C, Thorlabs) 

and L5 (AC254-075-C, Thorlabs) were standard achromatic lenses with 60 mm and 75 mm 

focal lengths respectively. A dichroic mirror (DM, 1025dcspxr, Chroma) was placed in 

between L5 and dermoscopy to transmit visible dermoscopy light and to reflect OCT light. A 

2D galvano scanning mirror (GVS 112/M, Thorlabs) was placed in between L3 and L4 to 

scan OCT beam in the sample plane. Illuminating Bessel beam was designed to have 8.6 μm 

central lobe size (1/e
2
) and 1.7 mm depth of focus (DOF) in the sample with 0.117 numerical 

aperture (NA). Gaussian beam in the detection path was designed to have 0.025 NA, 

approximately 4.7 times smaller than that of Bessel beam for dark-field effect. Corresponding 

full width half maximum (FWHM) intensity of the focus in the sample was 19.4 μm in 

diameter and 2 times of Rayleigh range was 0.9 mm. Illumination and detection beam paths 

were separated by a right angle mirror (3mm Protected Gold Coated, N-BK7 Right Angle 

Mirror, Edmund optics) [31, 32]. Reflected light from both the reference and sample arms 

was combined and collected at a polarization diverse detection (PDD) setup. 1280 samples 

per each depth-scan were acquired with a digitizer (ATS9350, Alazar Technologies Inc.) by 

using the external trigger and clock signals from the Axsun light source. Part of data was 

processed and displayed in real time during acquisition. Acquired data was post-processed to 

generate intensity, PS, and angiographic OCT images by using MATLAB (Mathworks). 

Dispersion mismatch between the reference and sample arms was numerically corrected by 

pre-calibration data of a mirror sample [37, 38]. Polarization properties of the sample were 

obtained by Jones matrix-based analysis [39, 40], and the accumulated phase retardation with 

depth was calculated and displayed. Angiographic OCT images were obtained by a complex 

differential variance technique [41]. 
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For dermoscopy imaging, integrated visible light sources in the dermoscopy was used to 

illuminate samples in either cross-polarized or non-polarized modes. Light from the sample 

was collected by the dermoscopy lens, transmitted through the DM, relayed by a lens pair 

(L6, L7), and collected at a commercial smartphone (SHV-E330K, Samsung, Rep. of Korea) 

for imaging. L6 and L7 (AC254-075-A, Thorlabs) were standard achromatic lenses with 75 

mm focal length. Resolution of dermoscopy was measured by imaging a USAF resolution 

target (R3L3S1N, Thorlabs), and was approximately 14.0 μm. An optical window at the distal 

end of dermoscopy was detachable and the imaging could be conducted in either the contact 

or non-contact modes. 

 

Fig. 1. System configuration of dermoscopy guided MF-OCT. Bessel beam illumination and 

Gaussian beam detection paths for dark-field effect are depicted in gray and red colors, 

respectively. PDU: passive delay unit, PC: polarization controller, FBG: fiber Bragg grating, 
CM: collimator, CIR: fiber circulator, FC: fiber coupler, PD: photodetector, PDD: polarization 

diverse detection, M: mirror, SM: scanning mirror, RAM: right angle mirror, DM: dichroic 

mirror, L1-L4: achromatic lens (f = 60 mm), L5-L7: achromatic lens (f = 75 mm). 

2.2 System characterization 

Lateral resolution of MF-OCT was measured by imaging microspheres (17134-15, 3 μm, 

Polysciences Inc.) embedded in 2% agarose gel, and the results are shown in Fig. 2. Since the 

microspheres were smaller than the expected lateral resolution, the microsphere images were 

equivalent to point spread functions (PSFs). An en-face intensity OCT image of microspheres 

at 300 μm deep from the surface is shown in Fig. 2(a). Microsphere images showed high 

intensity central lobes and surrounding side lobes, typical for Bessel beam. Enlarged images 

of a single microsphere at 200 μm, 350 μm, and 500 μm deep from the surface are shown in 

Figs. 2(b)-2(d) respectively. Average diameter of the central lobes was 9.4 ± 0.93 μm from 15 

microsphere images. Axial resolution of MF-OCT was 8.94 ± 1.01 μm in the air by 

measuring the FWHM intensity of a mirror sample. 

Sensitivity of the dark-field OCT cannot be measured by standard procedure using a 

mirror, due to different NAs of illuminating Bessel beam and detecting Gaussian beam. 

Therefore, the sensitivity of MF-OCT based on dark-field method was measured in 

comparison with a conventional OCT system whose sensitivity is known to be 103.2 dB. A 

turbid tissue phantom which had 0.4% TiO2 in silicone by weight and the corresponding 

scattering coefficient of 8 mm
-1

 was imaged by MF-OCT and conventional OCT for 

comparison. Cross-sectional intensity OCT images of the tissue phantom acquired by the two 

OCT systems are shown in Figs. 3(a) and 3(b), and their mean intensity profiles with depth 

are shown in Fig. 3(c). The mean intensity profile of dermoscopy guided MF-OCT showed 
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approximately 4 - 7 dB lower intensity levels than that of conventional OCT in the tissue 

phantom, which is typical for dark-field OCT. More discussion about the decreased 

sensitivity was given in the discussion section. In order to characterize the sensitivity of 

dermoscopy guided MF-OCT in the skin, the dorsum of human hand was imaged. Cross-

sectional intensity OCT image and its mean intensity profile are shown in Figs. 3(d) and 3(e), 

respectively. The peak intensity inside the skin was approximately 19 dB above the noise 

level. The slope of intensity decay with depth was calculated by linear fitting, and it was 

approximately 0.020 dB/μm. These results were similar to a previous report [31]. 

 

Fig. 2. (a) En-face intensity OCT images of microspheres (3 μm in diameter) at 300 μm deep 
from the surface. (b-d) Enlarged PSF images at 200 μm, 350 μm, and 500 μm deep from the 

surface. Scale bars are (a) 100 μm and (b-d) 20 μm. 

 

Fig. 3. Comparison between dermoscopy guided MF-OCT and conventional OCT in a tissue 

phantom and sensitivity analysis of dermoscopy guided MF-OCT in the human skin. (a, b) 

Cross-sectional intensity OCT images of a TiO2 tissue phantom by dermoscopy guided MF-

OCT and conventional OCT respectively. (c) Mean intensity profiles with depth of the two 

intensity OCT images in (a) and (b). (d) Cross-sectional intensity OCT image of the dorsum of 
human hand by dermoscopy guided MF-OCT. (e) Mean intensity profile with depth of the 

intensity OCT image in (d). All scale bars are 500 μm. 

2.3 Experimental procedure 

For human skin imaging, two human volunteers were recruited: a 31-year-old male Asian 

having congenital PWS on the right forearm, and a 27-year-old female Asian having a very 
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old (16 years) whitish flat scar on the thumb side of dorsum of left hand. The study protocol 

was approved by the Institutional Review Board (IRB) of Pohang University of Science and 

Technology (PIRB-2016-A004). Prior to imaging, hair in the skin region of interest was 

trimmed with a razor blade to avoid artifacts in OCT imaging. Dermoscopy guided MF-OCT 

was applied in the contact mode by using the optical window in order to reduce motion 

artifacts. The skin was placed under the optical window, and water was added in between the 

window and skin to reduce reflection from the contacting interfaces. The illumination power 

onto the skin for OCT was 5 mW. 3D OCT imaging was conducted by recording cross-

sectional B-scans in the x-z direction continuously with step-wise increment in the transverse 

y direction. For angiographic imaging, 10 B-scans were recorded at each cross-section and 

processed. For PS imaging, single B-scans were processed at each cross-section. 3D OCT 

images had the imaging field of view (FOV) of 2.8 mm x 2.8 mm x 2.25 mm in the x, y, and z 

directions consisting of 500 pixels x 500 pixels x 320 pixels. FOV of dermoscopy was 8 mm 

in diameter. The imaging time was approximately 50 s per volume. 

3. Results 

3.1 Normal skin 

After characterization, dermoscopy guided MF-OCT was applied to the normal human skin as 

the control. Dermoscopy and MF-OCT images of the dorsum of human hand were acquired 

and the results are shown in Fig. 4. Dermoscopy image, cross-sectional intensity and PS-OCT 

images, and en-face angiographic OCT image of the normal skin are shown in Figs. 4(a)-4(d), 

respectively. Dermoscopy image in Fig. 4(a) shows detail superficial skin structures such as 

wrinkles and skin pores without specular reflection by cross-polarization illumination and 

imaging. MF-OCT images were acquired in a region of blue dashed box shown in Fig. 4(a). 

En-face angiographic OCT image was generated by maximum intensity projection (MIP) and 

depth-resolved color mapping. MIP was applied to 3D angiographic OCT images in the depth 

range from 100 μm to 400 μm deep from the surface, as indicated by two yellow dashed lines 

in intensity OCT image in Fig. 4(b). Intensity OCT image shows typical layered structure of 

the normal skin comprising the superficial weakly scattering epidermis, underneath highly 

scattering dermis, and some vertical shadows indicating blood vessels. PS-OCT image in Fig. 

4(c) shows blue color in the epidermis and blue to red banding patterns in the dermis 

indicating birefringence due to collagen composition. The blue and red colors in PS-OCT 

image indicate 0° and 180° accumulated phase retardations from the surface, respectively. 

There are some vertical stripes in PS-OCT image, which are artifacts from calculation error of 

phase retardation. Angiographic OCT image in Fig. 4(d) shows typical vascular distribution 

in the skin: superficial capillary and deep large vessels. 

 

Fig. 4. Normal skin images by dermoscopy guided MF-OCT. (a) Dermoscopy image. (b) 
Intensity OCT and (c) PS-OCT images in the x-z plane (see Visualization 1). (d) MIP 

angiographic OCT image with depth resolved color mapping in the x-y plane. A blue dashed 

lined box indicates FOV of MF-OCT. Yellow-dashed lines indicate the depth range of 
angiographic OCT image. Scale bars are (a) 1 mm and (b-d) 500 μm. 
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3.2 Scar 

A whitish flat scar of the human volunteer was imaged by dermoscopy guided MF-OCT, and 

the results are shown in Fig. 5. Dermoscopy image, and intensity, PS, and angiographic OCT 

images of the scar are shown in Figs. 5(a), 5(b), 5(e), 5(c), 5(f), and 5(d), respectively. 

Intensity and PS-OCT images are shown in both the en-face and cross-sectional views, and 

white dashed lines in Figs. 5(b), 5(c) and 5(e), 5(f) indicate locations of the cross-sections and 

depth-sections, respectively. Two yellow dashed lines in the cross-sectional intensity OCT 

image indicate the depth range of en-face angiographic OCT image. En-face MIP 

angiographic OCT image is shown with depth resolved color mapping. Dermoscopy image in 

Fig. 5(a) shows the whitish scar out of the surrounding pinkish normal skin. The scar appears 

dark in intensity OCT images (Figs. 5(b) and 5(e)) due to strong light scattering. It appears as 

a red colored region out of the blue surrounding in en-face PS-OCT image (Fig. 5(c)), and as 

a rapidly color changing region in cross-sectional PS-OCT image (Fig. 5(f)) indicating strong 

birefringence. White arrows in Figs. 5(b) and 5(c) mark the scar region with strong light 

scattering and birefringence. Cross-sectional intensity and PS-OCT images in Figs. 5(e) and 

5(f) show depth location of the scar just below the epidermis. Angiographic OCT image in 

Fig. 5(d) shows vasculature in the scar region and surrounding normal region. Less blood 

vessels are observed in the scar compared to the surrounding normal skin. 

3.3 PWS 

PWS and the contralateral control skin of the human volunteer were imaged by dermoscopy 

guided MF-OCT. Dermoscopy and MF-OCT images collected from the PWS and 

contralateral control are shown in Figs. 6(a)-6(d) and 6(e)-6(h), respectively, and they have 

same image configuration as the one of normal skin in Fig. 3. Intensity and PS-OCT images 

are shown in the cross-sectional view. En-face MIP angiographic OCT images are shown 

with depth resolved color mapping. Dermoscopy image of the PWS region in Fig. 6(a) shows 

more reddish skin color and some blood vessels compared to that of contralateral control in 

Fig. 6(e). Cross-sectional intensity OCT image of PWS in Fig. 6(b) shows more vertical 

shadows indicating blood vessels in the upper dermis than that of contralateral control in Fig. 

6(f). PS-OCT image of PWS in Fig. 6(c) shows relatively slow accumulated phase retardation 

with depth compared to that of contralateral control in Fig. 6(g). Angiographic OCT image of 

PWS in Fig. 6(d) shows relatively thick superficial blood vessels, which is typical feature of 

PWS pathology. While those of the contralateral control in Fig. 6(h) shows thin superficial 

blood vessels and relatively thick ones in the deeper region. Both dermoscopy and MF-OCT 

show characteristic features of PWS, different from the normal skin. 

4. Discussion 

Dermoscopy guided MF-OCT was developed to provide both the superficial color image, and 

depth-resolved structural, birefringent, and vascular images of the skin simultaneously. 

Dermoscopy and MF-OCT were combined by using a DM, and the dermoscopy lens was 

used for both the OCT and dermoscopy imaging. Dark-field configuration was adapted to 

OCT for specular reflection free imaging. After its performance was characterized by imaging 

microspheres and scattering samples, dermoscopy guided MF-OCT was applied to several 

human skin lesions as well as the normal skin for demonstration. In the normal skin, 

dermoscopy guided MF-OCT simultaneously visualized detail superficial skin features and 

typical layered structure comprising epidermis, dermis, and composition of collagen and 

vasculature. In the scar, whitish superficial structure and depth-resolved highly scattering and 

birefringent structure were elucidated by dermoscopy guided MF-OCT. In the PWS, reddish 

superficial color and abnormally enlarged superficial blood vessels were observed. Features 

of these skin lesions were clearly visualized by dermoscopy guided MF-OCT. 
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Fig. 5. Scar images by dermoscopy guided MF-OCT. (a) Dermoscopy image. (b, e) Intensity 
OCT and (c, f) PS-OCT images in the x-y and x-z plane respectively (see Visualization 2). (d) 

MIP angiographic OCT image with depth resolved color mapping in the x-y plane. A blue 

dashed lined box indicates FOV of MF-OCT. White dashed lines indicate locations of the 
cross-sections and depth-sections. White arrows indicate the highly scattering and birefringent 

regions in (b, c). Yellow dashed lines indicate the depth range of angiographic OCT image. 

Scale bars are (a) 1 mm and (b-f) 500 μm. 

 

Fig. 6. Images of (a-d) PWS and (e-h) contralateral control by dermoscopy guided MF-OCT. 

(a, e) Dermoscopy images. (b, f) Intensity OCT and (c, g) PS-OCT images in the x-z plane (see 
Visualization 3 and Visualization 4). (d) MIP angiographic OCT image with depth resolved 

color mapping in the x-y plane. A blue dashed lined box indicates FOV of MF-OCT. Yellow-

dashed lines indicate the depth ranges of angiographic OCT images. Scale bars are (a, e) 1 mm 
and (b-d, f-h) 500 μm. 
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Sensitivity of dermoscopy guided MF-OCT was approximately 19 dB maximum in the 

human skin, which was 6 dB lower than that of conventional OCT using Gaussian beam in 

both the illumination and detection. However, sensitivity of the new dermoscopy guided MF-

OCT was comparable with a previously reported dark-field PS-OCT using the same OCT 

engine [31]. The lower sensitivity of dermoscopy guided MF-OCT, compared to conventional 

OCT, was caused by several factors: (1) Bessel beam generated by the axicon lens tends to 

lose the source power due to their extensive side-lobes. Previous studies analyzed sensitivity 

penalties of Bessel beam based OCT resulting from the low power fraction in the central lobe 

[42]. Bessel beam with lower Fresnel number tends to have less sensitivity reduction. 

However, dermoscopy guided MF-OCT used Bessel beam having relatively high Fresnel 

number (N = 26.8) due to design limitation. (2) The 10x dermoscopy lens, which was used as 

the objective lens for MF-OCT, was not anti-reflection coated for the near-infrared OCT 

wavelength. (3) Imperfection at its conical tip of the axicon lens caused additional power loss. 

The conical tip in the axicon lens was not sharp enough so that some portion of light did not 

form Bessel beam after the axicon lens. Large sized Gaussian beam might be good in order to 

minimize the loss during beam profile conversion by the axicon lens. 

In a next step, the system will be further improved and clinical studies will be conducted. 

As system improvement, Doppler OCT methods will be incorporated to obtain information on 

the blood flow rate in addition to the vasculature [43–45]. The blood flow rate will be more 

useful for skin disorders such as PWS or keloid scar because they have abnormal perfusion 

characteristics. Currently the sample arm of our system is quite bulky which limits the clinical 

applicability. Thus, a more compact sample arm needs to be designed which can be mounted 

on an articulated arm for flexible positioning of the system. 

5. Conclusion 

Dermoscopy guided MF-OCT which can visualize both the superficial features in color, and 

depth-resolved structural, birefringent, and vascular information of skin simultaneously, was 

developed. A commercial dermoscopy lens was used as the objective lens for both 

dermoscopy and MF-OCT imaging, and dark-field OCT configuration was adapted to reduce 

specular reflection. Dermoscopy guided MF-OCT was applied to several human skin lesions 

as well as the control for demonstration. It visualized typical features of the control skin, and 

abnormal features of the scar and PWS in both dermoscopy and MF-OCT images. 

Dermoscopy guided MF-OCT may be useful in both the diagnosis and treatment monitoring 

of skin lesions in clinical applications. 
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