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Background: Renal tubulointerstitial fibrosis is a common feature of the final stage of nearly all cause types of chronic kidney dis-
ease. Although classic peroxisome proliferator-activated receptor γ (PPARγ) agonists have a protective effect on diabetic nephropa-
thy, much less is known about their direct effects in renal fibrosis. This study aimed to investigate possible beneficial effects of lobe-
glitazone, a novel PPARγ agonist, on renal fibrosis in mice. 
Methods: We examined the effects of lobeglitazone on renal tubulointerstitial fibrosis in unilateral ureteral obstruction (UUO) in-
duced renal fibrosis mice. We further defined the role of lobeglitazone on transforming growth factor (TGF)-signaling pathways in 
renal tubulointerstitial fibrosis through in vivo and in vitro study. 
Results: Through hematoxylin/eosin and sirius red staining, we observed that lobeglitazone effectively attenuates UUO-induced re-
nal atrophy and fibrosis. Immunohistochemical analysis in conjunction with quantitative reverse transcription polymerase chain re-
action and Western blot analysis revealed that lobeglitazone treatment inhibited UUO-induced upregulation of renal Smad-3 phos-
phorylation, α-smooth muscle actin, plasminogen activator inhibitor 1, and type 1 collagen. In vitro experiments with rat mesangial 
cells and NRK-49F renal fibroblast cells suggested that the effects of lobeglitazone on UUO-induced renal fibrosis are mediated by 
inhibition of the TGF-β/Smad signaling pathway. 
Conclusion: The present study demonstrates that lobeglitazone has a protective effect on UUO-induced renal fibrosis, suggesting 
that its clinical applications could extend to the treatment of non-diabetic origin renal disease.
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INTRODUCTION

The incidence of chronic kidney disease (CKD) has increased 
in recent years, with more people suffering from end stage renal 
failure [1]. A common pathologic feature of end stage kidney 
disease is renal tubulointerstitial fibrosis characterized by trans-
forming growth factor β (TGF-β)/Smad signaling-mediated ex-
tracellular matrix (ECM) accumulation [2,3]. TGF-β/Smad sig-
naling is a master regulatory pathway of profibrotic genes such 
as α-smooth muscle actin (α-SMA), plasminogen activator in-
hibitor 1 (PAI-1), and type 1 collagen [4,5]. For this reason, 
much effort has been placed into finding an effective strategy 
for inhibiting TGF-β/Smad signaling to treat renal tubulointer-
stitial fibrosis [6,7]. 

Thiazolidinediones (TZDs), synthetic peroxisome prolifera-
tor-activated receptor γ (PPARγ) agonists, are often used to 
manage type 2 diabetes mellitus (T2DM) via regulation of glu-
cose and lipid metabolism [8]. TZDs also affect a diverse range 
of activities including cell proliferation, apoptosis, inflamma-
tion, and oxidative stress responses [9,10]. Recent studies have 
demonstrated beneficial effects of TZD on various renal inju-
ries. Treatment with PPARγ agonists has protective effects 
against both diabetic and non-diabetic origin CKD [11,12]. Al-
though glycemic and lipid control can contribute to their protec-
tive renal effect, recent evidence suggests that upregulation of 
PPARγ expression in the kidney itself provides additional renal 
benefits by reducing TGF-β-induced ECM production, main-
taining podocyte numbers and function, and regulating inflam-
matory cell infiltration [13,14].

Lobeglitazone is a new PPARγ agonist with a TZD moiety 
and substituted pyrimidines, currently used to treat T2DM after 
completing clinical trials [15]. Phase III clinical trial data show 
that lobeglitazone treatment resulted in an approximately 0.6% 
to 0.74% decrease in glycated hemoglobin compared with that 
of the placebo [16,17]. It is administered as a once-daily dose 
and mainly excreted in feces, reducing concerns of bladder can-
cer unlike the classic TZD pioglitazone. As another antidiabetic 
agent, it is necessary to evaluate additional effects of lobegli-
tazone on diabetic micro/macrovascular complications. A recent 
study has provided evidence on the cardiovascular protective 
role of lobeglitazone in the proliferation and migration of vas-
cular cells. In the balloon injury rat model, lobeglitazone-treated 
rats showed less neointimal formation in the carotid artery than 
placebo-treated rats. Lobeglitazone treatment also reduced the 
atheromatous burden in the aorta of apolipoprotein E knockout 
mice fed a high-fat and high cholesterol diet [18]. However, 

there are no human or animal studies on any potential renal pro-
tective effects of lobeglitazone. The effects of lobeglitazone on 
renal tubulointerstitial fibrosis have also not been studied.

In the present study, we evaluated whether lobeglitazone had 
antifibrotic effects on renal tubulointerstitial disease in unilateral 
ureteral obstruction (UUO) mice, a model of renal tubulointer-
stitial fibrosis. We also examined the antifibrotic properties of 
lobeglitazone in vitro.

METHODS

Experimental design
C57BL6 mice were pretreated with 1 mg/kg lobeglitazone 
(Chung Kun Dang Pharmaceutical Corp., Seoul, Korea) by ga-
vage daily for 3 days. For UUO-induced renal fibrosis, the left 
ureter of mice was doubly ligated. UUO was performed as pre-
viously described [19]. After UUO, C57BL6 mice were treated 
with 1 mg/kg lobeglitazone by gavage for 7 days consecutively. 
Seven days after UUO and lobeglitazone treatment, mice were 
euthanized, and their left kidneys were removed, cut in thirds, 
fixed in 4% paraformaldehyde, and either embedded in paraffin 
for histologic examination or frozen in liquid nitrogen for the 
isolation of protein or RNA. All procedures were performed in 
accordance with institutional guidelines for animal research [6]. 

Histologic and morphologic analysis
Histologic and morphologic analysis was performed as previ-
ously described [19]. Histochemical staining was performed 
with hematoxylin/eosin and sirius red. Immunohistochemical 
staining was performed using primary antibodies against p-
Smad3 (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, 
USA), α-SMA (1:500; Sigma, St. Louis, MO, USA), PAI-1 
(1:500; BD Biosciences, San Jose, CA, USA), and type 1 colla-
gen (1:500; Abcam, Cambridge, UK), followed by horseradish 
peroxidase-conjugated anti-mouse or anti-rabbit immunoglobu-
lin G secondary antibodies (Dako, Glostrup, Denmark). Quanti-
fication of renal fibrosis was measured as previously described 
[19].

Cell culture
NRK-49F normal rat kidney fibroblasts and rat mesangial cells 
(RMCs) were purchased from the American Type Culture Col-
lection (Manassas, VA, USA). NRK-49F cells were cultured in 
5% CO2/95% air at 37°C in Dulbecco’s modified Eagle’s medi-
um (DMEM; Gibco-BRL, Grand Island, NY, USA) supple-
mented with 5% fetal bovine serum (FBS; Hyclone, Logan, UT, 
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USA) and antibiotics. RMCs were cultured in 5% CO2/95% air 
at 37°C in DMEM. The medium was supplemented with 15% 
FBS and 0.4 mg/mL G418. Cells were rendered quiescent by 
incubation for 24 hours in medium supplemented with 0.5% 
FBS. Cells were treated with medium containing 0.5% FBS 
with or without TGF-β (5 ng/mL; R&D Systems, Minneapolis, 
MN, USA) for 24 hours. Cells were incubated with lobegli-
tazone (10 μM) for 24 hours. Cells were subsequently processed 
for the isolation of RNA or protein as described below.

Western blot analysis
Western blot was performed as previously described [19]. 
Membranes were incubated with anti-p-Smad3 (1:1,000; Cell 
Signaling Technology, Danvers, MA, USA), anti-Smad3 
(1:1,000; Cell Signaling Technology), anti-PAI-1 (1:1,000; BD 
Biosciences), anti-α-SMA (1:1,000; Sigma), and anti-type Ι col-
lagen (1:1,000; Abcam) polyclonal antibodies at 4°C with gentle 
shaking overnight. Antibodies were detected by horseradish 
peroxidase-linked secondary antibody (Santa Cruz) using an 
Enhanced Chemiluminescence Western Blotting Detection Sys-
tem, in accordance with the manufacturer’s instructions (Milli-
pore, Billerica, MA, USA) [19]. The membrane was reblotted 
with anti-β-tubulin antibody (Applied Biological Materials Inc., 
Richmond, BC, Canada) to verify equal protein loading in each 
lane. Densitometric measurements of the bands were performed 
using UN-SCAN-IT digitizing software (Silk Scientific Corp., 
Orem, UT, USA).

Quantitative real-time reverse transcription polymerase 
chain reaction 
Total RNA isolation and quantitative real-time reverse transcrip-
tion polymerase chain reaction (RT-PCR) was performed as pre-
viously described [19]. Primers were designed using AB Ste-
pOne software version 2.1 (Applied Biosystems, Foster City, 
CA, USA) and were based on the relevant sequences from Gen-
Bank as follows: mouse α-SMA (GenBank accession NM_ 
007392.3; sense, 5´-CAGGCTGTGCTGTCCCTCTA-3´; anti-
sense, 5´-CGGCAGTAGTCACGAAGGAA-3´), mouse PAI-1 
(GenBank accession NM_008871.2; sense, 5´-AATCCCACA-
CAGCCCATCA-3´; antisense, 5´-GGACCACCTGCTGAAA-
CACTTT-3´), mouse type 1 collagen (GenBank accession NM_ 
007742.3; sense, 5´-GCCTTGGAGGAAACTTTGCTT-3´; anti-
sense, 5´-GCACGGAAACTCCAGCTGAT-3´), mouse glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) (GenBank ac-
cession NM_008084.2; sense, 5´-GAAGGGTGGAGCCAAAA 
G-3´; antisense, 5´-GCTGACAATCTTGAGTGAGT-3´), rat 

α-SMA (GenBank accession NM_031004.2; sense, 5´-GCAC-
TACCATGTACCCAGGCAT-3´; antisense, 5´-TGCGTTCTG-
GAGGAGCAATAA-3´), ratPAI-1 (GenBank accession NM_ 
012620.1; sense, 5´-CACCCCTTCCAGAGTCCCATA-3´; anti-
sense, 5´-GCTGAAACACTTTTACTCCGAAGTT-3´), rat type 
1 collagen (GenBank accession NM_053304.1; sense, 5´-GT-
GCGATGGCGTGCTATG-3´; antisense, 5´-TCGCCCTCCC-
GTTTTTG-3´), and rat GAPDH (GenBank accession NM_ 
017008.4; sense, 5´-TGCCGCCTGGAGAAACC-3´; antisense, 
5´-AGCCCAAGGATGCCCTTTAGT-3´). The housekeeping 
gene GAPDH was used as an internal control.

In vitro transient transfection and reporter assay
Transient transfection and reporter assay was performed as pre-
viously described [20].

Statistical analysis
All data are expressed as the mean±SEM. Analysis of variance 
was used to evaluate statistical significance. P values less than 
0.05 were considered significant. All experiments were per-
formed at least three times in triplicate.

RESULTS

Lobeglitazone ameliorates UUO-induced renal 
tubulointerstitial fibrosis
The effects of lobeglitazone on renal tubulointerstitial fibrosis 
were evaluated using the UUO model. As shown in Fig. 1A, he-
matoxylin/eosin and sirius red staining showed that vehicle-
treated UUO kidneys exhibited prominent renal tubular atrophy 
and tubulointerstitial fibrosis. By contrast, lobeglitazone-treated 
UUO kidneys showed marked attenuation of UUO-induced tu-
bular atrophy and tubulointerstitial fibrosis (Fig. 1A). 

Lobeglitazone suppresses the interstitial expression of 
profibrotic molecules
Given that TGF-β/Smad3 is a well-known mediator in the de-
velopment of renal tubulointerstitial fibrosis, we examined the 
effects of lobeglitazone on the levels of Smad3 phosphorylation 
and Smad3 target genes including α-SMA, PAI-1, and type 1 
collagen. The results showed that positively stained areas for 
phosphorylated Smad3, α-SMA, PAI-1, and type 1 collagen 
were evidently increased in the damaged tubules of UUO kid-
neys, but these were significantly reduced by lobeglitazone 
treatment (Fig. 1B).

The effects of lobeglitazone on fibrotic gene expression were 
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Fig. 1. Effects of lobeglitazone on unilateral ureteral obstruction (UUO)-induced renopathological changes. (A) Representative images of 
hematoxylin and eosin (H&E) and sirius red staining of kidney tissue sections from control (CON) mice and UUO mice with or without 
lobeglitazone (Lobe; 1 mg/kg) treatment. The number of atrophic tubules was determined by measuring abnormal and dilated tubular base-
ment membranes in five random fields of H&E stained sections under high power magnification (×200). Areas of positive staining with sir-
ius red were quantitated by computer-based morphometric analysis. All morphometric data were normalized against the corresponding val-
ues in CON animals. Data in all bar graphs are expressed as fold increase relative to the CON (n=6 in each group). (B) Representative im-
ages of immunohistochemical staining forp-Smad3, α-smooth muscle actin (α-SMA), plasminogen activator inhibitor 1 (PAI-1), and type I 
collagen in kidney tissue sections from CON mice or UUO mice with or without lobeglitazone (1 mg/kg). Areas of positive staining with p-
Smad3, α-SMA, PAI-1, and type 1 collagen antibodies were quantitated by computer-based morphometric analysis. All data were expressed 
as the mean±SEM of five random fields from each kidney section (n=6 in each group). aP<0.05; bP<0.01; cP<0.001 vs. CON; and 
dP<0.05; eP<0.01; fP<0.001 vs. UUO. 
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further confirmed by quantitative RT-PCR and Western blot 
analysis. Consistent with the immunohistochemical analysis, 
the protein abundance of PAI-1, α-SMA, and type 1 collagen 
was lower in the kidneys of mice administered lobeglitazone 
than in vehicle-treated kidneys (Fig. 2A). Moreover, UUO-in-
duced Smad3 phosphorylation was markedly suppressed in the 
kidneys of lobeglitazone-treated mice (Fig. 2A). The mRNA 
expression levels of these genes in the kidneys of lobeglitazone-
treated mice were also markedly lower than in vehicle-treated 
mice (Fig. 2B).

Lobeglitazone inhibits profibrotic gene expression through 
inhibition of TGF-β/Smad3 signaling
To examine the mechanism responsible for the antifibrotic ef-
fects of lobeglitazone, we examined whether lobeglitazone in-
hibits TGF-β-stimulated Smad3 signaling in cultured renal cells 
including NRK-49F cells and RMCs. As expected, TGF-β treat-
ment increased mRNA and protein levels of PAI-1, α-SMA, and 
type 1 collagen, and induced Smad3 phosphorylation. Lobegli-
tazone-treated NRK-49F cells showed markedly inhibited TGF-
β-stimulated profibrotic gene expression and Smad3 phosphor-

Fig. 2. Effects of lobeglitazone on profibrotic gene expression in kidneys of unilateral ureteral obstruction (UUO) mice. (A) Representative 
Western blot analysis of p-Smad3, t-Smad3, α-smooth muscle actin (α-SMA), plasminogen activator inhibitor 1 (PAI-1), and type 1 collagen 
protein expression in UUO kidneys with or without lobeglitazone (Lobe; 1 mg/kg; n=6 in each group). Data are expressed as the mean±
SEM of three independent experiments. (B) Representative real-time reverse transcription polymerase chain reaction analysis of α-SMA, 
PAI-1, and type 1 collagen mRNA expression in UUO kidneys with or without Lobe (1 mg/kg; n=6 in each group). Data in bar graphs are 
mean±SEM. aP<0.05; bP<0.01; cP<0.001 vs. control (CON); and dP<0.05; eP<0.01; fP<0.001 vs. UUO.
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ylation (Fig. 3A, B). Consistent with the effects in NRK-49F 
cells, lobeglitazone also suppressed TGF-β-stimulated Smad3 
phosphorylation, PAI-1, α-SMA, and type 1 collagen in RMCs 
(Fig. 3C, D).

To determine whether lobeglitazone-induced suppression of 
profibrotic gene expression is mediated at the transcriptional 
level, we examined whether lobeglitazone treatment inhibits 
TGF-β/Smad-stimulated PAI-1 promoter activity. Indeed, lobe-
glitazone treatment successfully inhibited TGF-β and ALK5/
Smad3, 4-stimulated PAI-1 promoter activity both in NRK-49F 
cells and RMCs (Fig. 4). These results indicate that lobegli-
tazone has an antifibrotic effect through the inhibition of TGF-
β-stimulated Smad3 transcriptional activity on its target genes. 

DISCUSSION

The study presented here shows that lobeglitazone treatment at-
tenuates renal fibrosis in UUO mice. Lobeglitazone inhibited 
UUO-induced profibrotic gene expression including PAI-1, 
α-SMA, and type 1 collagen. The antifibrotic effects of lobegli-
tazone were associated with inhibition of the TGF-β/Smad3 sig-
naling pathway. 

PPARγ agonists are widely used as antidiabetic agents 
through improved insulin sensitivity and lipid metabolism [21]. 
On the basis of their wide range of metabolic benefits, PPARγ 
agonists can ameliorate diabetic nephropathy in animal and hu-
man studies [22]. Recently, several lines of evidence show that 
PPARγ agonists can reduce acute kidney injury, indicating that 
their renal protective properties may be partially independent of 
metabolic factors. For instance, activation of PPARγ reduces 
glomerulosclerosis and apoptosis via regulation of inflamma-

tion in various animal models of non-diabetic nephropathy in-
cluding 5/6 nephrectomy [12], passive Heymann nephritis [23], 
cisplatin-induced renal damage [24], and ischemia/reperfusion 
injury [25]. Additionally, rosiglitazone, pioglitazone, and trogli-
tazone have a role in reducing renal tubulointerstitial fibrosis in 
the UUO model [26-29]. Rosiglitazone inhibits renal tubuloint-
erstitial fibrosis through inhibiting interstitial macrophage infil-
tration, downregulating the expressions of TGF-β and its down-
stream target genes, and up-regulating the BMP-7 expression 
[26]. Several groups examined antifibrotic effects of piogli-
tazone and interaction with angiotensin receptor antagonists 
such as L158809 and candesartan in the UUO model [27,28]. 
Pioglitazone and candesartan have additive protective effects on 
renal fibrosis, but the synergism between pioglitazone and 
L158809 is not clear [27]. Troglitazone attenuates renal intersti-
tial fibrosis and inflammation in dose dependent manner by 
down regulation of TGF-β signaling pathway in the model of 
UUO. In accordance with these findings, our present study 
showed that lobeglitazone also has a protective effect on renal 
tubulointerstitial fibrosis and UUO-induced tubular atrophy. 
Furthermore, lobeglitazone inhibited the expression of well-
known TGF-β target genes, such as PAI-1, α-SMA, and type 1 
collagen, as well as its major effector, phosphorylated Smad3, 
in the kidneys of UUO mice.

The TGF-β/Smad signaling pathway is a primary pathogenic 
factor that drives glomerular and tubulointerstitial fibrosis in the 
kidney by stimulating the synthesis of ECM molecules and by 
decreasing ECM degradation [4]. Although mesangial cells ex-
press Smad1, 2, 3, 4, and 7, accumulating evidence demon-
strates that Smad3 is mainly implicated in a pathogenic role in 
TGF-β-mediated renal fibrosis [30-32]. Recent studies show 
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that several PPARγ agonists inhibit TGF-β-stimulated ECM 
production, indicating that PPARγ agonists attenuate renal tubu-
lointerstitial fibrosis by inhibiting the TGF-β/Smad3 signaling 
pathway [33]. Pioglitazone inhibits renal tubulointerstitial fibro-
sis and infiltration of interstitial macrophages by regulating 
transcription of PAI-1in UUO mice [28]. Rosiglitazone treat-
ment inhibits inflammatory reactions and renal fibrosis by re-
ducing the overexpression of endogenous endothelin-1, cyclo-
oxygenase-2, and TGF-β in deoxycorticosterone acetate-salt 
hypertensive rats [34]. Our study adds evidence that another 
novel PPARγ agonist, lobeglitazone suppresses tubulointerstitial 
fibrosis after UUO in mice by inhibiting TGF-β/Smad3 signal-
ing. 

In conclusion, this study demonstrates that lobeglitazone has 
a renoprotective effect on UUO-induced renal fibrosis through 
inhibition of the TGF-β/Smad3 pathway. Our results suggest 
that lobeglitazone could play a therapeutic role in CKD, provid-
ing rationale for further clinical trials to evaluate the efficacy of 
lobeglitazone in the treatment of CKD including renal tubuloin-
terstitial fibrosis.
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