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Abstract: Colorectal cancer is a heterogeneous disorder than arises via multiple distinct pathways, from tubular 
adenomas (TAs) and serrated polyps (SPs), which are clinically, morphologically, and molecularly different. We ex-
amined mitochondrial D-loop polymorphism in colorectal precancerous lesions, including TAs and SPs. DNA was 
isolated from paired normal and tumoral tissues in 78 TAs and 34 SPs. Mitochondrial D-loop polymorphism (D146, 
D150, D152, D310, and D514), KRAS and BRAF mutations, and microsatellite instability (MSI) were analyzed by 
direct sequencing and pyrosequencing. D146, D310, and D514 were polymorphic in these patients and their distri-
butions were significantly different between TAs and SPs. D146 and D310 polymorphism was associated not with 
KRAS and BRAF mutations, but with MSI and other mitochondrial polymorphism each other. Our data suggest that 
mitochondrial D-loop polymorphism may play an important role in development of colorectal precancerous lesions 
and contribute to regulate their progression to TAs or SPs.
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Introduction

Colorectal cancer (CRC) is the third most com-
mon cancer in the world and its incidence rate 
has increased seriously every year in Korean 
populations [1, 2]. After the discovery of the 
oncogenes and tumor suppressor genes, vari-
ous genetic studies have been carried out in 
CRCs to clarify their carcinogenesis [3-5]. As a 
result, it is accepted that from the tubular ade-
nomas (TAs) to carcinoma sequence underlies 
the colorectal carcinogenesis, and APC, KRAS, 
and p53 mutations and microsatellite instabili-
ty (MSI) were associated with this sequence 
[3-7]. Serrated polyps (SPs) are histologically 
classified into hyperplastic polyp (HP), tradition-
al serrated adenoma (TSA), sessile serrated 
adenoma (SSA), and mixed hyperplastic/ade-
nomatous polyp [8]. For many years, SPs have 
been regarded as little neoplastic potential 
lesions. However, recent proposals suggested 
that SPs have been reported to be the precur-
sor of CRC with MSI via the serrated neoplastic 
pathway [9-13]. Although this pathway is char-

acterized by frequent BRAF mutation and infre-
quent KRAS mutation, the details molecular 
mechanism of this progression remains unclear 
[14, 15].

Mitochondrial DNA (mtDNA) has different ge- 
netic system from nuclear DNA, and high fre-
quencies of mitochondrial mutations were 
found in various cancers independently with 
MSI [16-19]. Most of mutations were found in 
D-loop region, especially in the D310 region, 
which is a polymorphic C-tract sequence and it 
was associated with poor prognosis of CRC [20-
24]. Recent studies have showed the T146C, 
C150T, T152C, and D524 mutations or poly-
morphism in several tumors [25-27]. 

In present study, mitochondrial D-loop polymor-
phisms were investigated in colorectal precur-
sor lesions, comprising of TAs and SPs. To con-
tribute to better understanding on colorectal 
carcinogenesis, KRAS and BRAF mutations and 
MSI, as key markers in CRCs, were also studied 
in these lesions. Clinicopathological character-
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istics in these patients were analyzed accord-
ing to their genetic status. 

Patients and methods

Patients and DNA extraction

To obtain the precancerous lesions, the records 
of colonoscopic polypectomy performed at 
Dongsan Medical Center between 1999 and 
2003 were reviewed retrospectively. Exclusion 
criteria were: previous history of surgical resec-
tion for CRCs, and evidence of hereditary non-
polyposis colorectal cancer (Amsterdam crite-
ria) or familial adenomatous polyposis. As a 
result, precancerous lesions were comprised of 
78 TAs and 34 SPs. The institutional regional 
review board (IRB) approved the research pro-
posal, and informed consent was obtained 
from all individuals involved in the study. 

Tumor area and adjacent normal mucosa were 
selected from slide according to hematoxylin 
and eosin stained sections. Subsequently, the 
selected areas from paraffin embedded tis-
sues were used for DNA extraction. DNA was 
isolated by using DNA extraction Kit (AbsoluteTM 
DNA extraction Kit, BioSewoom, Korea) accord-
ing to the manufacturer’s instructions.

µM), primary primers (25 pmol), Taq DNA poly-
merase (2.5 U; Blend Taq-plus, Toyobo, Japan) 
and 10× buffer (5 µL) was used. The PCR prod-
ucts were electrophoresed on 1.5% of agarose 
gel with ethidium bromide to confirm the size of 
the bands. Then, direct DNA sequencing was 
performed using the ABI 3730 DNA sequencer 
(Bionics Inc, Korea).

Microsatellite instability

A recommended method for MSI analysis by 
National Cancer Institute is the Bethesda 
panel, however, recent studies described that 
BAT25 and BAT26 analysis can accurately 
detect MSI without additional markers [28, 29]. 
Therefore, the MSI were analyzed with two mic-
rosatellite markers, BAT25 and BAT 26. PCR 
amplification was performed by same method 
as described previously.  

KRAS and BRAF mutations

KRAS mutations in codons 12 and 13, and 
BRAF V600E mutation were analyzed by pyro-
sequencing (PyroMark Q24, Sweden). Primers 
for amplification and pyrosequencing were de- 
signed as previously described [30]. The pyro-
sequencing reaction was performed on a Pyro- 
Mark Q24 instrument using the Pyro Gold Q24 

Table 1. Clinicopathological characteristics of TAs and SPs in 
present study

TA
SP (N, %) P

LTA (N, %) HTA (N, %)
Total 49 29 34
Age (mean ± SD) 61.94 ± 8.93 58.83 ± 12.76 58.41 ± 9.78 0.21
Sex 0.69
    Male 35 (71.4) 18 (62.1) 23 (67.6)
    Female 14 (28.6) 11 (37.9) 11 (32.4)
Region 0.93
    Right 13 (26.5) 8 (27.6) 8 (23.6)
    Left 36 (73.4) 21 (72.4) 26 (76.5)
KRASa 0.012
    (+) 9 (18.4) 9 (31.0) 1 (2.9)
    (-) 40 (81.6) 20 (69.0) 33 (97.1)
BRAFb 0.001
    (+) 0 (0) 0 (0) 7 (20.6)
    (-) 49 (100) 29 (100) 27 (79.4)
MSI 0.86
    (+) 4 (8.2) 3 (10.3) 4 (11.8)
    (-) 45 (91.8) 26 (89.7) 30 (88.2)
LTA, low-grade tubular adenoma; HTA, high-grade tubular adenoma. aP = 0.009 
between TA and SP; bP < 0.001 between TA and SP.

Amplification and sequencing of 
the D-loop of mitochondrial DNA

A 501-bp fragment containing 
the D-loop region of mtDNA was 
amplified via semi-nested poly-
merase chain reaction (PCR). The 
primer sequences were as fol-
lows: Forward (5’-CCT CAG ATA 
GGG GTC CCT TG-3’) and reverse 
(5’-TTT GGT TGG TTC GGG GTA 
TG-3’) for the first PCR amplifica-
tion and forward (5’-GAG CTC TCC 
ATG CAT TTG GT-3’) for the sec-
ond PCR amplification. PCR was 
performed by using a thermal 
cycler (Applied Biosystems, USA) 
in the order as follows: 40 cycles 
of 40 sec at 94°C for dena- 
turation, 40 sec at 56°C for an- 
nealing, and 60 sec at 72°C for 
extension. Final extension was 
performed at 72°C for 10 min. 
For amplification, a 50 µL of mix-
ture containing DNA from nor- 
mal mucosa (50 ng), dNTPs (200 



Mitochondrial polymorphism in colorectal tumors

1948	 Int J Clin Exp Pathol 2017;10(2):1946-1953

Reagents (Qiagen, Netherlands). The pyrose-
quencing primers were used in a final concen-
tration of 0.3 µmol/L. Resulting data were ana-
lyzed and quantified with the PyroMark Q24 
software version 2.0.6 (Qiagen, Netherlands). 

Statistical analysis

SPSS software for Windows was used. Chi-
square, Fischer’ exact tests and Mann Whitney 
U test were used to analyze the relationship 

ency of D146, D310, and D514 differed sig- 
nificantly between TAs and SPs. The frequency 
of the C allele of D146 in LTAs and HTAs was 
about 80%, much higher than that (41.2%)  
in SPs (P < 0.001). According to the revised 
Cambridge Reference Sequence for human 
mtDNA (GI: 251831106), reference sequence 
was (C)7 in D310 loci [31]. However, (C)9 was 
most common type in present study. In SPs, the 
number of repeats of D310 and D514 were 
lower than that in TAs (P = 0.009 and 0.035, 

Figure 1. Representative results of mitochondrial polymorphism of D146, 
D150 and D152 by direct sequencing. A: T146C; B: C150T; C: T152C; D: 
Normal sequences.

Figure 2. Representative results of D310 and D514 polymorphism by direct 
sequencing. A: D310 varied from C7 to C9; B: D514 showed (CA)5 and (CA4).

between variables. A p value 
< 0.05 was considered statis-
tically significant.

Result

Precursors of CRCs were com-
prised of 78 tubular adeno-
mas (TAs) and 34 serrated 
polyps (SPs). TAs were classi-
fied into low and high grades 
(LTA and HTA) according to 
histological feature and SPs 
were only comprised of hyper-
plastic polyps and sessile ser-
rated adenomas. Clinicopath- 
ological characteristics of TAs 
and SPs were presented in 
Table 1. Higher frequency of 
KRAS mutation was found in 
LTA and HTA than that in SP (P 
= 0.009). However, BRAF 
mutation was shown only SPs, 
therefore, KRAS and BRAF 
mutations were mutually ex- 
clusive in TAs and SPs. Other 
clinicopathological character-
istics were not associated 
with their classifications. 

Mitochondrial polymorphism 
in tubular adenomas and ser-
rated polyps

The sequences of amplified 
PCR products containing D- 
loop were successfully ana-
lyzed in all patients (Figures 
1, 2). Among various polymor-
phic sites in D-loop, five loci 
(D146, D150, D152, D310, 
and D514) were selected and 
their frequencies in 78 TAs 
and 34 SPs were presented  
in Table 2. The allele frequ- 
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respectively). The polymorphism in D150 and 
D152 locus did not show significant difference 
between TAs and SPs. 

Clinicopathological characteristics of D146 
and D310 polymorphisms in tubular adeno-
mas and serrated polyps

Among the mitochondrial polymorphic locus, 
D146 and D310 showed the association with 
other markers statistically. D146 polymorphism 
had significant relationship with other D-loop 
polymorphism and MSI in LTA (Table 3). The fre-
quency of the T allele of D146 was higher in the 
patients with recessive type of D150 (T allele), 
D152 (C allele), and D310 (C7). In the patients 
with MSI (+), T allele of D146 was also signifi-
cantly higher than C allele. In HTA and SPs, the 
frequency of the T allele of D146 was also high-
er in the patients with recessive type of D152 
(C allele) and D310 (C7), respectively. 

D310 polymorphism had also significant rela-
tionship with other polymorphism or MSI (Table 
4). In LTA, (C)7 of D310 was also associated 
with MSI (+) and (CA)4 of D524, as recessive 

types. Deep relationship between (CA)4 of 
D524 and (C)7 of D310 was also found in SP. 
Other variables were not associated with D146 
and D310 polymorphism significantly except 
the variables describe above.

Discussion

This study suggests that mtDNA D-loop poly-
morphism play a significant role in the etiology 
of colorectal precancerous legions. Though the 
mutation of mtDNA has been recently reported 
in these tumors [32, 33]. Polymorphism of 
mtDNA has been not studied. This analysis of 
mtDNA in Korean populations, as a homoge-
neous population, is valuable, because the con-
fusion by the heteroplasmy may be lowers [34].

Colorectal cancer (CRC) is a heterogeneous dis-
ease because CRCs and their precursors dis-
played distinct pathological features and 
molecular signatures. The predominant chro-
mosomal instability (CIN) pathway accounted 
for up to 85% of cases [3-5]. A minority of CRCs, 
less than 5%, developed via the nucleus micro-
satellite instability (MSI) pathway [6, 7]. 
However, the mechanism of colorectal carcino-
genesis has not been fully identified because 
there were some troubles in acquirement of 
precancerous legions and various genes, such 
as KRAS, BRAF, and p53, and MSI affect their 
development. To contribute to better under-
standing on colorectal tumorigenesis, this 
study investigated mitochondrial polymorphism 
with MSI, BRAF and KRAS mutations in various 
kinds of colorectal precancerous legions. 

Clinicopathogical characteristics of low-grade 
and high grade tubular adenomas (LTAs and 
HTAs) and serrated polyps (SPs) in present 
study were in agreement with previous results 
[12-14]. Additionally, we found that mitochon-
drial D-loop polymorphism in T146C, poly C in 
D310, and dinucleotide repeat (CA)n in D514 
were significantly different between TAs and 
SPs. In D146 polymorphism, SPs showed a sim-
ilar frequency of T and C alleles, however, about 
80% of LTAs and HTAs had the C allele. 
Especially in LTAs, C allele was associated with 
MSI (-), C allele of D150, T allele of D152, and 
(C)9 of D310, which were entirely recessive 
types. In D310 polymorphism, LTAs with domi-
nant type showed a significantly association 
with MSI (-) and (CA)4 of D524, which were 
entirely recessive types. On the other hand, this 

Table 2. Distribution of mitochondrial D-loop poly-
morphism in TAs and SPs

TA
SP (N, %) P

LTA (N, %) HTA (N, %)
D146a < 0.001
    T 7 (14.3) 3 (10.3) 12 (35.3)
    C 39 (79.6) 26 (89.7) 14 (41.2)
    T/C 3 (6.1) 0 (0) 8 (23.5)
D150 0.52
    C 48 (98.0) 29 (100) 34 (100)
    T 1 (2.0) 0 (0) 0 (0)
D152 0.74
    T 44 (89.8) 27 (93.1) 33 (97.1)
    C 3 (6.1) 1 (3.4) 1 (2.9)
    T/C 2 (4.1) 1 (3.4) 0 (0)
D310b 0.046
    (C)7 8 (16.3) 5 (17.2) 14 (41.2)
    (C)8 6 (12.2) 5 (17.2) 0 (0)
    (C)9 34 (69.4) 19 (65.5) 20 (58.8)
    (C)10 1 (2.0) 0 (0) 0 (0)
D514c 0.06
    (CA)5 41 (83.7) 27 (93.1) 24 (70.6)
    (CA)4 8 (16.3) 2 (6.9) 10 (29.4)
aP < 0.001 between TA and SP; bP = 0.009 between TA and 
SP; cP = 0.035 between TA and SP.
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Table 3. Clinicopathological characteristic of D146 polymorphism in LTAs, HTAs, and SPs

D146
LTA HTA SP

T C T/C T C T C T/C
Sex
    Male 4 (11.4) 28 (80.0) 3 (8.6) 2 (11.1) 16 (88.9) 8 (34.8) 12 (52.2) 3 (13.1)
    Female 3 (21.4) 11 (78.6) 1 (9.1) 10 (80.8) 4 (36.4) 2 (18.2) 5 (45.5)
Region
    Right 4 (30.8) 9 (69.2) 0 (0) 0 (0) 8 (100) 3 (37.5) 3 (37.5) 2 (25.0)
    Left 3 (8.3) 30 (83.3) 3 (8.3) 3 (13.6) 18 (86.4) 9 (34.6) 11 (42.3) 6 (23.1)
KRAS
    (+) 2 (22.2) 6 (66.7) 1 (11.1) 2 (22.2) 7 (77.8) 1 (100) 0 (0) 0 (0)
    (-) 5 (11.6) 33 (76.7) 5 (11.6) 1 (5.0) 19 (95) 11 (33.3) 14 (42.4) 8 (24.2)
BRAF
    (+) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (42.9) 2 (28.6) 2 (28.6)
    (-) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 9 (33.3) 12 (44.4) 6 (22.2)
MSI P = 0.018
    (+) 2 (50.0) 1 (25.0) 1 (25.0) 0 (0) 3 (100) 2 (50.0) 1 (25.0) 1 (25.0)
    (-) 5 (11.1) 38 (84.4) 2 (4.4) 3 (11.5) 23 (88.5) 10 (33.3) 13 (43.3) 7 (23.3)
D150 P = 0.047
    C 6 (12.5) 39 (81.3) 3 (6.3) 3 (10.3) 26 (89.7) 12 (35.3) 14 (41.2) 8 (23.5)
    T 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
D152 P < 0.001 P < 0.001
    T 4 (9.1) 39 (88.6) 1 (2.3) 1 (3.7) 26 (96.3) 11 (33.3) 14 (42.4) 8 (23.5)
    C 3 (100) 0 (0) 0 (0) 1 (100) 0 (0) 1 (100) 0 (0) 0 (0)
    T/C 0 (0) 0 (0) 2 (100) 1 (100) 0 (0) 0 (0) 0 (0) 0 (0)
D310 P = 0.002 P = 0.007
    (C)7 3 (37.5) 3 (37.5) 2 (25.0) 1 (20.0) 4 (80.0) 9 (64.3) 2 (14.3) 3 (21.4)
    (C)8 1 (16.7) 4 (66.7) 1 (16.7) 0 (0) 5 (100) 0 (0) 0 (0) 0 (0)
    (C)9 2 (5.9) 32 (94.1) 0 (0) 2 (10.5) 17 (89.5) 3 (15.0) 12 (60.0) 5 (25.0)
    (C)10 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
D524
    (CA)5 5 (12.2) 34 (82.9) 2 (4.9) 2 (7.4) 25 (92.6) 8 (33.3) 11 (45.8) 5 (20.8)
    (CA)4 2 (25.0) 5 (62.5) 1 (12.5) 1 (50.0) 1(50.0) 4 (40.0) 3 (30.0) 3 (30.0)

type of D310 was associated with (CA)5 of 
D524 in SPs. Considering its significance in 
LTA, mitochondrial D-loop polymorphism may 
have early and important role in the progres-
sion of tubular adenomas by interaction with 
MSI and each other. Interestingly, these poly-
morphisms were not associated with KRAS and 
BRAF mutations, as distinctive genetic markers 
for TAs and SPs. So, mtDNA polymorphism may 
be an important pathway of colorectal carcino-
genesis independently with KRAS and BRAF 
mutations. 

There are some limitations because of deficient 
knowledge about mitochondrial D-loop poly-
morphism. Previous studies showed that D146 
and D150 polymorphisms showed the associa-

tion with prognosis of hepatocellular carcino-
mas and cervical cancer risk, respectively [27, 
35]. Zhang et al. [36] described that C150T 
polymorphism had a replicative advantage to 
the mtDNA by changing the binding site for 
mitochondrial transcription factor A, and D146 
and D152 polymorphisms were fibroblast-spe-
cific site. D524 has been suggested a hallmark 
for breast cancer risk, however, their reason 
and exact mechanism was unclear [37]. High 
frequency of D310 mutation was found in vari-
ous cancers. This mutation may alter mtDNA 
transcription because D310 sequence is locat-
ed in essential element for mtDNA replication 
containing the H-strand replication origin [22-
24]. Lièvre et al. [38] presented that prevalence 
of D310 mutations increased significantly with 
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the number of cytosines in the sequence in 
CRCs. D310 mutation rate was 9%, 49.5%, and 
73% in C7, C8, and C9 alleles, respectively. 
Therefore, the relations between mtDNA poly-
morphism and mitochondrial mutations or copy 
numbers should be studied further. This poly-
morphism study should be performed by case-
control study, however, the acquirement of the 
control without previous TAs or SPs history in 
matched age was difficult. And reference 
Sequence and previous studies suggested that 
most common type in D310 was (C)7 located 
between nucleotides 303 and 315 and inter-
rupted by a T at position 310 [22, 24, 31, 35]. 
However, (C)9 of D310 was most common type 
in present study and its distribution was signifi-
cantly different between TAs and SPs. This 
racial difference of mtDNA polymorphism 
should be confirmed with larger case in Korean 
population.

In summary, our study suggests that the mtDNA 
D-loop polymorphism may be important and 
distinctive role in tumorigenesis of TAs and 

SPs. They could explain the tumorigenesis of 
TAs and SPs independently with KRAS and 
BRAF mutations. This is the first study to show 
mtDNA polymorphism in colorectal precancer-
ous legions, and further research is needed to 
study the potential biological mechanism of 
these polymorphisms.
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Table 4. Clinicopathological characteristic of D310 polymorphism in LTAs, HTAs, and SPs

D310
LTA HTA SP

(C)7 (C)8 (C)9 (C)10 (C)7 (C)8 (C)9 (C)7 (C)9
Sex
    Male 6 (75.0) 5 (83.3) 23 (67.6) 1 (100) 4 (80.0) 3 (60.0) 11 (57.9) 9 (64.3) 14 (70.0)
    Female 2 (25.0) 1 (16.7) 11 (32.4) 0 (0) 1 (20.0) 2 (40.0) 8 (42.1) 5 (35.7) 6 (30.0)
Region
    Right 2 (25.0) 1 (16.7) 10 (29.4) 0 (0) 1 (20.0) 3 (60.0) 4 (21.1) 2 (14.3) 6 (30.0)
    Left 6 (75.0) 5 (83.3) 24 (70.6) 1 (100) 4 (80.0) 2 (40.0) 15 (78.9) 12 (85.7) 14 (70.0)
KRAS
    (+) 2 (25.0) 1 (16.7) 5 (14.7) 1 (100) 1 20.0) 3 (60.0) 5 (26.3) 1 (7.1) 0 (0)
    (-) 6 (75.0) 5 (83.3) 29 (85.3) 0 (0) 4 (80.0) 2 (40.0) 14 (73.7) 13 (92.9) 20 (100)
BRAF
    (+) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3 (21.4) 4 (20.0)
    (-) 8 (100) 6 (100) 34 (100) 1 (100) 5 (100) 5 (100) 19 (100) 11 (78.6) 16 (80.0)
nMSI P = 0.011
    (+) 3 (37.5) 0 (0) 1 (2.9) 0 (0) 1 (20.0) 1 (20.0) 1 (5.3) 1 (7.1) 3 (15.0)
    (-) 5 (62.5) 6 (100) 33 (97.1) 1 (100) 4 (80.0) 4 (80.0) 18 (94.7) 13 (92.9) 17 (85.0)
D150
    C 0 (0) 1 (16.7) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
    T 8 (100) 5 (83.3) 34 (100) 1 (100) 5 (100) 5 (100) 19 (100) 14 (100) 20 (100)
D152
    T 5 (62.5) 5 (83.3) 33 (97.1) 1 (100) 4 (80.0) 5 (100) 18 (94.7) 14 (100) 19 (95.0)
    C 2 (25.0) 0 (0) 1 (2.9) 0 (0) 1 (20.0) 0 (0) 0 (0) 0 (0) 1 (5.0)
    T/C 1 (12.5) 1 (16.7) 0 (0) 0 (0) 0 (0) 0 (0) 1 (5.3) 0 (0) 0 (0)
D524 P = 0.036 P = 0.027
    (CA)5 4 (50.0) 6 (100) 30 (88.2) 1 (100) 4 (80.0) 5 (100) 18 (94.7) 7 (50.0) 17 (85.0)
    (CA)4 4 (50.0) 0 (0) 4 (11.8) 0 (0) 1 (20.0) 0 (0) 1 (5.3) 7 (50.0) 3 (15.0)
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