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Abstract This Paper Describes a Method for the Evaluation of Sleep Apnea, Namely, the Peak

Signal-to-noise ratio (PSNR) of Wavelet Transformed Electroencephalography (EEG) Data. The

Purpose of this Study was to Investigate EEG Properties with Regard to Differences between Sleep

Spindles and K-complexes and to Characterize Obstructive Sleep Apnea According to Sleep Stage.We

Examined Non-REM and REM Sleep in 20 Patients with OSA and Established a New Approach for

Detecting Sleep Apnea Base on EEG Frequency Changes According to Sleep Stage During Sleep Apnea

Events.For Frequency Bands Corresponding to A3 Decomposition with a Sampling Applied to the KC

and the Sleep Spindle Signal. In this Paper, the KC and Sleep Spindle are Ccalculated using MSE and

PSNR for 4 Types of Mother Wavelets. Wavelet Transform Coefficients Were Obtained Around Sleep

Spindles in Order to Identify the Frequency Information that Changed During Obstructive Sleep Apnea.

We also Investigated Whether Quantification Analysis of EEG During Sleep Apnea is Valuable for

Analyzing Sleep Spindles and The K-complexes in Patients. First, Decomposition of the EEG Signal

from Feature Data was Carried out using 4 Different Types of Wavelets, Namely, Daubechies 3, Symlet

4, Biorthogonal 2.8, and Coiflet 3. We Compared the PSNR Accuracy for Each Wavelet Function and

Found that Mother Wavelets Daubechies 3 and Biorthogonal 2.8 Surpassed the other Wavelet Functions

in Performance. We have Attempted to Improve the Computing Efficiency as it Selects the most Suitable

Wavelet Function that can be used for Sleep Spindle, K-complex Signal Processing Efficiently and

Accurate Decision with Lesser Computational Time.

Key Words : EEG(electroencephalography), OCA(obstructive sleep apnea), WT(wavelet transform),

Sleep Spindle, K-complex1)

1. Introduction

Obstructive sleep apnea (OSA) [1-2]is the
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most common form of sleep-disordered breathing;

specifically, it is defined by respiratory pauses

with cessation of airflow lasting at least 10 s

during sleep. OSA develops in approximately

2-5% of the adult population, making sleep

apnea syndrome a widespread problem.

Furthermore, patients with OSA have a

significant risk for developing cardiovascular

disease [3-4].

Sleep spindle and K-complexes constitute

the physiological markers of sleep stage 2

non-rapid eye movement (NREM). Sleep
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spindles, first described in the human EEG by

Loomis, Harvey, and Hobart (1935) [5], are

transient waveforms around 12–14 Hz

observed in cortical pyramidal neurons driven

by thalamocortical oscillations that are active

during sleep. K-complexes are sleep-specific,

phasic EEG waveforms that may be

spontaneous or elicited by stimulation. They

have a duration of approximately 0.5 s and are

characterized by a well-delineated negative

component followed by a positive deflection

(Rechtschaffen and Kales, 1968) [6]. Amzica

and Steriade have recently shown that

K-complexes result from a synchronized

cortical network that imposes periodic

excitatory and inhibitory actions on cortical

neurons, thus creating cortically generated

slow oscillations (0.5–0.9 and 1–4 Hz), which

spread through the cortex and are transferred

to the thalamus.

The EEG signal is considered non-stationary

as its properties change during each sleep

apnea. Therefore, classical spectral methods

are not appropriate for feature extraction, since

they provide a description of the frequency

contents of the EEG signal, but not the timing

of the signal. Timing information is required

for EEG signal analysis since parts of an EEG

wave may exist in part of the epoch but not

in the entire epoch.

Manual scoring of these two morphologically

distinct wave- forms which are hallmarks of

Stage 2 sleep is time consuming and risks

being subjectively interpreted. Thus automatic

identification of these modalities would be

beneficial [7]. These approaches range from

period-amplitude analysis [8-9], spectral

analysis through Fourier transform [10],

wavelets [11-12].Paper comparison of the

performance obtained by different techniques is

difficult because dissimilar performance

measures are used, results are highly

dependent on the manual scorers whose

scoring serves as ground truth and different

measures are taken to reduce the problems

related to different expert based scoring

The several soft-computing methods have

been proposed in the literature for the

diagnosis of the sleep spindle, K-complex [13].

They include template matching [14], time

domain, frequency domain [15] and time–

frequency domain [16] which are very few.

There is no standard method for selecting the

best wavelet for processing EEG signals

[17-19].

The present study also compared the peak

signal-to-noise ratio (PSNR) with the

K-complex and sleep spindle patterns of sleep

apnea signals that could be resolved by using

various types of mother wavelets on the

analysis of power quality signals. We can be

used for sleep spindle, K-complex signal

processing efficiently and decision accurately

with lesser computational time.

2. Materials and Methods

2.1. Subjects and database preparation

We included 20 patients with OSA in this

study. The mean age of patients with OSA

was 53.40 ± 3.92 years. Subjects underwent a

physical examination and a neurological

evaluation, including medical, psychiatric and

sleep history. Experiments were conducted at

the Keimyung University Dongsan Hospital’s

Department of Neurology in Daegu. The EEG

was recorded using a digital recording system

(Grass Technologies) with EEG filters set at 1

and 70 Hz. PSG recording was performed

using 4 EEG leads at the C3-A2, C4-A1,

O1-A2, and O2-A1 channel positions.

Impedance for the EEG electrodes was kept
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below 5 kΩ. Activity was captured

continuously overnight by a personal computer

(Twin model polygraph) through an

analog-to-digital converter with 12-bit

resolution and a sampling rate of 200 Hz for

off-line analysis using the acquisition program.

We investigated the ability to discriminate

detection and classification and attempted to

characterize different behaviors of sleep spindle

and K-complex during sleep apnea according

to sleep stage. Data analysis was performed

on EEG signals during the following sleep

stages: 1–2 (light sleep), 3 (deep sleep), and

rapid eye movement (REM) sleep. Total OSA

recording time for each subject was

approximately 7 h. OSA data for each subject

included data from the four EEG channels

(O1-A2, O2-A1, C1-A2, and C2-A1) used to

determine the threshold values of EEG spindle

detection. EEG electrodes were placed

according to the international 10-20 system of

electrode placement [20-22].

The apnea hypopnea index (AHI) and

respiratory disturbance index (RDI) are often

used as equivalent terms. However, in some

sleep centers, the RDI = AHI + RERA

(respiratory effort-related spindle) index;

RERAs are sleep spindles associated with

respiratory events not meeting the criteria for

apnea, and the RERA index is the number of

RERAs per hour of sleep. One can use the

AHI to grade the severity of sleep apnea.

Standard levels include normal (AHI < 5/h),

mild (5 ≤ AHI ≤ 15/h), moderate (15 < AHI

≤ 30/h), and severe (AHI > 30/h). Our

patients included 10 with severe AHI (37.27 ±

6.3), 5 with moderate AHI (20.87 ± 4.2), and 5

with mild AHI (8.4 ± 3.3).

2.2. Sleep spindle and the K-complex in

PSG records

Sleep spindles were scored visually on the 4

EEG channels during sleep stage 2 for the

entire night. In addition, the EEG recording

was analyzed for the presence of sleep spindles

and K-complexes. The only modification made

was a shorter interval (1.5 s instead of 3 s) of

EEG changes; this change was made to allow

for an increased time resolution of the

analysis. To qualify as a sleep spindle, EEG

events had to show a predominant frequency

between 12 and 14 Hz, and had to stand out

clearly from background activity. The amplitude

and duration of waveforms change abruptly for

each frequency component, and a rapid

increase in central frequency occurs. Although

the magnitudes of spindle responses differ for

different responses of the same subject and

responses of different subjects, the detection of

EEG spindles related to pathological events is

important, particularly for OSA.

The K-complex is a complex multi functional

phenomenon of the sleeping brain that is

involved in information processing and defense

against the normal spindle effects of sensory

stimuli. K-complexes are an important component

of EEG transients associated with respiratory

event termination in our experimental data.

Transients can appear spontaneously or may

be triggered by various stimuli, and could

represent signs of spindle or a sleep protective

(defensive) function. A K-complex is an EEG

waveform that occurs during stage 2 of

non-REM sleep. It is the most prominent

event in the EEG of a healthy human. The

presence of the K-complex in stage 2 creates

a slow wave (<1 Hz) signal caused by the

oscillation of cortical neurons; this can be

followed by a sleep spindle. Each appearance

of apnea results in reduced amplitude of the

airflow signal relative to the normal amplitude.

Examples of the time domain results of the

EEG K-complex response, sleep spindle, and
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nasal pressure during sleep stage 1–2 are

shown in Figure 1.

Fig. 1 Time domain analysis of K-complex

(pre-arousal) and sleep spindles

according to apnea events and nasal

pressure

2.3. Wavelet transformation

Wavelet analysis is a powerful method since

it can be used to discriminate between

non-stationary signals with different frequency

features; by comparison, a Fourier transform

can only be applied to stationary signals.

Among the methods used for analyzing

non-stationary signals such as EEG, wavelet

analysis has been shown to be the most

effective method in the frequency domain.

Moreover, discrete WT analysis of EEG data

is the most powerful tool for sleep spindle

analysis in sleep apnea [23- 24]. The WT

decomposes a signal into a basic function set

called wavelet, thus providing sub-band

localization. In the first step, the original

signal is passed through a high-pass filter and

a low-pass filter. After filtering, half of the

samples at high frequency are eliminated

according to Nyquist criteria. This process can

be expressed by the following equations:

     (1)

     (2)

Where   and    are the

high-pass (Di: detail) and low-pass (Ai:

approximation) filters, respectively. A discrete

wavelet transform(DWT) of sleep apnea EEGs

was used to extract the features in the first

set of experiments.

The regular WT gives a decomposition of a

given signal into a set of Ai and Di

coefficients of level i(i=1,...8)(shown as a

frequency level in Table 2). The advantage of

DWT over existing transforms, such as

discrete Fourier transforms and DCT, is that

the DWT enables multiresolution analysis of a

signal with localization in both the time and

frequency domain. The DWT calculates the

wavelet coefficients at discrete intervals of

time and scale instead of at all scales. Several

sets of mother wavelets have been designed

for WT analysis such as Daubechies, Symlet,

Biorthogonal, and Coiflet, as shown in Figure

2.

Fig. 2 Example of mother wavelet

(a) Daubechies 3, (b) Symlet 4,

(c) Biorthogonal 2.8, and (d) Coiflet 3
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2.4. Preprocessing and performance parameters

The DWT has been applied to the vibration

signals obtained with different mother

wavelets: ranging from different types of

Daubechies (1 to 9), Symlet (2 to 8),

Biorthogonals (1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1,

3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6, 8), and Coiflet (1

to 5).The Daubechies wavelet filters can be

readily computed via spectral factorization of a

symmetric positive polynomial [25]. Significant

advantages of the spectral factorization

approach include its generalizability to many

different classes and families of wavelets, its

suitability for easily interpretable visual

displays, and thus its practicality in pedagogy.

We used 4 wavelet-type functions in these

experiments. WT decomposes a given signal

into a set of approximation and detail

coefficients by levels. The decomposition

process can be iterated with successive

approximations being decomposed, in turn, so

that a signal is broken down into several

lower-resolution components. For sleep apnea

events, the K-complex and sleep spindle are

processed to obtain a level A3 (0–12.5 Hz)

transformation.

Different types of mother wavelets can be

used to obtain this decomposition. For the

multiresolution decomposition process, selection

of the appropriate mother wavelet and the

number of decompositions is made based on

the dominant frequency components of the

signal. For this study, the absolute value of

the approximation coefficient (A3) was the set

of inputs that yielded the best K-complex and

sleep spindle pattern results. The number of

coefficients supplied by the WT depends on

the number of samples of the chosen patterns.

For frequency bands corresponding to A3

decomposition with a sampling frequency of

200 Hz, mother wavelets of Daubechies (Db),

Symlets (Sym), Biorthogonal (Bior), and Coiflet

(Coif) were applied to the K-complex and the

sleep spindle signal.

The analysis of the EEG signal depends on

the localization of the different EEG wavelets

in both time and frequency. For this reason,

features were extracted using entropy

estimation at different scales (frequency band).

The entropy is defined as:

 
  



 log (3)

where  is the probability mass function of

the wavelet coefficients in the band of interest

represented by their histogram with n.

In this paper, the K-complex and sleep

spindle are calculated using mean square error

(MSE) and PSNR for 4 types of mother

wavelets. MSE is one of many metrics used

to quantify the difference between values

implied by an estimator and the true values of

the quantity being estimated.

  
 
  

  

  (4)

PSNR is the ratio between the maximum

possible power of a signal and the power of

the error (noise) affecting the fidelity of its

representation.

   log















(5)




is the maximum possible value of

the signal.

3. Results
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We propose a method for predicting apnea-

related arousal events during sleep apnea

episodes in adults. Sleep EEG data are classified

into 3 groups according to pathological

significance: sleep stages 1-2, 3, and REM. In

this study, we quantitatively measured the

relationship between the K-complex and sleep

spindle during sleep apnea in PSG recordings.

Sleep apnea signals are of primary interest

because of their association with respiratory

disorders, and apnea events can be directly

detected using these signals. K-complex and

sleep spindle event signals during sleep stage

1-2 in the time domain are shown in Figure 3.

Figure 4 illustrates the relationship between

frequency and scale. To illustrate the idea of

using multiple wavelets for time-frequency

(a) K-complexes

(b) Sleep spindles

Fig. 3 EEG signals showing K-complex and

sleep spindle events during sleep apnea

entropy, consider the signal shown in Figure 5.

The signal was obtained at a sampling rate of

200 Hz, and the CWT using the mother

wavelet gaus 4 was calculated and is shown

in Figures 5a-c. This method was devised

during maximum frequency and CWT analysis

for examining the characteristics of non-REM

and REM sleep stages. We showed that this

could be easily divided with the maximum

energy in the scalogram.

Fig. 4 EEG signal showing a proportional

relationship between frequency and

scale level during sleep

Fig 5. (a)-(c) and Table 1 show that the

characteristics of the frequency of sleep stages

were different. During sleep stages 1–2, 3,

and REM, the average frequencies were 6.67

Hz, 5.34 Hz, and 6.72 Hz, respectively. Next,

power variability was calculated level by level

as coefficient variances.

The relationships between the K-complex,

sleep spindle, and sleep apnea are explored in

Table 2. The frequency bands of each

approximation that was decomposed using WT

are shown in Table 2. Usefulness of Db3,

Sym4, Bior2.8, and Coif3 were assessed, and

comparative mother wavelet types are

displayed. The K-complex and sleep spindle

patterns obtained using each wavelet function

as an input feature are shown in Table 3 and

are reported in terms of the PNSR. We

compared the PSNR accuracy for each wavelet

function and found that mother wavelets Db3
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(a)

(b)

(c)

Fig. 5 Comparison of power for frequency and

scale levels according to the sleep

stage: (a) stage 1–2, (b) stage 3, and

(c) REM

and Bior2.8 surpassed the other three wavelet

functions in performance.

Therefore, mother wavelet Db3 found in

K-complexes and Bior2.8 found in sleep

spindles were selected for feature extraction.

In patients with apnea, EEG frequency bands,

including delta (0.5–3.5 Hz), theta (4–7.5 Hz),

alpha (8–12.5 Hz), and beta (13–25 Hz), were

measured according to sleep stage (Fig. 5a-c),

and the amplitude of the powers in different

frequency bands during the K-complex and

sleep spindle events were obtained.

Figure 6 shown compared of the PSNR

accuracy for each wavelet function and found

Table 1 Characteristics of frequency bands

according to sleep stage

Table 2 Frequencies corresponding to different

levels of decomposition for Db3 order

8 wavelet with a sampling frequency

of 200 Hz

Table 3 Comparison of MSEs and PSNRs for

the K-complex and sleep spindles

obtained using 4 mother wavelets

that mother wavelets Daubechies 3 and

Biorthogonal 2.8 surpassed the other wavelet

functions in performance. By measuring the

EEG amplitude in the different frequency

bands, we obtained the plots shown in Fig

7(a-c) by using 5-s EEG signal spindle events

during apnea episodes. These spindle (5-s

EEG) segments were formed by going forward

at 15 s. Sleep stages 1–2, 3, and REM were
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primarily included with alpha and theta band

frequencies.

Fig. 6 Comparison of patterns for K-complex

and sleep spindle signals obtained

using 4 wavelet methods

(a)

(b)

(c)

Fig 7.Comparison of power of frequency bands

for sleep spindle events during sleep: (a) stage

1–2, (b) stage 3, and (c) REM

4. Discussion and conclusions

The main purpose of this study was to

develop an efficient signal preprocessing

method to examine frequency characteristics of

K-complex events and sleep spindle EEG with

higher detection accuracy. To achieve this

goal, we examined non-REM and REM sleep

in 20 patients with OSA and established a

new approach for detecting sleep apnea based

on EEG frequency changes according to sleep

stage during sleep apnea events. Here, we

demonstrate that these changes can be easily

divided into frequency and scale levels of sleep

spindle within each sleep stage by CWT. The

EEG signals were decomposed into

time-frequency components by using a WT,

and features were calculated to depict their

distribution. Simulation results showed that the

Db3 and Bior2.8 mother wavelets increased

pattern-matching efficiency better than some

of the other common wavelets did.

Since the K-complex is part of the sleep

spindle response, the transient intrusion of

waking and the resultant transient depolarization

of the thalamic nuclei should make it

impossible for a spindle to be associated with

these K-complexes. The role of K-complexes

in sleep protection and deepening of sleep is

supported by Amzica and Steriade’s assumption

[26]that their occurrence at a lower frequency

than the other sleep rhythms and their wide

synchronization at a cortical level cause their

sharp onset. This sharp onset plays an

important role by providing a synchronous

input to thalamic neurons, triggering and

grouping sequences of spindles or delta

oscillations. The K-complex generally occurs

during sleep stage 2 of non-REM sleep, but it

can also occur after apneic episodes. Moreover,

there is a general tendency for the K-complex

to occur because of auditory stimuli. Although
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it is difficult to establish an accurate definition

because these events do not follow a regular

pattern, the separation time between the

K-complex and spindle was defined such that

the event occurring 1–3 s before the sleep

spindle was assumed to be the K-complex in

this study. Our finding indicate that it is

possible to predict the relationship between

K-complex and snoring that resumes after an

apnea episode, as well as the possibility that

the K-complex can be triggered by the noise

of rapid breathing or panting.

As the duration of apnea increases, the blood

oxygen saturation (SaO2) naturally decreases,

thereby requiring an increased breathing effort

at the last stage of apnea to overcome this.

Thus, the possibility of awakening during this

process is also increased. In fact, people who

have increasing apnea durations experience an

extension of the hyperventilation process for

compensation after apnea because of the

complete loss of SaO2. For this reason, the

possibility of an increase in the awakening

duration can be predicted.

We expect that the results of this study will

aid in identifying the mechanisms underlying

the relationship between the K-complex and

sleep spindle.
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