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Physical analysis of the shielding 
capacity for a lightweight apron 
designed for shielding low intensity 
scattering X-rays
Seon Chil Kim1, Jeong Ryeol Choi2 & Byeong Kyou Jeon2

The purpose of this paper is to develop a lightweight apron that will be used for shielding low intensity 
radiation in medical imaging radiography room and to apply it to a custom-made effective shielding. The 
quality of existing aprons made for protecting our bodies from direct radiation are improved so that they 
are suitable for scattered X-rays. Textiles that prevent bodies from radiation are made by combining 
barium sulfate and liquid silicon. These materials have the function of shielding radiation in a manner 
like lead. Three kinds of textiles are produced. The thicknesses of each textile are 0.15 mm, 0.21 mm, and 
0.29 mm and the corresponding lead equivalents are 0.039 mmPb, 0.095 mmPb, 0.22 mmPb for each. 
The rate of shielding space scattering rays are 80% from the distance of 0.5 m, 86% from 1.0 m, and 97% 
from 1.5 m. If we intend to approach with the purpose of shielding scattering X-rays and low intensity 
radiations, it is possible to reduce the weight of the apron to be 1/5 compared to that of the existing lead 
aprons whose weight is typically more than 4 kg. We confirm, therefore, that it is possible to produce 
lightweight aprons that are used for the purpose of shielding low dose radiations.

For the case of a general shooting using medical rays, there is a space dose, i.e., scattering X-rays, inside the pho-
tographing room. Due to this, there is the possibility of exposing low dose medical rays onto medical workers and 
patients. To prevent this, one must wear a special apron that shields medical rays. Typically, the weight of such 
an apron is 3.25 kg for the case that it is made of 0.25 mmPb, and 4.95 kg for 0.50 mmPb. The aforementioned 
weight would prove to be inconveniently heavy on the medical workers, thus making it difficult to efficiently move 
around to perform their required responsibilities1,2.

Recently, much effort has been paid to reducing the weight of the apron which, in essence, is designed to block 
as much as possible harmful medical rays from the user. As a radical resolution for this problem, there have been 
efforts for discovering alternative materials that have, at least, the same shielding capacity, manufacturing quality, 
and economical efficiency as those of lead. For candidate materials to be used, one could possibly implement a 
compound of tungsten, bismuth, barium, boron, and tin3.

Although there has been extensive research in the field of shielding direct rays when using radiation at medical 
institutes, the kinds of materials that can be used for shielding low dose radiation are still rare. In general, low 
intensity radiation means the radiation whose intensity is below 100 mSv. There is no direct evidence at present 
that cancers can be generated by such rays, but most medical rays belong to the low intensity radiation; hence, the 
dose of these rays are 20 to 30 times larger than the annual natural ray which is about 2.4~3.0 mSv4. In general, it 
has been thought that the workers who deal with medical rays in the photographing room are actively exposed to 
low intensity radiations5–10.

Thus, although it is desirable that one wears an apron when entering an area at the medical institute where 
radiations are generated, an effective shielding system with the standard wearing of an apron is necessary for the 
area of low dose. If one always wears a light apron or a working suit that is made using radiation dose reduction 
fiber in order to block rays at the work place, the danger of being exposed to the low intensity rays will be reduced 
significantly. Hence, if we consider that the main material of the typical existing aprons is the massive lead, the 
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shielding products that are made of light materials without lead should exhibit the similar properties of ordinary 
fibers so that an apron-wearer could feel the sensations of improved lightness and softness. In this research, we 
used barium sulfate and bismuth oxide as main materials for the shielding purpose, which have similar shielding 
abilities to that of lead, but produce no harm to the human bodies and meet to the purpose of reducing weight.

To make a product that is favorable to wear in the photographing room like an apron, the radiation dose 
reduction fiber that is suitable for using as a medical purpose is developed in this research. This fiber is made by 
coating liquid silicon on non-woven fabrics thinly.

In order to verify the usefulness of the radiation dose reduction fiber, we have planned to perform an experi-
ment with several kinds of manufactured radiation dose reduction fibers suitable for different ranges of frequen-
cies of measured free space scattered dose in the radiography room. Hence, free space scattered dose and the rate 
of shielding, measured from several different distances, are compared with other data in order to estimate the 
efficiency of shielding for the fibers in the radiography room. On the basis of the results of this experiment, we 
will show technical data for the quality of the custom-made shielding material appropriate to particular distances 
from the source and propose the desirable direction for developing technical shielding goods, suitable for a par-
ticular environment of works in the future.

Meterials and Methods
To analyze the effective energy and the capacity of shielding the free space scattered dose of low intensity medi-
cal rays for radiation dose reduction fiber, we used the radiography system (Model: UD 150L-40E) made by the 
Shimadzu company as a device of generating X-rays and used the FH 40 G-L10(2013) of the Thermo SCIENTIFIC 
company as a digital surveymeter for detecting the free space scattered dose. In addition, we have also used the 
Exposure and Exposure rate meter(192X, Capintec) and Ion Chamber(Model PM-30, PR-18) in this experiment.

It is well known that the energy represented as a unification for a range of continuous spectrum of X-rays is 
called effective energy. The half-valued length (HVL) associated with this energy is the same as that obtained from 
continuous X-rays. We can determine effective energy from the linear attenuation coefficient by using the Hubbell 
coefficient which is the definition of mass absorption coefficient for a photon with a unificatioin energy11. To do 
this, it is necessary to select the absorbing materials(Al, Cu, Sn, Pb) that will be used for measuring the HVL and 
to evaluate the linear attenuation coefficient (μ​) according the relation

= . µ.HVL 0 693/ (1)

We have arranged the equipment as shown in Fig. 1 regarding the geometrical condition for the measurement 
of the effective energy, and, here, have fixed the tube current to be 200 mA, shooting time 0.1 sec, and the inherent 
filtration 0.7 mmAl. Used tube voltages are 60 kVp(without added filter) and 100 kVp(added filter 0.2 mmCu is 
attached) which belong to the typically used range. The HVL is obtained under this situation by measuring the 
exposure dose using the examined and regulated ionizing chamber while we have varied the thickness of the Al 
absorbing object specially made for measuring the HVL. In order to obtain more exact data for the shielding 
capacity, we have checked not only the accuracy of the tube voltage and the shooting time, but also the reproduc-
ibility and linearity of the power of X-rays before the main experiment.

Figure 1.  Arrangement for measuring the half value layer. 
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In Fig. 2, we have taken the vertical reference point of the dosimetry locations in the interior of the radiogra-
phy room on the genital area of a man standing on the floor from which its height from the floor is about 100 cm. 
From this point in the radiography table, equally spaced seven angles (each angle interval being 30°) of direction 
are chosen as the location of detection by tracing a semi-circular arc along the horizontal angle as shown in Fig. 2. 
We have chosen four points for each angle as the spots of measurement, where they are apart 50 cm, 100 cm, 
150 cm, and 200 cm from the reference point in the radiography table. Hence, the total number of spots where we 
measure the data is 28.

Recall that the purpose of this experiment is to evaluate the capacity of the dose reduction fiber, manufactured 
for the purpose of preventing the human body from absorbing a low dose of radiation considering the situation of 
frequent exposure in radiation for radiologic technologists and regular visitors. Most of the space scattered doses 
generated in the radiography room are scattered rays. They are soft rays and the transmission power of these low 
doses are typically weak. These rays are liable to be absorbed in the air and nearly disappears in the spot apart 
more than a certain distance from the source. In general, the intensity of the scattering rays is high when the tube 
voltage is high, when the thickness of subjects reflecting rays is large, and when the field of radiation is large as 
well. According to this, this experiment for measuring a free space scattered dose is performed after laying down 
the Whole Body Phantom (PBU-60, Kyoto Kagaku company) on a radiography table under the conditions that 
the tube voltage is 100 kVp, the tube current 200 mA, and the radiography time 0.1 sec. The shielding rate is ana-
lyzed on the basis of the data for the free space scattered dose measured 10 times by adjusting the maximum field 
angle for probing to be 36 cm ×​ 43 cm.

The results of this experiment is not concerned with the shielding of direct rays but of scattering rays. In order 
to compare the shielding effects of the shielding sheet on direct rays with that of lead aprons, the shielding capac-
ity of this sheet is meassured with the Ion Chamber (Model PM-30, PR-18) under the condition that keeping the 
tube voltage 100 kVp and the effective energy 45.61 keV for the case without the added filter 0.2 mmCu.

Results
Attanuation of the ray.  When a medical ray transmits through a shielding material, its amount and the 
corresponding energy reduce on account of its interaction with the principal materials of shielding. There is a 
method for measuring such radiation, which enables us to estimate the original energy loss. We can apply it to 
the measurement of intensities of the radiation before and after its transmission, which are expected to be dif-
ferent according to the distance from the source. In our research, we will measure energy loss taking place in the 
photography room. We can also consider to evaluate a shielding rate by restoring the original intensity of energy 
to an area because we are interested in scattering rays, i.e., the low intensity part of the ray instead of a part of the 
direct X-ray.

The effects of shielding medical rays using a manufactured dose reduction fiber composed of multi-layers can 
be represented in terms of intensity loss, which is represented in the form

∑β α β=




−




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=I d I d N( ) exp , ,
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where I0 is the intensity of the ray before transmitting the dose reduction fiber, di is the thickness of the ith layer 
of the pad of the dose reduction fiber, βi means the overall area of the material in the ith layer that plays the role 
of shielding in the dose reduction fiber, Ni is the number density (atoms/mm3) of atoms for the ith layer of the 
shielding material, and αi is the average cross section (mm2) of the fine absorption of radiation for an atom in the 
ith layer. Notice that β∑i i can be explained by the cross section for absorbing low intensity rays that we would like 
to shield in this experiment, while ∑ =d di i  is the total thickness of the pad. To lower the thickness of the pad of 
the dose reduction fiber and to show the method of enhancing Niαi, we should choose materials composed of 
high atomic number or should show the method for enhancing αi which is the microscopic absorption 
cross-section for radiation in the ith layer. In this research, we have chosen a compound of barium sulfate(BaSO4) 
and bismuth trioxide as a shielding material instead of lead. We have manufactured a thin sheet by combining 
these materials with the polyethylene resin via forming a pressed compound and we have shown it in Fig. 3 (Fig. 4 
is its electron micrograph). In this case, we can achieve the purpose of reducing the weight of the sheet, because it 
is possible to keep the thickness of the shielding sheet below 1 mm.

Figure 2.  Schematic diagram for the experimental method. 
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In the course of manufacturing the radiation dose reduction fiber, we have observed the experimental method 
of the lead equivalent regulated from the Korean Standards Association as a Korea Industrial Standard for prod-
ucts used for protecting human bodies from X-rays (KS A 4025, Korean Standards Association, 2010). Three 
kinds of dose reduction fibers are manufactured. The size of them are 1 m ×​ 1 m and their thicknesses are 0.15 mm 
(0.039 mmPb), 0.21 mm (0.095 mmPb), and 0.29 mm (0.22 mmPb). The detailed method of the experiment is 
given in the previous section and illustrated in Fig. 2.

The measurement of effective energy.  The effective energy of X-rays used for measuring the shield-
ing ratio of low dose fiber for medical rays is represented in Table 1. In case of a tube voltage 60 kVp without an 
added filter, the measured linear attenuation coefficient and the HVL are 0.2886/mm and 2.43 mmAl, respectively. 
Using the Hubbell’s table for the mass absorption coefficient, we have confirmed that these values correspond 
to 30.42 keV of effective energy. On the other hand, for the case of the tube voltage 100 kVp with the attach-
ment of an added filter 0.2 mmCu, the measured linear attenuation coefficient and the HVL are 0.1205/mm and 
5.62 mmAl respectively, leading to confirming that the corresponding effective energy is 45.61 keV. Hence, we can 
confirm that the increase of the effective energy and the thickening of the added filter affect the quantity of rays 
and this leads to the growth of the effective energy. We have also been able to obtain the shielding capacity of low 
dose fibers from the use of rays that their quality is exactly known.

The analysis of the free space scattered dose in the area shielded by using radiation dose reduc-
tion fibers.  Table 2 is shows the dependence of shielding effects on thickness of the shielding material at each 
point in the photography room measured using a radiation dose reduction fiber that corresponds to 1m2. At first, 

Figure 3.  The manufactured radiation dose reduction fiber (Medical radiation dose reduction fiber). 

Figure 4.  Electron micrograph of the radiation dose reduction fiber. It contains the compound of bismuth 
and polyolefin resin combinations.

Tube Voltage (kVp) Inh. filter (mmAl) Add. filter (mmCu) Abs. coe.(μ) (mm−1) Half value (mmAl) Eff. energy (keV)

60 0.7 – 0.2886 2.43 30.42

100 0.7 0.2 0.1205 5.62 45.61

Table 1.   Effective energies measured for two different specific tube voltages.
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we can confirm from the data associated with no shielding that the distribution of the free space scattered dose in 
the radiography room decreases according to the distance inverse square law within the photographic condition 
in the experiment and there are no specific characteristics in the angular distribution of rays.

By using the radiation dose reduction fiber with the thickness of 0.29 mm, that corresponds to the lead equiv-
alent 0.21 mm, we have confirmed that there is an average of 95% shielding effect for each distance from the X-ray 
source. The radiation dose reduction fiber with the thickness of 0.21 mm, that corresponds to the lead equivalent 
0.095 mm, we have confirmed that there is an average of 80% shielding effect for each distance from the X-ray 
source. The radiation dose reduction fiber with the thickness of 0.15 mm, that corresponds to the lead equivalent 
0.039 mm, there is an average of 70% shielding effect for each distance from the X-ray source.

Analysis of the shielding capacity of the medical radiation dose reduction fiber.  As shown in 
Table 3, the shielding ratio of free space scattering X-rays for the radiation dose reduction fiber is well represented 
according to the distance from the X-ray source. We had no particular difficulty in manufacturing the dose reduc-
tion fiber, because barium sulfate used in this experiment revealed a shielding capacity that is nearly similar to 
that of lead and, in addition, the flexibility of the materials was satisfactory. We have obtained efficiency results 
at the spot around 1.5 m from the source, which are nearly identical to that of the existing aprons. If we make an 
apron that is able to cover from the neck to knee using the radiation dose reduction fibers with the thickness of 
0.29 mm, its weight is about 2.75 kg. If we consider that, in general, the operating room and its front door within 
a hospital, for instance, would exist within 2 m from the general radiography room, it is possible to design the 
apron with the purpose of its lightweighness. The results of the comparison of our shielding sheets with the exist-
ing aprons on shielding effects are given in Table 4. The shielding effect of our sheet exhibits the 75% effect for 
radiation protection.

Discussion
The removal of direct X-rays is most important when we shield medical rays that correspond to the range of a 
diagnosis in medical imaging. The standard capacity of an apron designed for defending medically used radia-
tions is defined in the Korea Industrial Standard (KS P 6023, Korean Standards Association, 2007). According 
to this definition, the lead equivalent of shielding sheets should be 0.25 mmPb in general, but, for the materials 

Thickness

Distance

0.5 m 1.0 m 1.5 m 2.0 m

0.00 mm  
(No shielding) 3.326 ±​ 0.174 1.692 ±​ 0.141 0.986 ±​ 0.050 0.566 ±​ 0.040

0.29 mm 0.501 ±​ 0.018 0.185 ±​ 0.009 – –

0.21 mm 0.574 ±​ 0.013 0.269 ±​ 0.011 – –

0.15 mm 0.697 ±​ 0.051 0.320 ±​ 0.022 0.045 ±​ 0.008 –

Table 2.   Mean values (Mean ± SD) of the free space scattered dose, depending on thickness of the fiber, 
after shielding by the radiation dose reduction fiber (unit:μSv). For detailed experimental data with different 
angles concerning these mean values, you can refer to Supplementary Information.

Thickness

Distance

0.5 m 1.0 m 1.5 m 2.0 m

0.29 mm 84.88 89.01 100 100

0.21 mm 82.71 84.05 100 100

0.15 mm 79.04 81.05 95.41 99.97

Table 3.   Shielding ratio of the free space scattered dose after shielding by the radiation dose reduction 
fiber (unit: %).

Material
Thickness 

(mm)

Exposure(mR) Shield 
ratio(%)1 2 3 mean

Nothing – 3.40 3.29 3.45 3.38 –

Fiber 1 0.15 2.52 2.61 2.58 2.57 23.9

Fiber 2 0.21 1.71 1.66 1.80 1.75 49.2

Fiber 3 0.29 0.78 0.82 0.81 0.81 75.9

Lead 0.25 0.12 0.15 0.20 0.16 95.3

Table 4.   Results of the comparing of experimental shielding effects of the manufactured sheet with those 
of existing lead aprons.
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that were used as a shielding partition, the lead equivalent should be more than 0.3 mmPb according to the Korea 
Industrial Standard (KS P 6024, Korean Standards Association, 2007). Hence, the purpose of the present work 
is to reduce the weight of the shielding objects using unharmful materials, such as tungsten trioxide (WO3), bis-
muth trioxide (Bi2O3), and barium sulfate (BaSO4), which may be able to be used to replace lead that is commonly 
used in previous aprons. However, their commercialization is still difficult because there appears more or less 
serious economic complications when we produce shielding sheets that conform the criteria of both the lighten-
ing and the shielding prescription. According to this, we have tried, in this research, the lightening of shielding 
sheets via the manufacturing of three kinds of sheets that yield their thickness within 0.15 mm~0.3 mm using the 
compound of barium sulfate (BaSO4) and bismuth trioxide (Bi2O3). This research is initiated with the intention 
to develop shielding sheets for low dose rays at the level which biological effects are not fully verified, instead of 
that shielding direct rays, where such low dose rays can be obtained by weakening direct rays. However, because 
the intensity of rays measured from each distance was reduced than that we had expected, we have resolved the 
problem of making the sheet weigh lighter by creating shielding sheets that are able to shield low dose rays. Using 
this, we have proposed a shielding system for medical rays that can be easily used at the level associated with the 
generation of such medical rays.

However, we have proposed to make a dose reduction fiber which have reduced weight, that can be used to 
deflect radiation in the range of low intensity as well as high intensity. If we think the fact that the distribution 
of the free space scattered ray inside radiography room in the medical imaging department is used as an index 
for the degree of exposure of radiation for the workers and patients, the shielding of radiation is very important 
for regular employees in radiography rooms12–15. However, it could be inconvenient to wear a massive apron for 
a worker who is exposed in the range of the free space scattered ray that is quite different from the direct X-ray.

In case that we produce the same apron using the reduced dose fibers with a thickness of 0.15 mm which was 
suggested in this experiment, we can propose various types of working suits because it is now possible to reduce 
the weight to be 0.85 kg. In addition, we can propose the same effect of shielding as that of 0.25 mmPb at the dis-
tance of 1.5 m from the source. In general, a radiology technologist protects his/her body by attempting to produce 
radiation behind the defense wall and keeping at least 2 m away even in the case they perform mobile radiography. 
Hence, we can deduce the result that 0.15 mm reduced dose fiber is enough for defending the radiation shooting.

In situations where work is performed in operating rooms and interventional surgery rooms, employees work 
for long periods of time wearing an apron. In this case, we can assess, through this research, whether the light-
weight textures for low dose rays are more convenient than the existing aprons of which their weights are usually 
more than 4 kg, for an assistant standing more than 1 meter away from the X-ray source. If we regard that the 
generation of X-rays for industrial use is typically carried out with an appropriate dose which has pre-defined 
energy, it would then be possible to adopt an effective method for defending radiologic energy with an expected 
free space scattered dose in the future.

We have made dose reduction fibers on the basis of the measured data of the free space scattered dose in a 
radiography room that uses medical rays and their capacities were analyzed in this research, in order to improve 
the current inferior situation associated with the understandable unwillingness on part of medical employees 
wearing a very heavy apron. As a result, we measured 0.185 ±​ 0.009 μ​Sv of the space ray at the spot of 1 m from 
the 0.29 mm dose reduction fiber coated with a compound of barium sulfate and liquid silicon instead of lead. 
This means that the dose reduction fiber we have considered can be efficiently used for shielding low intensity 
radiation. We also have concluded that the results of this research fit in with the purpose of reducing the weight 
of the apron to be 2.75 kg, while its size is the same as that of the existing ones.
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