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1. Introduction 

 

The point matching is widely used in computer 
vision and pattern recognition because point 
representations are generally easy to extract. Point 
matching can be categorized as rigid matching and 
non-rigid matching based on the deformation of 
objects captured in the image. Compare with the rigid 
case, non-rigid matching is more complicated. 
Generally, there are two unknown operations: 
correspondence and transformation. Most non-rigid 
point matching approaches use an iterated estimation 
framework to find appropriate correspondence and 
transformation [1]. The Iterated Closest Point (ICP) 
algorithm is one of the most well known heuristic 
approaches. It utilizes the relationship by assigning the 
correspondence with binary values zero and one. 
However, this binary assumption is no longer valid in 
the case of non-rigid transformation, especially when 
the deformations are large [2]. The Thin Plate Spline 
Robust Point Matching (TPS-RPM) algorithm is an 
Expectation Maximization (EM) algorithm to jointly 
solve for the feature correspondence as well as the 
geometric transformation. The cost function that is 
being minimized is the sum of Euclidean distances 
between points. In the TPS-RPM, the binary 
correspondence value of the ICP is relaxed to the 

continuous value between zero and one. This soft-
assign method improves the matching performance 
because the correspondences are able to improve 
gradually and continuously without jumping around in 
the space of binary permutation matrices [3-4]. The 
algorithm is robust compared to the ICP in the non-
rigid case, but the joint estimation of correspondences 
and transformation increases complexity. In addition, 
the Euclidean distance makes sense only when there 
are at least rough initial alignments of the shapes. If 
the initialization is not aligned well, the matching 
result is poor. Recently, the Shape Context (SC) 
algorithm has been proposed. It is an object recognizer 
based on the shape. For each point, the distribution of 
the distance and orientation are estimated to the 
neighboring points through a histogram [5]. This 
distribution is used as the attribute relations for the 
points. The correspondences can be decided by 
comparing each point’s attributes in one set with the 
attributes of the other. Because only the attributes are 
compared, the searching for the correspondences can 
be conducted more easily compared to the ICP and the 
TPS-RPM. Generally, the SC performs better in 
handling complex patterns than the TPS-RPM. 
Another interesting approach of point matching is a 
kernel correlation-based point matching. The cost 
function is proportional to the correlation of two 
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kernel density estimates. The work was extended by 
using the L2 distance between mixtures of Gaussian 
representing the point set data in. The Coherent Point 
Drift (CPD) algorithm is another probabilistic 
algorithm [6]. They proposed to use the displacement 
filed between the point sets following the motion 
coherence theory. They also successfully extend the 
general non-rigid registration framework, and show 
that TPS-RPM is its special case [7]. The Robust Point 
Matching by preserving Local Neighborhood 
Structures (RPM-LNS) introduces the notion of a 
neighborhood structure for the general point matching 
problem. The RPM-LNS uses a relaxation labeling 
method with binary value coefficient. This approach is 
based on the assumption that although the absolute 
distance between two points may change significantly 
under non-rigid deformation, the neighborhood 
structure of a point is generally well preserved. The 
cost function is formulated as an optimization problem 
to preserve local neighborhood relations. This 
research shows the convergence property of relaxation 
Rabling under two-way Sinkhon normalization. This 
method can be used in non-rigid image registration 
and point matching. In this paper, we used Shinkon 
normalization to prove it. 

 
 

2. Problem Definition 
 

Let 1 2{ , ,..., }MS s s s=  be a set of points in a 

model shape and 1 2{ , ,..., }NT t t t=  be a set of points 

in the target shape. In a point matching problem, one-
to-one matching is desired, but in general, one-to-one 
matching is not possible because of outliers. To handle 
this problem, two point sets are augmented to 

1 2{ , ,..., , }MS s s s nil′ =  and 1 2{ , ,..., , }NT t t t nil′ =  

by introducing a dummy point nil. Then a match 

between shapes S  and T  is :f S T′ ′⇔  and 

common points can be matched one-to-one and 
outliers can be matched to a dummy point nil. Under a 
rigid transformation (transformation and rotation), the 
distance between any pair of points is preserved. 

Therefore, the optimal match f̂  is 

 
ˆ min ( , , ),

f
f arg C S T f=  

 
where  
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If a non-rigid transformation is present, the 
distance between a pair of points will not be preserved, 
especially for points which are far apart. On the other 
hand, due to physical constraints, and in order to 

preserve the rough structure, the local neighborhood 
of a point may not change freely. We therefore define 
the local neighborhood of a point. For a given point, 

ms S ′∈ , a neighbor point is ms
i , 1, 2, ...,i I= . 

Similarly, for a given point, nt T ′∈ , a neighbor point 

is nt
j , 1,2,...,j J= . Since the only distance of 

neighboring point pairs are preserved, (2) becomes 
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We quantize the distance to two levels as 
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Equation ( ) then is simplified to 
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where 
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and  
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Simple deduction makes to convert the above 
minimization problem to a maximization problem. 

 
ˆ max ( , , ),

f
f arg K S T f=  
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where ( , ) 1 ( , ).i j d i jδ = −   

In this paper, the point matching problem is 
restated as the graph isomorphism problem [12]. The 
optimal solution of ( ) is the one that maximizes the 
number of matched edges of two graphs. Each point is 
a node of a graph, and a point and its adjacent point 
constitute the edges of the graph. Then the problem is 
to maximize the number of matched edges between 
two graphs. For this purpose, we determine  
the fuzzy correspondence matrix P  with dimension
( 1) ( 1)M N+ × + . Each entry of P  has continuous 

value between [0,1] that indicates the weight of the 

correspondence between ms  and nt . The optimal 

match P̂  is found by maximizing the energy function 
as follows. 

 

ˆ max ( ),
P

P arg E P=  

 

where 
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3. Relaxation Labeling  
 

Start with a set of nodes i  and a set of labels λ . 
Derive a set of compatibility coefficients r  for  
each problem of interest and then apply the basic 
recipe of relaxation labeling for updating the node-
label assignments: 
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Now, we prove that the relaxation labeling process 
always converges with two way constraints ( ). The 
common framework of prediction algorithm is  
as follows. 

 

1
( , ) ( ) ( , )F p E p d pσ σ

α
= + , 

where ( , )d p σ  is a distance measure between p  and 

an "old" value σ .  
Examine the following objective function  

using the generalized KL divergence as the  
distance measure: 
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Instead of solving for the Lagrange parameter 
vectors μ  andν , we use Sinkorn’s theorem instead 

to ensure that the row and column constrains satisfied. 
From our assumption of exact convergence of 
Sinkhorn, it follows that the Lagrange parameter 
vectors μ  and ν  can be dropped from the  

energy function.  
We first formalize a few definitions.  
 

Algorithm 1: (Shinkhorn Scaling Algorithm) 
Given a nonnegative, m n×  matrix A , and 

specified vectors of the row sums ( mr ∈ ) and 

column sums ( mc∈ ), we iterate the  
following until convergence, with initial values 

(0)
ij ija a= , and 1k = : 

1) Multiple every element ( 1)k
ija −  by the ratio of the 

desired row sum ir  to the actual row sum  
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2) Multiple every element ( )k
ija  of the matrix from 

(1) by the ratio of the desired column sum jc  to the 

actual column sum ( )

1

m
k

ij
i

a
=
 , 

*( ) ( ) ( )

1

/ ( )
m

k k k
ij j ij ij

i

a c a a
=

=  . 

It can be shown that with any given matrix A , 
Sinkorn scaling process will converge to a unique 
matrix B  that satisties the row and column sum 
constraints. The following theorem is a unified 
statement of the convergence of the Sinkorn scaling 
process, from various previous results in the literature. 

Theorem 1: Consider m nA ×∈ , a nonnegative 

matrix, and desired row sums mr ∈  and column 

sums nc∈ . Then there exists a unique matrix 
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m nB ×∈  which satisties these prescribed row and 

column sums, where 1 2B D AD=  for 1
m mD ×∈  and 

2
n nD ×∈ , 1D  and 2D  both diagonal, positive 

definite matrices.  
If we assume that Sinkhorn procedure always 

returns a doubly stochastic matrix. 
Then we have used the generalized KL divergence 

which is guaranteed to be greater than or equal to zero 
without requiring the usual constraints  
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where ( 1) ( )

p q p q p qi j i j i j

def
t tM M M+Δ = Δ − Δ

 
and  

( 1) ( )
q q qp j p j p ji i i

a a ab b b

def
t tM M M+Δ = Δ − Δ
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. The first term 

is nonnegative due to the positive definiteness in the 
subspace spanned by the row and column constraints. 
The second term is non-negative by virtue of being a 
KL distance measure. We have shown the 
convergence to a fixed point of the relaxation labeling 
under Sinkhorn scaling. 

This is a consequence of the following extension 
to the well-known Birkoff-von Neumann theorem: the 
set of doubly stochastic matrices is the convex hull of 
the set of permutation matrices and outliers. So it can 
be ensured that we will always achieve one-to-one 
correspondence. 

 

Complexity and Convergence of Sinkhorn Scaling 
The Sinkhorn iterations are a natural way of 

scaling a matrix to achieve prescribed row and column 
sums. While Sinkorn proved that the iterative 
procedure converges for appropriate matrices, it could 
take a very long time to reach a desired accuracy 

( ijb ε< ). In our algorithm, however, we set 

0.95ijb <  as an outlier by matching them a dummy 

point and set as 0. This way improves the rate of 
convergence of Sinkorn process significantly. 

 
 

4. Transformation Function  
 

Given a finite set of correspondences between, one 
can proceed to estimate a plane transformation.

2 2:f ℜ → ℜ  or 3 3:f ℜ → ℜ  that may be used to 

map arbitrary points from one image to the other. In 
this study, we mostly use the thin plate spline (TPS) 
model, which is commonly used for representing 
flexible coordinate transformations. Bookstein found 
it to be highly effective for modeling changes in 
biological forms. Powell applied the TPS model to 
recover transformations between curves. The thin 
plate spline is the 2D generalization of the cubic spline. 
In its regularized form, which is discussed below, the 
TPS model includes the affine model as a special case. 

Let iv  denote the target function values at 

corresponding locations ( , )i i ip x y=  in the plane, 

with 1, 2, ...,i n= . In particular, we will set iv  equal 

to ix′  and iy′  in turn to obtain one continuous 

transformation for each coordinate. We assume that 
the locations ( , )i ix y  are all different and are not 

collinear. In 2-D interpolation problem, the TPS 
interpolant ( , )f x y  minimizes the bending energy 
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Sensors & Transducers, Vol. 209, Issue 2, February 2017, pp. 74-81 

 78 

1
1

( , ) ( ( , ) ( , ) )
n

x y i i i
i

f x y a a x a y wU x y x y
=

= + + + −  

 
If the problem is 3-D interpolation, the bending 

energy is 
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and the interpolant form is  
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The kernel function ( )U r is defined by 

2 2( ) logU r r r=  and (0) 0U =  as usual. In order for 

( , )f x y  to have square integrable second derivatives, 

we require the boundary condition as  
 

1

0
n

i
i

w
=

= and 
1 1

0
n n

i i i i
i i

w x w y
= =

= =  . 

 
A special characteristic of the thin-plate spline is 

that the resulting transformation is always 
decomposed into a global transformation and a local 
non-affine warping component. The first three terms 
in 2-D and four terms in 3-D case describes global 
affine transform and rest terms describe non-linear 
(nonglobal) transformation. 

Together with the interpolation conditions, 
( , )i i if x y v= , this yields a linear system for the  

TPS coefficients: 
 

  
,

0 0T

K P W V

AP

    
=    

    
 

 

where 

12 1

21 2

1 2

0 ( ) ( )

( ) 0 ( )

( ) ( ) 0

n

n

n n

U r U r

U r U r
K

U r U r

 
 
 =
 
 
 




   


  
  

  
  

 

and 

1 1

2 2

1

1
.

1 n n

x y

x y
P

x y

 
 
 =
 
 
 

  

 
 
 
 

 

Here, || ||ij i jr P P= −  is the distance between points 

iP  and jP . W and A  is column vectors formed from 

1 2( , ,..., )nW w w w= and 1( , , )x yA a a a= , respectively. 
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 by L . Since L  is 

nonsingular, we can find the solution by inverting L  

[Powell 1995]. Define the vector ( | 0 0 0)Y V Τ=   , 

then 1
1( | )x yW a a a L YΤ −=  . If we denote the 

upper left n n×  block of 1L−
 by 1

pL− , then it can be 

shown that 1T T
f pI v L v w Kw−∝ = . 

When there is noise in the specified value iv , one 

may wish to relax the exact interpolation requirement 
by means of regularization. This is accomplished by 
minimizing 

 

2

1

[ ] ( ( , ))
n

i i i f
i

H f v f x y Iλ
=

= − +  

 

The regularization parameter λ , a positive scalar, 
controls the amount of smoothing; the limiting case of 

0λ =  reduces to exact interpolation. As demonstrated 
in [ ], we can solve for the TPS coefficients in the 
regularized case by replacing the matrix K by K Iλ+ . 

In the application we take the points ( , )i ix y  to be 

landmarks and V to be 2n×  matrix, 

1 2

1 2

n

n

x x x
V

y y y

Τ′ ′ ′ 
=  ′ ′ ′ 




  
  

Y  to be ( 3) 2n + ×  matrix, 

1 2

1 2

| 0 0 0

| 0 0 0
n

n

x x x
Y

y y y

Τ′ ′ ′ 
=  ′ ′ ′ 




      
      

 

where each ( , )i ix y′ ′  

is the control points homologous to ( , )i ix y  in another 

copy of 2ℜ . The application of 1L−  to the first column 

of V Τ  specifies the coefficient of 1, x , y , and the 

U ’s for ( , )xf x y , the x  - coordinate of the image of 

( , )x y . The application of 1L−  to the second column 

of V Τ  does the same for the y - coordinate ( , )xf x y . 

The resulting function ( , ) [ ( , ), ( , )]x yf x y f x y f x y=  is 

nor vector-valued and it maps each point ( , )i ix y  to its 

homolog ( , )i ix y′ ′  and is least bent of all such functions. 

These vector valued functions ( , )f x y  are the thin-

plate spline mappings. 
 
 

5. 3-D Point Context  
 

We treat an object as a point set and we assume 
that the shape of an object is essentially captured by a 
finite subset of its points. For each point on the first 
shape, we want to find the best matching point. We 
propose a 3-D novel descriptor, the 3-D point context, 
which could play such a role in shape matching. 
Consider the set of vectors originating from a point to 
all other sample points on a shape. These vectors 
express the configuration of the entire shape relative 
to the reference point.  
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The full set of vectors as a shape descriptor is much 
too detailed since shapes and their sampled 
representation may vary of one instance to another in 
a category. We identify the distribution over relative 
points as a more robust and compact, yet highly 
discriminative descriptor. For a point ip  on the shape, 

we compute a coarse histogram ih  of the relative 

coordinates of the remaining 1n −  points, 
( ) #{ :  ( ) bin( )}.i i ih k q p q p k= ≠ − ∈   

The histogram is defined to be the shape context of 

ip . We use bins that are uniform in log-polar space, 

making the descriptor more sensitive to positions of 
nearby sample points than to those of points farther 
away.  

The log-polar geometry was first motivated by its 
resemblance with the structure of the retina of some 
biological vision systems and by its data compression 
qualities. The log-polar transformation is a conformal 
mapping from the points on the Cartesian plane ( , )x y  

to points in the log-polar plane ( , )ξ η . 

The mapping is described by 
 

2 2log x yξ = +  

tan( / )a y xη =  
 

Consider a point ip  on the first shape and a point 

jq  on the second shape. Let ( , )ij i jC C p q=  denote 

the cost of matching these two points. As shape 
contexts are distributions represented as histograms, it 
is natural to use the chi-square test statistics: 

 
2

1

[ ( ) ( )]1
( , ) ,

2 ( ) ( )

K
i j

ij i j
k i j

h k h k
C C p q

h k h k=

−
≡ =

+  

 

where ( )ih k  and ( )jh k  denote the K-bin normalized 

histogram at ip  and jq , respectively. 
 
 

6. The Background of Nystrom 
Approximation  
 

The computation cost of TPS becomes prohibitive 
when the number of samples is large. Let n  be the 
number of samples of a deformation map.  
TPS require the solution of a n n×  dense  

system with 3( )O n  complexity for determining 

interpolation coefficients. 
One drawback of the TPS model is that its solution 

requires the inversion of a large dense matrix of size 
n n× , where n  is the number of points in the data set. 
In this section, the approximation method that 
addresses this computational problem is discussed. 

Since inverting L  is an 3( 3)O n +  operation, 

solving for the TPS coefficients can be very expensive 
when n  is very large. We will now discuss the 

Nystrom approximation method that reduces this 
computational burdon. The Nystrom method is a 
technique for finding numerical approximations to 
eigenfunction problems of the form: 

 

( , ) ( ) ( )
b

a
K x y y dy xφ λφ=  

 

We can approximate this integral equation by 
evaluating it as a set of evenly spaced points 

 1 2, ,  ...,  nξ ξ ξ  on the interval [ , ]a b  and employing a 

simple quadrature rule, 
 

1

( ) ˆ ˆ( , ) ( ) ( )
n

j j
j

b a
K x x

n
ξ φ ξ λφ

=

− = , 

 

where ˆ( )xφ  is the approximation to the true ( )xφ .  

To solve the above, we set ix ζ=  yielding the system 

of equations 
 

1

( ) ˆ ˆ( , ) ( ) ( )    {1, 2,..., }
n

i j j i
j

b a
K i n

n
ξ ξ φ ξ λφ ξ

=

− = ∀ ∈
 

Without loss of generality, we let [ , ]a b  be [0,1]  

and the structure the system as the matrix  
eigenvalue problem: 

 

ˆ ˆK nΦ = ΦΛ , 
 

where ( , )ij i jK k y y=  is the Gram matrix and 

1 2[   ... ]nφ φ φΦ =  are n  approximate eigenvectors 

with corresponding eigenvalues 1 2,  ,  ...,  nλ λ λ . 

Substituting back into equation yields Nystrom 

extension for each îφ  
 

1

1ˆ ˆ( ) ( , ) ( )
n

i j i j
ji

x K x
n

φ ζ φ ζ
λ =

=   

 
 

7. Approximating the Eigenvectors of 
Affinity Matrices  
 

The preceding analysis suggests that it should be 
possible to find approximate eigenvectors of a large 
Gram matrix by solving a much smaller eigenproblem 
using only a subset of the entries and employing the 
Nystrom extension to fill in the rest.  

Consider a Gram matrix p pK ×∈   partitioned as 

follows 
  

CT

A B
K

B

 
=  
 

 with n nA ×∈  , n mB ×∈  , and 

m mC ×∈ , where p n m= +  and we will take n  to 

be much smaller than m . Since K  is positive definite, 
we can write it as the inner product of a matrix Z  with 
itself: TK Z Z= . If K  is of rank n  and the rows of 
the submatrix [ , ]A B  are linearly independent, Z  can 

be written using only A  and B  as follows. Let Z  be 
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partitioned [  ]Z X Y=  with p nX ×∈   and p mY ×∈  . 

Rewriting K  we have: 
 

   

   

T T
T

T T

X X X Y
K Z Z

Y X Y Y

 
= =  

  
 

 

Then TA X X=  and TB X Y= . Using the 
diagonalization TA U U= Λ , where TU U I=   
we obtain 

 
1/2 TX U= Λ   

1 1/2 1 1/2ˆ ( ) ( )T T TY X B U B U B− − −= = Λ = Λ  

 

Combining the two into ˆ ˆ[  ] P PZ X Y ×= ∈  gives us 
 

1/2 1/2

1/2 1/2 1/2 1/2

1

1

ˆ   

ˆ ˆ ˆ   

                         ( )

( )    ( )

        

 

[  ]

T T

T T

T T T T

T T T T T T

T T

T

X X X Y
K

Y X Y Y

X X U U B

U B U U B U B

A B

B B A B

A
A A B

B

−

− − −

−

−

 
=  
  
 Λ Λ

=  
Λ Λ Λ Λ  

 
=  
 
 

=  
 

 

Again TA U U= Λ  be its eigendecomposition 
where U  has orthonormal columns and Λ  is 

diagonal. Letting U  denote the approximate 
eigenvectors of K , the Nystrom extension gives 

 

1

    
T

U
U

B U −

 
=  Λ 
  

 

And the associated approximation of K , which we 

denote K̂ , then takes the form 
 

1

1

1

  ˆ [   ]

         

        

[  ]

T T T T

T

T

T TT T

T

U
K U U U U B

B U

A BU U B

B B BB B B

A
A A B

B

−
−

−

 
= Λ = Λ Λ Λ 
 Λ  

= =   ΛΛ    
 

=  
 

 

 

 

Note that in general the columns of U  are  
not orthogonal.  

This is addressed as follows. If A  is positive 
definite, then we can solve the orthogonalized 
approximate eigenvectors. Let 1/ 2A  denote the 
symmetric positive definite square root of A , define 

1/2 1/2TS A A BB A− −= +  and diagonalize it as 
T

S S SS U U= Λ . If the matrix V  is defined as 

1/2 1/2
S ST

A
V A U

B
− − 

= Λ 
 

 

 

Then one can show that Ŵ  is diagonalized by V  

and SΛ , i.e. ˆ T
SK V V= Λ  and TV V I= . 

 

1/2 1/2 1/2 1/2ˆ { } { [   ]}S S S ST

T

A
K A U U A A B

B

V V

− − − − 
= Λ Λ Λ 

 
= Λ

 

1/2 1/2 1/2 1/2{ [   ]}{ }

T

T
S S S ST

I V V

A
U A A B A U

B
− − − −

=

 
= Λ Λ 

 

 

 

By multiplying from the left by  
 

1/2 1/2

1/2 1/2

[   ]T
S S S T

T

A
U U A A B A

B

A A BB A S

− −

− −

 
Λ =  

 
= + =

 

 

From the standard formula for the partitioned 
inverse of L , we have 

 
1

1

1 1 1 1 1 1

1 1 1

   

 0

( +   

                        

T

T

T

K P
L

P

K K PQ P K K PQ

Q P K Q

−

−

− − − − − −

− − −

 
=  
 
 −

=  
−  

 

 

with 1TQ P K P−= − . 
 

Thus  
 

1

1 1 1 1 1 1

1 1 1

1 1 1 1

1 1

  

0 0

( +   

0                          

( +  )

         

T

T

T

T

T

K PW V

A P

K K PQ P K K PQ V

Q P K Q

K K PQ P K V

Q P K V

−

− − − − − −

− − −

− − − −

− −

    
=     

    
 −  

=    −    
 

=  
−  

 

 
1

1 1 1 1 1 1

1 1 1

1 1 1 1

1 1

  

0 0

( +   

0                          

( +  )

         

T

T

T

T

T

K PW V

A P

K K PQ P K K PQ V

Q P K Q

K K PQ P K V

Q P K V

−

− − − − − −

− − −

− − − −

− −

    
=     

    
 −  

=    −    
 

=  
−  

 

 
Using the Nystrom approximation to K , we have 

ˆ T
SK V V= Λ  and 1 1ˆ T

SK V V− −= Λ   
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1 1 1

1 1 1

ˆˆ ˆ ˆ( )

ˆ( )

T

T T T
S S

W I K PQ P K V

I V V PQ P V V V

− − −

− − −

= +

= + Λ Λ
 

1 1 1 1ˆ ˆ ˆˆT T T
SA Q P K V Q P V V V− − − −= − = − Λ  

 

with 1 1ˆ ˆT T T
SQ P K P P V V P− −= − = − Λ  with is 3 3× . 

Therefore, by computing matrix vector products in the 
appropriate order, we can obtain estimates to the TPS 
coefficients without having to invert or store a large 
( 3) ( 3)n n+ × +  matrix. For the regularized case, one 

can proceed in the same manner, using 
 

1 1 1ˆ( ) ( ) ( )T T
S SK I V V I V I Vλ λ λ− − −+ = Λ + = Λ +  

 

Finally, the approximate bending energy is  
given by 

 

ˆ ( ) ( )T T T T T T
f S SI w Kw w V V w V w V w= = Λ = Λ  

 

Note that this bending energy is the average of the 
energies associated to the x  and y  components. 

 
 

7. Conclusions 
 

This research shows the convergence property of 
relaxation Rabling under two-way Sinkhon 
normalization. This method can be used in non-rigid 
image registration and point matching. In this paper, 
we used Shinkon normalization to prove it. 
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