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OBJECTIVES This study sought to investigate the in-scaffold vascular response (SVR) and edge vascular response

(EVR) after implantation of an everolimus-eluting bioresorbable scaffold (BRS) using serial optical coherence tomography

(OCT) imaging.

BACKGROUND Although studies using intravascular ultrasound have evaluated the EVR in metal stents and BRSs,

there is a lack of OCT-based SVR and EVR assessment after BRS implantation.

METHODS In the ABSORB Cohort B (ABSORB Clinical Investigation, Cohort B) study, 23 patients (23 lesions) in Cohort

B1 and 17 patients (18 lesions) in Cohort B2 underwent truly serial OCT examinations at 3 different time points (Cohort B1:

post-procedure, 6 months, and 2 years; B2: post-procedure, 1 year, and 3 years) after implantation of an 18-mm scaffold.

A frame-by-frame OCT analysis was performed at the 5-mm proximal, 5-mm distal edge, and 2-mm in-scaffold margins,

whereas the middle 14-mm in-scaffold segment was analyzed at 1-mm intervals.

RESULTS The in-scaffold mean luminal area significantly decreased from baseline to 6 months or 1 year (7.22 � 1.24

mm2 vs. 6.05 � 1.38 mm2 and 7.64 � 1.19 mm2 vs. 5.72 � 0.89 mm2, respectively; both p < 0.01), but remained

unchanged from then onward. In Cohort B1, a significant increase in mean luminal area of the distal edge was observed

(5.42 � 1.81 mm2 vs. 5.58 � 1.53 mm2; p < 0.01), whereas the mean luminal area of the proximal edge remained un-

changed at 6 months. In Cohort B2, the mean luminal areas of the proximal and distal edges were significantly smaller

than post-procedure measurements at 3 years. The mean luminal area loss at both edges was significantly less than the

mean luminal area loss of the in-scaffold segment at both 6-month and 2-year follow-up in Cohort B1 or at 1 year and

3 years in Cohort B2.

CONCLUSIONS This OCT-based serial EVR and SVR evaluation of the Absorb Bioresorbable Vascular Scaffold (Abbott

Vascular, Santa Clara, California) showed less luminal loss at the edges than luminal loss within the scaffold. The luminal

reduction of both edges is not a nosologic entity, but an EVR in continuity with the SVR, extending from the in-scaffold

margin to both edges. (ABSORB Clinical Investigation, Cohort B [ABSORB B]; NCT00856856) (J Am Coll Cardiol Intv
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R estenosis in the segments adjacent to
the proximal and distal edges of a
permanent or transient coronary

implant has been a concern for many years
(1–5). In the metal drug-eluting stent (DES)
era, studies demonstrated effective inhibi-
tion of neointimal hyperplasia reducing the
risk of edge restenosis and the need for
repeat intervention on the edges (6,7). Our
group, using intravascular ultrasound (IVUS)
imaging, previously investigated the edge
vascular response (EVR) after implantation
of fully bioresorbable scaffold (BRS) and re-
ported a luminal area reduction at the prox-
imal edge at 2-year follow-up (8).
SEE PAGE 1370
Optical coherence tomography (OCT) offers sub-
stantially superior resolution that allows a precise
evaluation of luminal dimensions, edge dissections,
and relevant vessel wall pathology (9–12). To date, no
study has used serial OCT imaging to examine the
EVR and its relationship with in-scaffold vascular
response (SVR) at 3-year follow-up after BRS im-
plantation. We hypothesized that the local changes in
luminal dimensions at the edge of the Absorb Bio-
resorbable Vascular Scaffold (Absorb BVS) (Abbott
Vascular, Santa Clara, California) are simply the
E 1 Flowchart of the Patients Included in the Current Analysi

restenoses in Cohort B that mandated repeat revascularization. †

segment and distal edge. 1Y ¼ 1 year; 2Y ¼ 2 years; 3Y ¼ 3 years; B

ents; OCT ¼ optical coherent tomography.
extension of the changes in luminal dimension ob-
served at the in-scaffold margins and not a separate
pathological entity. This study aimed to evaluate the
OCT-based SVR and EVR after Absorb BVS (Abbott
Vascular) implantation in the ABSORB Cohort B
(ABSORB Clinical Investigation, Cohort B) trial.

METHODS

STUDY DESIGN AND POPULATION. The ABSORB
Cohort B trial was described in detail previously (12).
Briefly, thiswas a nonrandomized,multicenter, single-
arm trial that enrolled 101 patients (102 lesions) treated
with the second-generation Absorb BVS (Abbott Vas-
cular) (A complete list of the members of the ABSORB
Cohort B Study appears in the Online Appendix). The
participants were divided into 2 groups according
to the pre-defined invasive follow-up: Cohort B1 at
post-procedure, 6 months, and 2 years and Cohort B2
at post-procedure, 1 year, and 3 years. OCT was an
optional examination conducted at selected centers
with OCT capability and previous experience. The
registry was approved by the ethics committee at
each participating institution, and each patient gave
written informed consent before inclusion.

STUDY DEVICE AND TREATMENT PROCEDURE.

The Absorb BVS (Abbott Vascular) is a balloon-
expandable scaffold consisting of a polymer back-
bone of poly-L-lactide coated with a thin layer of a 1:1
s

This case had in-segment restenosis at the distal margin of the scaf-

L ¼ baseline; FUP ¼ follow-up; NL ¼ number of lesions; NP ¼ number



TABLE 1 Baseline and Lesion Characteristics of Fully Serial OCT Available Patients

Cohort B1
(n ¼ 23)

Cohort B2
(n ¼ 17) Difference (95% CI)

Age, yrs 63.4 � 9.8 61.6 � 8.0 1.8 (�3.9 to 7.5)

Male 82.6 64.7 17.9 (�8.8 to 43.5)

Diabetes mellitus 4.3 5.9 �1.5% (�22.9 to 15.8)

Hypertension 52.2 70.6 �18.4 (�43.5 to 11.7)

Hypercholesterolemia 95.7 76.5 19.2 (�2.6 to 43.2)

Current smoker 21.7 29.4 �7.7% (�34.3 to 18.2)

Family history of CAD 52.2 66.7 �14.5% (�40.9 to 16.6)

Previous MI 43.5 12.5 31.0 (1.5–52.7)

History of PCI 26.1 11.8 14.3 (�12.0 to 36.4)

Unstable angina 17.4 5.9 11.5 (�12.0 to 31.8)

Target-lesion vessel, %

LAD 26.1 11.1 15.0 (�10.6 to 36.9)

LCX 26.1 33.3 �7.3 (�33.9 to 19.3)

RCA 47.8 55.6 �7.7 (�35.0 to 21.4)

RVD before intervention 2.59 � 0.40 2.57 � 0.26 0.02 (�0.19 to 0.23)

Maximal balloon artery ratio 1.01 � 0.15 1.05 � 0.11 �0.04 (�0.12 to 0.05)

Maximal inflation pressure 18.4 � 3.0 16.6 � 5.3 1.8 (�1.1 to 4.7)

Values are mean � SD or %.

CAD ¼ coronary artery disease; CI ¼ confidence interval; LAD ¼ left anterior descending artery; LCX ¼ left
circumflex artery; MI ¼ myocardial infarction; OCT ¼ optical coherent tomography; PCI ¼ percutaneous coronary
intervention; RCA ¼ right coronary artery; RVD ¼ reference vessel diameter.

TABLE 2 In-Scaffold Vascular Response Analysis

Luminal Area Changes

In-Scaffold Vascular Response (18 mm)

p Value

Distal
Subsegment

(6 mm)

Middle
Subsegment

(6 mm)

Proximal
Subsegment

(6 mm)

Cohort B1

6 months vs. baseline �1.21 � 0.79 �0.98 � 0.68 �1.34 � 0.79 0.27

2 yrs vs. 6 months �0.44 � 0.91 0.05 � 1.46 0.12 � 1.29 0.25

2 yrs vs. baseline �1.65 � 0.99 �0.94 � 1.62 �1.22 � 1.24 0.18

Cohort B2

1 yr vs. baseline �1.91 � 1.24 �1.77 � 1.10 �2.06 � 0.87 0.73

3 yrs vs. 1 yr �0.18 � 0.93 0.26 � 0.84 0.05 � 0.72 0.29

3 yrs vs. baseline �2.10 � 1.59 �1.51 � 1.23 �2.00 � 1.03 0.36

Values are mean � SD.
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mixture of amorphous poly-D,L-lactide polymer and
the antiproliferative drug everolimus to form a drug-
eluting coating matrix that contains 100 mg of ever-
olimus per square centimeter of scaffold (13–15).

Target lesions were treated with routine interven-
tional techniques, and pre-dilation was mandatory.
The Absorb BVS (Abbott Vascular) inflation pressure
did not exceed 16 atm, the burst pressure according to
the product chart. Post-dilation with a balloon shorter
than the implanted scaffold was at the discretion of
the operator. OCT imaging was performed after
optimal Absorb BVS (Abbott Vascular) implantation
and at follow-up.

OCT ACQUISITIONS AND DATA ANALYSIS. OCT
acquisitions were performed using 3 different com-
mercially available systems: the M2 and M3 Time-
Domain Systems and the C7XR Fourier-Domain
System (LightLab Imaging, Westford, Massachusetts).
OCT images were acquired at frame rates of 15.6, 20,
and 100 frames/s with pullback speeds of 2, 3, and 20
mm/s in theM2Time-Domain System (n¼ 11),M3Time-
Domain System (n ¼ 11), and C7XR Fourier-Domain
System (n ¼ 101) (LightLab Imaging), respectively. All
recordings were performed according to the recom-
mended procedure for each OCT system (16). The OCT
images acquired post-procedure and at follow-upwere
analyzed off-line, using proprietary LightLab Imaging
software (St. Jude Medical Inc., St. Paul, Minnesota).
Truly serial OCT data were defined as the patient un-
dergoing OCT examinations at all 3 time points.

The SVR analysis included all 18-mm scaffold seg-
ments, analyzed at 1-mm intervals by an indepen-
dent core laboratory (Cardialysis, Rotterdam, the
Netherlands). The EVR analysis included the 5-mm
proximal and distal edges, analyzed in a frame-by-
frame fashion (128-mm interval for the M2, 150-mm
interval for the M3, 200-mm interval for the C7). In
addition, we performed a frame-by-frame analysis of
changes in the lumen area at the 2-mm margins of the
scaffold to explore the relationship between in-
scaffold margins and the edges. The scaffold edge
was defined as the first cross section exhibiting
visible struts in a circumference <270� (10). If the
5-mm edge had a side branch with a vessel
diameter $1.5 mm, the analysis included only frames
between the scaffold’s margin and the ostium of the
side branch. If the vessel diameter of the side branch
was <1.5 mm, only the frames at the ostium of the
side branch were excluded. In addition, we excluded
the cases that needed a bailout stent as well as the
frames with insufficient assessment of the entire
luminal circumference due to inadequate blood
clearance or incomplete scanning perimeter. Edge
dissection was defined as disruption of the endolumi-
nal vessel surface at the proximal and distal edges (17).

STATISTICAL ANALYSIS. Continuous variables are
presented as mean � SD or median (interquartile
range). Binary variables are presented as count and
percent. Absolute difference and 95% confidence
interval (CI) of baseline characteristics was generated
by normal approximation for continuous variables and
Newcombe score method for binary variables. A paired
t test orWilcoxon signed rank test was used to compare
SVR and EVR within groups at different time points.
The normality of the data was determined with the
D’Agostino Pearson test and verified by histogram
plots. To evaluate the relationship of the lumen area



TABLE 3 Edge Vascular Response Analysis

Luminal Area Cohort B1 Cohort B2

Distal edge, 5 mm 6M 2Y 1Y 3Y

Baseline 5.42 � 1.81 5.78 � 2.04

FUP (6M/2Y, 1Y/3Y) 5.58 � 1.53 5.26 � 1.40 5.63 � 1.45 5.29 � 1.77

Difference 0.19 � 1.05 �0.16 � 1.24 �0.14 � 1.25 �0.49 � 1.17

p value (BL vs. FUP) <0.01 0.03 0.11 <0.01

Proximal edge, 5 mm 6M 2Y 1Y 3Y

Baseline 6.84 � 2.86 7.27 � 2.01

FUP (6M/2Y, 1Y/3Y) 6.76 � 2.63 6.75 � 2.60 6.66 � 1.74 6.51 � 1.63

Difference �0.07 � 1.14 �0.08 � 1.13 �0.61 � 1.33 �0.76 � 1.57

p value (BL vs. FUP) 0.31 0.25 <0.01 <0.01

Values are mean � SD.

6M ¼ 6 months; 1Y ¼ 1 year; 2Y ¼ 2 years; 3Y ¼ 3 years; BL ¼ baseline; FUP ¼ follow-up.

FIGURE 2 Scaffold and Its EVR

The images present the global mean luminal area changes including in-scaffold, 5-mm proximal and

area of the 18-mm in-scaffold segment significantly decreased from baseline to 6-month or 1-ye

3 years. The EVR analysis showed an increase in mean luminal area at the distal edge at 6 month

follow-up. The transitional regions with a 200-mm interval analysis are presented in the embedded

from the in-scaffold margins to the first 1 mm of proximal and distal edges. *Indicates a significant

distal edge (p < 0.05). EVR ¼ edge vascular response; other abbreviations as in Figure 1.
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within different segments of the scaffold (3 sub-
segments: proximal, middle, and distal), multilevel
generalized estimating equation model fitting, with
the mean lumen area as the response and the sub-
segments and the follow-up visits as categorical vari-
ables, were nested within each patient. Multiple
comparisons were conducted without adjustment.
Statistical significance was assumed at p < 0.05. All
statistical analyses were performed with SAS version
9.1.3 (SAS Institute Inc., Cary, North Carolina).

RESULTS

STUDY POPULATION AND OCT ACQUISITION.

A flowchart of the subjects included in the current
distal edges at follow-up. (A) Cohort B1. (B) Cohort B2. Mean luminal

ar follow-up, but no change from 6 months to 2 years or 1 year to

s and a reduction at both the proximal and distal edges at long-term

panels, indicating a continuous pattern of luminal reduction extending

change in mean luminal area in each 1-mm interval at the proximal or
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analysis is shown in Figure 1. A total of 183 OCT
pullbacks at baseline and follow-up were performed
in 80 patients (81 lesions). Twenty-three patients
(23 lesions) in Cohort B1 and 17 patients (18 lesions) in
Cohort B2 had truly serial OCT examinations at 3
different time points. Three patients who had a target
lesion revascularization did not undergo OCT exami-
nation before the reintervention.

Baseline characteristics of the patients with truly
serial OCT pullbacks are shown in Table 1. There was a
greater prevalence of patients with previous
myocardial infarction (43.5% vs. 12.5%; difference:
31.0%; 95% CI: 1.5% to 52.7%) and lesions in the left
anterior descending artery in Cohort B1 (26.1% vs.
11.1%; difference: 15.0%; 95% CI: �10.6% to 36.9%)
than in Cohort B2.

SVR ANALYSIS. In Cohort B1, there was a significant
reduction in mean in-scaffold luminal area at
6 months (7.22 � 1.24 mm2 vs. 6.05 � 1.38 mm2,
p < 0.01). However, the mean luminal area remained
FIGURE 2 Continued
unchanged from 6 months to 2 years (5.97 � 1.61 mm2,
p ¼ 0.75). Similarly, in Cohort B2, there was a signif-
icant reduction in mean in-scaffold luminal area from
baseline to 1 year (7.64 � 1.19 mm2 vs. 5.72 � 0.89
mm2, p < 0.01), but no change from 1 year to 3 years
(5.81 � 1.29 mm2, p ¼ 0.60).

At 3-year follow-up, there was no significant dif-
ference in behavior of the 3 in-scaffold subsegments
(proximal, middle, and distal) (Table 2). The mean
luminal area of proximal and middle subsegments
numerically increased from 6 months to 2 years or 1
year to 3 years (B1: 0.12 � 1.29 mm2, 0.05 � 1.46 mm2;
B2: 0.05 � 0.72 mm2, 0.26 � 0.84 mm2; respectively),
whereas the mean luminal area of the distal segment
numerically decreased (B1: �0.44 � 0.91 mm2, �0.18
� 0.93 mm2).

EVR ANALYSIS. The changes in mean luminal area of
the proximal and distal edges at different time points
are shown in Table 3. In Cohort B1, a significant in-
crease in mean luminal area at the distal edge (5-mm



TABLE 4 Overall Vascular Response Analysis

Luminal Area Changes
Distal

Edge, 5 mm
In-Scaffold,

18 mm
Proximal

Edge, 5 mm

p Value
(Distal vs.
In-Scaffold)

p Value
(Proximal vs.
In-Scaffold)

Cohort B1

6 months vs. baseline,
mm2

0.16 � 1.05 �1.18 � 1.06 �0.07 � 1.14 <0.01 <0.01

2 years vs. baseline,
mm2

�0.16 � 1.24 �1.23 � 1.64 �0.08 � 1.13 <0.01 <0.01

Cohort B2

1 year vs. baseline,
mm2

�0.14 � 1.25 �1.88 � 1.29 �0.61 � 1.33 <0.01 <0.01

3 years vs. baseline,
mm2

�0.49 � 1.17 �1.85 � 1.50 �0.76 � 1.56 <0.01 <0.01

Values are mean � SD.
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segment) was observed at 6 months (5.42 � 1.81 mm2

vs. 5.58 � 1.53 mm2, p < 0.01) (Figure 2A), whereas at
the proximal edge (5-mm segment), the mean luminal
area remained unchanged (6.84 � 2.86 mm2 vs. 6.76 �
2.63 mm2, p ¼ 0.31). In Cohort B2, the mean luminal
area at the distal edge was unchanged at 1-year follow-
up (5.78 � 1.45 mm2 vs. 5.63 � 1.45 mm2, p ¼ 0.11)
(Figure 2B). At 3-year follow-up, a significant reduc-
tion in the mean luminal area was observed at both
edges (distal: 5.78 � 2.04 mm2 vs. 5.29 � 1.77 mm2;
proximal: 7.27 � 2.01 mm2 vs. 6.51 � 1.63 mm2; both
p < 0.01).

PATTERN OF CHANGES IN LUMINAL DIMENSIONS

FROM IN-SCAFFOLD MARGINS TO EDGES. At all time
points, reduction in the luminal area was observed in
the first 1 mm of the edges, both proximally and
distally, indicating a continuous pattern of luminal
reduction extending from the scaffold margin to the
proximal or distal edge (Figure 2). The overall reduc-
tion in mean luminal area at both edges was signifi-
cantly less than the in-scaffold segments (all p < 0.05)
(Table 4).

EDGE RESTENOSIS, EDGE DISSECTION, AND STENT

THROMBOSIS. Of 101 patients in the entire ABSORB
Cohort B trial, 2 patients (2.0%) had proximal edge
restenosis and 1 patient (1%) had distal edge reste-
nosis. Patients with the proximal edge restenosis had
a repeat revascularization at day 168 and day 383,
respectively. The patient with the distal edge reste-
nosis had a repeat revascularization at day 833. These
3 patients were treated without previous OCT to
examine edge restenosis. In 2 of these patients, a
geographic miss (injured or diseased segment not
covered by the device, balloon-artery ratio <0.9 or
>1.3) was previously reported (15).

In total, 12 proximal (24%) and 21 distal (42%) edge
dissection flaps were observed post-procedure. In the
truly serial OCT analysis, 9 proximal (21%) and 16
distal (38%) edge dissection flaps were identified
post-procedure, which decreased to 1 proximal (2%)
and 2 distal (5%) at 6 months, only proximal 1 (2%) at
1-year follow-up, and none at 2- and 3-year follow-up
(Figure 3). No scaffold thrombosis was reported in this
trial.

DISCUSSION

This study, for the first time, reported OCT-derived
EVR and SVR evaluation after Absorb BVS (Abbott
Vascular) implantation at mid- and long-term follow-
up. The primary findings are the following: 1) an
increase in mean luminal area at the distal edge at
6 months; 2) a reduction in the mean luminal area at
both edges at long-term (2- or 3-year) follow-up;
3) reduction in luminal area at the in-scaffold
segment from baseline to 6 or 12 months, but no
change from then onward. A uniform pattern of lu-
minal reduction extending from the in-scaffold mar-
gins to the first 1-mm of the proximal and distal edges
of the scaffold is also demonstrated, suggesting that
the edge changes in luminal dimension is not a noso-
logic entity, but a progressive transition in luminal
dimension from the in-scaffold margin to the edges.

EVOLUTION OF DEVICES AND EVR. The introduction
of coronary metal stents has markedly reduced the
risk of restenosis (14). The EVR in the era of bare
metal stents (BMS) was mainly due to an increase in
plaque and medial area and reduction in luminal area
within the first 1 to 2 mm of the device (15,18).
Radioactive stents, developed to reduce restenosis,
were proved to be safe in initial studies (19,20), but
led to a profound edge effect defined angiographic-
ally as a diameter stenosis of >50% at the proximal
and distal stent edges (2,3). In the DES era, the EVR
can also be influenced by the drug and polymer
incorporated into the stent (21). A high degree of
variability in EVR was identified among the different
DES types (5). In the TAXUS II trial, paired-edge an-
alyses with IVUS showed a significant increase in
luminal area at the distal edge of paclitaxel-eluting
stent compared with the BMS at 6 months, whereas
a significant decrease in the luminal area was
observed at the proximal edge (22). The beneficial
effect of the paclitaxel-eluting stent was most notable
in the area closest to its distal edge (23). Trials with
the Endeavor stent (Medtronic, Minneapolis, Minne-
sota) demonstrated a reduction in the luminal area at
both the proximal and distal edges, mainly due to
negative remodeling, plaque growth, and rapid
elution of zotarolimus (24,25). However, serial IVUS



FIGURE 3 Dissections at the Distal Edge

(A) Longitudinal view of patients with distal dissection. (B) Three-dimensional reconstruction of optical coherence tomography pullbacks show that dissection is visible

at distal edge (double white arrow). (C, D) Three-dimensional reconstruction at 6-month and 2-year follow-up showed that dissection has healed. (E) No distal edge

dissection (arrow) is visible from the post-procedure angiograms. The curved line indicates the scaffolded segment. (F) Dissection extends into at least the media from

multiple cross-sectional views. (G) Increased luminal area without visible dissection at 6-month follow-up. (H) The luminal area decreased with detected calcific tissue at

2-year follow-up. LA ¼ lumen area. *Indicates a side branch.
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examination in sirolimus- and everolimus-eluting
stents revealed an enlargement of the luminal area
at the distal edge (26–28). Our results are in agree-
ment with those of previous reports on metal
everolimus-eluting stents (28), with a significant in-
crease in the distal-edge luminal area and a nonsig-
nificant decrease in the proximal edge at 6-month
follow-up. The difference in behavior of the 2 edges
can partially be explained by downstream diffusion of
antiproliferative drug to the distal edge (21).

IN-DEPTH ANALYSIS OF EVR AND SVR. IVUS imag-
ing has contributed to our understanding of EVR
after BRS implantation. However, this approach has
inherent limitations (e.g., poor resolution, cardiac
motion artifacts) and makes it difficult to assess EVR
precisely (29–31). The present study, performed with
OCT, for the first time evaluated EVR in frame-by-
frame (#200 mm) fashion after Absorb BVS (Abbott
Vascular) implantation and provided additional in-
sights into the changes in luminal dimensions at the
proximal and distal edges.

Our previous IVUS-based study demonstrated a
nonsignificant reduction in luminal area at the distal
edge at 6 months (32); however, accurate assessment
with OCT has documented it to be a significant
change. By the virtue of the high resolution of OCT,
we also demonstrated that the pattern of in-scaffold
luminal reduction extended progressively from the
in-scaffold margins to the contiguous first 1 mm of
the edges outside the scaffold, both proximally
and distally, presumably related to neointimal
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hyperplasia or neoatherosclerosis (33). In addition,
the discrepancy with previous IVUS observations can
also be attributed to the nonserial nature of the data
in previous IVUS studies. Thus, we believe that OCT-
based EVR evaluation with truly serial data can pro-
vide more reliable and precise information.

Finally, the SVR analysis presented here is consis-
tent with the previous final 3-year report of the
ABSORB Cohort B study (32). The analysis of changes
in mean luminal area of different in-scaffold sub-
segments using a generalized estimating equation
model did not show any significant difference in
vascular response; however, there was a numerical
increase in luminal area in the middle subsegment
from 1 year to 3 years. Preclinical studies of the BRS
have demonstrated that late luminal positive remod-
eling was observed at late follow-up (34). It will be
interesting to re-evaluate this subsegment behavior at
5-year follow-up of the ABSORB Cohort B study.

CLINICAL IMPLICATIONS. The Absorb BVS (Abbott
Vascular) does not produce a pathological edge effect
that was seen with BMS or notoriously with radio-
active stents. The stable luminal area after 6 to
12 months without late catch-up is a potential supe-
riority of BRS over metal DES. In the ABSORB Cohort B
trial, there were only 3 cases of edge restenosis,
and 2 of them could be attributed to longitudinal
geographic miss (13). Edge dissections, considered
to be a trigger for early stent thrombosis, were often
detected by post-procedure OCT in the present
study; however, most of these dissections healed
within 6 months, without any clinical adverse events.

STUDY LIMITATIONS. First, the number of patients
in the current study is small; however, it is the
largest and longest series available to date, and due
to the truly serial OCT data, potential patient-
to-patient variability was minimized. Second, OCT
examination was not available for patients under-
going repeat revascularization, and, therefore, we
decided to exclude these patients from this analysis.
Finally, OCT cannot visualize external elastic lamina
due to its low penetration, and, hence, changes
in plaque media or vessel area cannot be assessed
adequately.

CONCLUSIONS

In this study, truly serial OCT imaging was used to
assess the EVR and SVR after Absorb BVS (Abbott
Vascular) implantation up to 3-year follow-up. We
found a significant increase in the luminal area at the
distal edge at 6-month follow-up. However, at longer
term (1, 2, and 3 years), the luminal area decreased at
both edges, resulting in a repeat revascularization
rate of 3%. In-scaffold luminal area significantly
decreased from post-procedure to 6 months or 1 year,
but remained unchanged from then onward. A
continuous pattern of luminal loss extending from
the in-scaffold margins to the first 1-mm of scaffold
edges has suggested that the changes in luminal area
at the edge of a BRS is not a nosologic entity in itself,
but an extension of the in-scaffold response to the
edges.
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