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Abstract: Obstructive sleep apnea syndrome is a sleep-related breathing disorder that is caused by obstruction 
of the upper airway. This condition may be related with many clinical sequelae such as cardiovascular disease, 
high blood pressure, stroke, diabetes, and clinical depression. To diagnosis obstructive sleep apnea,  
in-laboratory full polysomnography is considered as a standard test to determine the severity of respiratory 
disturbance. However, polysomnography is expensive and complicated to perform. In this research, we explore 
a computer-aided diagnosis system with portable ECG equipment and tri-accelerometer (x, y, and z-axes) that 
can automatically analyze biosignals and test for OSA. Traditional approaches to sleep apnea data analysis have 
been criticized; however, there are not enough suggestions to resolve the existing problems. As an effort  
to resolve this issue, we developed an approach to record ECG signals and abdominal movements induced  
by breathing by affixing ECG-enabled electrodes onto a triaxial accelerometer. With the two signals 
simultaneously measured, the apnea data obtained would be more accurate, relative to cases where a single 
signal is measured. This would be helpful in diagnosing OSA. Moreover, a useful feature point can be extracted 
from the two signals after applying a signal processing algorithm, and the extracted feature point can be applied 
in designing a computer-aided diagnosis algorithm using a machine learning technique. Copyright © 2014 IFSA 
Publishing, S. L. 
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1. Introduction 
 

Human beings spend one third of their lives 
sleeping. On average, newborn babies sleep  
for 16 hours a day, whereas the elderly get 5–6 hours 

of sleep. Sleeping is a major part of human life, a 
basic and essential biological activity to relax and 
revitalize the tired body, internal organs, and  
mind [1].Obstructive sleep apnea (OSA) is a medical 
condition in which repetitive pauses or decreases  
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in airflow occurs during breathing while asleep. 
Typically, people with OSA frequently wake up at 
night, and the disorder is accompanied by cyclical 
decreases in arterial oxygen saturation. OSA is a 
relatively common condition found in 4.5 % of adult 
men and 3.2 % of adult women. It used to  
be perceived in the past as a mere sleep habit that 
comes with snoring, but it is now a highly researched 
clinical disorder, with accumulating data that provide 
evidence that OSA is related with systemic diseases 
such as hypertension, cardiovascular diseases, and 
glucometabolic impairments, as well as various 
pediatric complications including growth-related 
impairments, maxillofacial deformity, behavioral and 
psychological disorders, and nocturnal enuresis.  
OSA is even more relevant in the elderly in Korea,  
as it is increasingly prevalent among them, with the 
fast aging andever-growing life expectancy of the 
Korean population [2]. 

Approximately 50 % of OSA patients also have 
hypertension due to recurrent apnea-induced 
decreases in oxygen saturation, whereby the ensuing 
wakefulness increases blood pressure and pulse rate. 
Repeatedly heightened blood pressure at night hours 
results in high blood pressure at day hours, thus 
leading tohypertension. In addition, OSA patients 
will have their sympathetic nervous system 
abnormally stimulated at the moment when apnea 
ends after a slowed heart rate, resulting in the 
breakdown of the automatic nervous system. If 
recurrent, these conditions will induce arrhythmia 
and an irregular heart rate. Furthermore, an episode 
of OSA could narrow or block coronary arteries, 
often accompanying ischemic heart diseases, in  
which myocardial cells are damaged by oxygen 
deficiency [3]. 

One of the reasons apnea has a significant effect 
on the cardiovascular system is that human sleep and 
non-sleep states are greatly influenced by the central 
and autonomic nervous system. The central nervous 
system controls homeopathy of all the internal 
organs. Meanwhile, the autonomic nervous system 
keeps the systemic functions at equilibrium and 
controls “fight or flight” responses and various 
visceral functions. The sympathetic and 
parasympathetic divisions of the autonomic nervous 
system control the heart; the sympathetic system 
facilitates, and the parasympathetic system inhibits. 
That is, the parasympathetic system slows down heart 
rate starting from the sinoatrial node, weakens 
myocardial retraction, decelerates the conduction 
velocity of heart excitation, and reduces the blood 
flow in coronary arteries. Meanwhile, the 
sympathetic system increases heart rate, accelerates 
the conduction velocity of heart excitation, heightens 
blood pressure by strengthening retraction, and 
facilitates oxygen supply by increasing the blood 
flow in coronary arteries. The central cardiac nerve 
located in the medulla senses signals coming  
from every part of the body and controls the heart. 
The process is called cardiac reflex, as the signals 
reach the cardiac nerve via the central nerve before 

reaching the heart. The respiratory reflex of the 
cardiac reflex determines the heart rate depending  
on the state of inhalation and exhalation. Such 
breathing-related heart rate variations are  
a phenomenon called respiratory sinus arrhythmia 
(RSA). Central nerves related to the cardiovascular 
control of heart rate variability (HRV) are the 
cardiac, respiratory, and vasomotor centers, all  
of which receive reflex signals from baroreceptor, 
chemical receptors, and mechanical receptors 
mediated by the afferent nerve fiber. As such, RSA is 
an important research subject in cardiovascular 
diseases and it is also utilized as a test for sleep apnea 
diagnosis. 

One of the regular methods of diagnosis  
is polysomnography (PSG). As a most reliable 
methodology to diagnose a range of sleep-related 
breathing disorders, PSG utilizes 
electroencephalography to measure various types  
of bioelectrical signals, electrocardiography (ECG)  
to gauge heart vitality, electroculography to observe 
eyeball movements, and electromyography  
to evaluate nervous and muscular activities.  
The measurements are incorporated with those  
of other vital signs such as heart rate, blood pressure, 
and breathing pattern before medical specialists make 
an apnea diagnosis. Other methods include 
cephalometry, computed tomography, magnetic 
resonance imaging, and fiber-optic endoscopy. 
Cephalometry, in particular, is a commonly used 
diagnostic method because sleep apnea is known  
to be closely related with various soft tissue 
structures, including the craniomaxillofacial hard 
tissue, velum, tongue, and hypopharynx [4].However, 
PSG has a few downsides. Patients find it 
uncomfortable to wear electrodes and bands on their 
body, and the test is costly. In addition, the entire 
measurement can only be performed in hospitals and 
institutes that are equipped with the necessary 
machines. Given these drawbacks, the present 
research is focused on how to modify and improve 
PSG. For instance, to lessen patient discomfort, the 
authors reduced the number of test instruments used 
or performed diagnoses through automatic analyses 
of all biosignals, with an ultimate aim of developing 
an automatic OSA diagnostic unit that can be used at 
home. Current studies utilize bronchial breathing, 
snoring, oxygen saturation, and blood pressure, but 
these are relatively less effective in diagnosing OSA 
[5]. 

Recently, HRV has been proposed as a new 
parameter for OSA diagnosis. Used for the first time 
for his research on periodic oscillations of heart rate 
as a main attribute of OSA, HRV has been studied in 
connection with OSA screening. Advanced 
measurement technology makes it possible to obtain 
ECG signals and HRV relatively precisely and easily, 
rendering them popular data to collect for OSA 
screening [6].Other useful technologies have been 
proposed to make OSA-related measurements even 
easier to perform and free of cost and space 
constraints. For instance, various breathing 
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examination shave been developed based on 
abdominal movements using ultrasound sensors, and 
another one was developed based on abdominal 
pressure changes using pressure sensors or fiber 
pressure sensors, and polyvinylidene fluoride 
measurements of impedance, which can be 
incorporated into a belt to approximate airflow and 
respiratory effort. These, however, have limitations in 
terms of accuracy, cost, and durability issues [7]. 
There has been a recent development that overcomes 
the disadvantages of standard PSG and enables users 
to conduct breathing tests at home using tri-axial 
acceleration sensors. This technology makes use of 
an accelerometer that directly examines breathing 
during sleep, is not affected by any changes in the 
surrounding environment, and can be used over long 
periods with its strong durability. It is also capable of 
transmitting and storing breathing curve data of 
inhalation and exhalation, allowing users to easily 
access and understands sleep posture information. 

In this research, we explore a computer-aided 
diagnosis system with portable ECG equipment and 
tri-accelerometer (x, y, and z-axes) that can 
automatically analyze biosignals and test for OSA. 
Traditional approaches to sleep apnea data analysis 
have been criticized; however, there are not enough 
suggestions to resolve the existing problems. As an 
effort to resolve this issue, we developed an approach 
to record ECG signals and abdominal movements 
induced by breathing by affixing ECG-enabled 
electrodes onto a triaxial accelerometer. With the two 
signals simultaneously measured, the apnea data 
obtained would be more accurate, relative to cases 
where a single signal is measured. This would be 
helpful in diagnosing OSA. Moreover, a useful 
feature point can be extracted from the two signals 
after applying a signal processing algorithm, and the 
extracted feature point can be applied in designing a 
computer-aided diagnosis algorithm using a machine 
learning technique. 
 
 
2. Materials and Methods 
 

In this section, the materials and methods  
for computer-aided detection of obstructive sleep 
apnea are discussed. 

 
 

2.1. Collection of Biosignals 
 

We attached an accelerometer to the thoracic 
compartment of the patients to measure muscular 
movements in terms of voltage changes on the z axis, 
rendering the use of electrodes or elastic bandages 
unnecessary. As illustrated in Fig. 1, we attached 
ECG-enabled electrodes to the accelerometer so that 
we could measure thoracic movements and ECG 
signals simultaneously. We adopted a dipole model 
for the ECG measurement and read the source for the 
measurement of potential difference between the 
right and left hands. Data from the accelerometer and 

the ECG were collected and stored. We used the 
serial communication to open the serial port and 
configure the data bit to 8. Using Lab designed GUI, 
we transferred the collected data to a graph as shown 
in Fig. 2, which represents the ECG value sand the x, 
y, and z-axes of the accelerometer. The data were 
stored in text files. 

 
 

 
 

Fig. 1. The accelerometer with three electrocardiographic 
electrodes attached. 

 
 

 
 

Fig. 2. An electrocardiogram with the x, y, and z-axes 
represented in graphical user interface graphs. 

 
 

2.2. ECG Data Analysis 
 
To extract HRV data, we first conducted ECG 

signal processing. For the analysis of ECG signal 
features, we utilized a method that extracts the QRS 
complex, a point where the ECG signal wave rapidly 
changes and forms the largest amplitude in the ECG 
waveform. To attenuate the noise of the acquired 
data, we had the signals pass through a low-pass filter 
at a sampling frequency of 90 Hz, followed by a 
high-pass filter at 2 Hz and then a band-pass filter. 
After filtering, the signal was differentiated to 
amplify the characteristics (rapid changing with 
largest amplitude) of the QRS complex and then was 
squared point by point to render the value positive. 
Then, the width of the window was set at 80 ms to 
obtain waveform feature information by moving-
window integration before identifying the R-wave 
peak relative to the threshold (Pan-Tompkins 
algorithm).The distance between the identified R has 
to be calculated to obtain HRV. Where the ith R point 
is designated as R(i) and thei-1th R point as R(i-1), the 
estimated distance between the two, I(i), can  
be obtained.  
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When repeated, the time interval (R-R interval) 
between beats is calculated as below. 

 
1)+R(i-2)+R(i=1)+I(i R(i),-1)+R(i=I(i) , (1) 

 
The value obtained after these steps are  

not applicable to the regular frequency analysis,  
as the signals are not equidistant. It is therefore 
necessary to extract equidistant HRV from the 
sequential heartbeat interval series to analyze the 
frequency patterns. In the present study, we obtained 
a series of R-R intervals down sampled to 4-Hz 
equidistance and applied the tachogram extracted 
from HRV. 
 
 
2.3. HRV Analysis 
 

Traditional HRV analysis is usually divided into 
two broad categories, namely time domain measures 
and frequency domain measures. The time domain 
analysis is performed using the times series derived 
from the R-R interval sequence, for which there are 
multiple applicable methods such as the average  
of all R-R intervals; the standard deviation of all the 
intervals; the distribution or mean of the differences 
between adjacent intervals; the changes in signal 
outcome when the times series data with R-R 
intervals are processed through a frequency-specific 
filter [8].The frequency domain analysis is generally 
performed by measuring the power spectral density 
of the times series data composed of R-R intervals 
and dividing it into very low frequencies (VLFs), low 
frequencies (LFs), and high frequencies (HFs), 
depending on the frequency band. Table 1 represents 
the heart rate variability (HRV) categorization by 
frequency components. 

 
 

Table 1. Heart rate variability (HRV) categorization 
by frequency components. 

 
Changes 
in HRV 

Frequency 
range 

VLF 0.003-0.04 
LF 0.04-0.15 
HF 0.15-0.4 

 
 

HF components are known to be affected by the 
RSA of the parasympathetic nervous system, whereas 
varying evidence is being reported to propose that LF 
components are affected by just the sympathetic 
nervous system or jointly with the parasympathetic 
system. LF/HF is used as the standard, as there are 
differing proposals. An increase in LF/HF represents 
heightened sympathetic system activity, with a 
decrease representing decrease in activity. VLF 
components have been explained by several 
physiological approaches but are largely excluded 
from studies of the sympathetic nervous system 

because there is little consensus at present. The HRV 
signal analysis in the frequency domain is typically 
performed by obtaining the spectral estimation of the 
R-R interval series based on Fourier transform, but 
the outcome of Fourier transform does not provide 
time information, only giving information on which 
and how much of the frequency components exist  
in the entire series of signals. Using the short-time 
Fourier transform (STFT), an alternative to resolve 
the issues of Fourier transform, we obtained the 
characteristics of frequency components based on the 
times series data with R-R intervals. We also used a 
spectrogram obtained by squaring STFT to obtain the 
power spectrum. As initially introduced by Gabor, 
the STFT extracts several frames of signals to be 
analyzed with a time window, and the time window 
is Fourier transformed. The process was repeated 
toward the whole series of signals with the window 
moving along the time axis, and a Fourier transform 
analysis was performed on each time-dependent 
frame as defined in eq.(2) below. 

 
 [ ] dtetttxftSTFT ftπω 2`)`()()`,( −∞

∞− −= , (2) 

 
The spectrogram estimated from the STFT was 

obtained as follows. 
 

 2
),(),( ftSTFTftmSpectrogra = , (3) 

 
For the STFT analysis, the present study set the 

size of the FFT at 64 and adopted the sampling 
frequency of 4-Hz from HRV signals. A size 64 
Hamming window was used. 

The range that was overlapped with the previous 
window was set at 63, and then Fourier 
transformation was performed for each of the 
samples. A spectrogram was obtained from the data 
after STFT, and LF/HF, an index demonstrating the 
equilibrium of the autonomic nervous system, was 
represented by the time frame. Fig 3 represents the 
oscillation of LF/HF in breathing state (left) and apnea state 
(right) by time frame. 

 
 

2.2.3. Accelerometric Data Analysis 
 

To eliminate noise signals from the x, y, and  
z- axes of the accelerometer, a 1-Hz low-pass filter 
was applied, followed by a 0.1-Hz high-pass filter 
before obtaining the average value for each axis. 
Figure 4 shows the axis x frequency oscillation  
at apnea and hypopnea. 

 
 

3. Experimental Results 
 

In this research, we collected a total of 20 data 
sets to examine how the features extracted from the 
portable ECG recorder and accelerometer were 
capable of detecting breathing and apnea states. 
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Fig. 3. Oscillation of LF/HF in breathing state and 
apnea state by time frame. 

 

 
 

 
 

Fig. 4. Axis x frequency oscillation at apnea and hypopnea. 

The data comprised 10 sets consisting of normal 
breathing intervals and another 10 sets that had apnea 
states during normal breathing. Each data set had a 
length of 180 seconds. The latter sets of data included 
5 sets with a 5-second apnea period, and the other  
5 sets had a 10-second apnea period. The 5-second 
apnea data had a preceding relaxed breathing period 
of 87 seconds before the apnea state, which  
was followed by a recurrent normal breathing  
that lasted for 87 seconds, whereas the 10-second 
apnea data showed a series of 85-second normal 
breathing, 10-second apnea, followed by 85-second 
normal breathing. Prior to detecting the 10 data sets 
with apnea states from among the 20 data sets, six 
features were calculated as follows: 

 
Set 1. f1: Maximum value of LF/HF (max [LF/HF]) 
Set 2. f2: Minimum value of LF/HF (min [LF/HF]) 
Set 3. f3: Average value of LF/HF (avg[LF/HF]) 
Set 4. f4: Average accelerometric value of axial x 
(avg[accel.x]) 
Set 5. f5: Average accelerometric value of axial y 
(avg[accel.y]) 
Set 6. f6: Average accelerometric value of axial z 
(avg[accel.z]) 
 

The area under the curve (AUC) of each feature 
was estimated to assess the usefulness of the features. 
Receiver operating characteristic (ROC) curves 
represent the sensitivity and specificity of a given test 
method. The more the curve moves away from the 
45°line nearing the upper-left side and the closer  
to 1 the AUC value representing the below-curve 
area is, the higher the reliability of the test method. 
When the AUC measures between 0.6 and 0.7,  
the reliability of the test is rated average; when higher 
than 0.8, high; and when lower than 0.5, lower than 
at random. We used the statistical program MedCalc 
to obtain the ROC curves and AUC area per feature 
as presented in Fig. 5. f2 demonstrates the largest 
AUC area at 0.880; and f4, the smallest AUC area  
at 0.505. 

The six feature points that were extracted  
were analyzed using the Weka program and were 
used for the learning boosting algorithm Adaboost.  
A 10-fold cross-validation method was used to assess 
the learning mode. When the 20 data sets were 
categorized/grouped using the learning model, eight 
of 10 non-apnea data sets and nine of 10 apnea data 
sets were found to be accurately sorted. A confusion 
matrix is a specific table layout that allows 
visualization of the actual and system-processed 
predicted classification’s by which estimations  
of sensitivity, specificity, and accuracy are possible. 

A confusion matrix consists of four different 
possible outcomes, namely TP, FP, FN, and TN, 
where TP is defined as correctly classifying a patient 
as with disease; FP, as incorrectly classifying a 
healthy personas with disease; TN, as correctly 
classifying a healthy person as healthy; and FN,  
as incorrectly classifying a person as healthy. 
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Fig. 5. Receiver operating characteristic curve for f1, f2, f3, f4, f5, f6. 
 
 
 

The accuracy can be calculated based on the 
correctly classified values from among all system-
processed classification values, as in: 

 
(TP + TN)/(TP + FN + FP + TN) × 100. 

 
Sensitivity can be estimated as the ratio of the 

correctly classified patients to all the actual patients, 
and specificity can be estimated as the ratio of the 
correctly classified healthy persons to all the actual 
healthy persons. The respective calculations can be 
defined as follows:  

TP/(TP + FN) × 100 and TN/(TN + FP) × 100. 
The unit of the scale was in percentage, and in this 
study, TP = 9, FN = 1, FP = 2, TN = 8. Based on 
these measurements, the sensitivity, specificity, and 
accuracy values are calculated as follows: 

 
Sensitivity = TP/(TP + FN) × 100 = 9/(9 + 1) × 100 = 
90 % 
Specificity = TN/(TN + FP) × 100 = 8/(8 + 2) × 100 = 
80 % 
Accuracy = (TP + TN)/(TP + FN + FP + TN) × 100 = 
(9 + 8)/(9 + 1 + 2 + 8) × 100 = 85 % 
 
The algorithm, tested with thoracic movements and 
ECG signals, successfully diagnosed sleep apnea 
with 90 % sensitivity, 80 % specificity, and 85 % 
accuracy. The ROC curve of the six feature points, 

which was created based on their learning algorithms, 
suggests that the present test method has a higher-
than-average reliability, with an AUC value of 0.84. 
Fig. 6 shows the receiver operating characteristic (ROC) 
curve drawn based on all six feature points combined. 
 
 

 
 

Fig. 6. Receiver operating characteristic (ROC) curve 
drawn based on all six feature points combined. 

 
 

4. Conclusions and Discussions 
 

The present study investigated various 
methodologies of data analysis and changes  
in accelerometric values to examine the biological 
episode of sleep apnea. Sleep apnea has been 
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increasingly suggested as a risk factor  
of cardiovascular conditions, with recent studies 
reporting its link with high-profile diseases such  
as hypertension and diabetes. There is, however, a 
lack of awareness of the potential severity of this 
sleep-related disorder, and not many studies have 
explored the relationship between sleep apnea and 
cardiovascular diseases. Frequent sleep interruptions 
caused by apnea during the night hours induce 
drowsiness during the day, lowering cognitive 
functions and impeding mental activities and learning 
process. Furthermore, lack of oxygen causes an apnea 
patient to abruptly wake up from deep sleep, gasping 
for air to recover normal breathing at each episode of 
apnea. The patient will typically feel very tired as a 
result from labored breathing. Despite the physical 
difficulties experienced by patients and the severity 
of the disorder, a reliable test method to diagnose 
sleep apnea has not yet been established. Thus, we 
endeavored to resolve this issue through this study. 

We reviewed the LF/HF ratios in the HRV 
analysis to identify episodes of apnea and found out 
that the value reached the point of an apnea state, 
stimulating the sympathetic nervous system. 
However, some increases in the LF/HF ratios were 
observed at certain non-apnea states, probably 
because of stress, as the LF/HF ratios significantly 
impact HRV and its analysis, decreasing HF and 
increasing LF/HF. Apnea laboratory tests are 
typically restraining for the subjects because of the 
unfamiliar laboratory environment and test-related 
requirements. For this reason, HRV analysis alone is 
not sufficient to provide accurate data for the 
assessment of apnea state. An accelerometer was also 
not capable of detecting any changes breathing in the 
cases with apnea episode durations that were too 
short. People in sleep tend to frequently change their 
postures, and for a hypopnea state, as opposed to an 
apnea state, data extraction is not guaranteed by using 
an accelerometer alone. There is no standardized 
threshold to determine at what LF/HF ratio the 
sympathetic nervous system is stimulated, and the 
ratio measurements is again greatly affected by sleep 
posture. Further research is needed to help resolve 
these existing issues. In particular, a new tool has to 
be developed that can automatically transmit apnea 
data when an episode occurs. 

We also looked at how to apply Fourier 
coefficients. We were able to obtain highly accurate 
estimations and considered the method as a possible 
replacement of the existing ones for HRV analysis. 
However, it should be noted that ECG data still need 
to be transferred; therefore, further work is required 
to explore how to resolve data distortion caused by 
motion artifact. In addition, for R-peak extraction 
algorithms developed by researchers themselves, 
accuracy needs to be checked in comparison with 
other equivalent systems that are already being used. 

Moreover, future studies are needed on real-time 
measurement and analysis to further enrich 
our present data, which we obtained through 
an analysis of a set of measured signals. 
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