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Jang HS, Kim JI, Han SJ, Park KM. Recruitment and subse-
quent proliferation of bone marrow-derived cells in the postischemic
kidney are important to the progression of fibrosis. Am J Physiol
Renal Physiol 306: F1451–F1461, 2014. First published April 16,
2014; doi:10.1152/ajprenal.00017.2014.—Acute kidney injury (AKI)
is an independent risk factor of the development of chronic kidney
disease. Kidney fibrosis is a typical feature of chronic kidney disease
and is characterized as an expansion of the interstitium due to
increases in extracellular matrix molecules and interstitial cells caused
by accumulations of extrarenal cells and by the proliferation or
differentiation of intrarenal cells. However, the role of bone marrow-
derived cells (BMDCs) in AKI-induced kidney fibrosis remains to be
defined. Here, we investigated the role of BMDCs in kidney fibrosis
after ischemia-reperfusion injury (IRI)-induced AKI in green fluores-
cent protein (GFP)-expressing bone marrow chimeric mice. IRI re-
sulted in severe fibrotic changes in kidney tissues and dramatically
increased interstitial cell numbers. Furthermore, GFP-expressing BM-
DCs accounted for �80% of interstitial cells in fibrotic kidneys.
Interstitial GFP-expressing cells expressed �-smooth muscle actin (a
myofibroblast marker), fibroblast-specific protein-1 (a fibroblast
marker), collagen type III, and F4/80 (a macrophage marker). Over
20% of interstitial cells were bromodeoxyuridine-incorporating (pro-
liferating) cells, and of these, 80% cells were GFP-expressing BM-
DCs. Daily treatment of IRI mice with apocynin (a NADPH oxidase
inhibitor that functions as an antioxidant) from the day after surgery
until euthanization slightly inhibited these changes with a small
reduction of fibrosis. Taken together, our findings show that BMDCs
make a major contribution to IRI-induced fibrosis due to their infil-
tration, subsequent differentiation, and proliferation in injured kid-
neys, suggesting that BMDCs be considered an important target for
the treatment of kidney fibrosis.
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FIBROSIS IS A COMMON CHARACTERISTIC of the tissue repair pro-
cess, but excessive fibrosis results in the loss or malfunction of
organs. Fibrosis is a typical feature of chronic kidney disease
and presents as an expansion of the interstitial area. This
expansion is mainly caused by the excessive production of
extracellular matrix (ECM) molecules by activated interstitial
fibrogenic cells and by increases in the interstitial cell popula-
tion by myofibroblasts, fibroblasts, and macrophages (7, 42).
Although it has been commonly believed that increases in
interstitial cell in fibrotic kidneys are associated with resident
kidney fibroblasts, recent evidence suggests that these in-
creases are caused by cells from various sources, such as the

differentiation of pericyte/perivascular fibroblasts, bone mar-
row (BM)-derived cells (BMDCs), or epithelial cell/endothe-
lial cell transitions to mesenchymal cells (17, 22, 28). Further-
more, it has recently been demonstrated that increases in
interstitial cell are caused by intrarenal and extrarenal cells (28,
44). We (22) have recently reported that BMDCs are a main
contributor to increases in the interstitial cell population in
kidneys during unilateral ureteral obstruction (UUO) and sug-
gested that the regulation of this process offers a means of
developing strategies and therapeutics to prevent or treat fi-
brotic kidney disease. However, the cellular origins of the
interstitial cells observed in acute kidney injury (AKI)-induced
kidney fibrosis have not been determined.

The progression of fibrosis is associated with the production
of reactive oxygen species (ROS) and the subsequent oxidative
stress and inflammatory response in various organs, including
the kidneys (11, 37, 42). Furthermore, the inflammatory re-
sponse is associated with the generation of ROS/oxidative
stress, and, similarly, ROS/oxidative stress are associated with
inflammation (6, 36). For example, we found that inhibition of
ROS/oxidative stress attenuated fibrotic changes in injured
kidney by inhibiting leukocyte infiltration (22, 24). In addition,
we found that the responses to ROS scavenging are dependent
on the kidney cell type and on the timing and duration of
treatment in an ischemia-reperfusion injury (IRI) model of
kidney regeneration and fibrosis (24). It has also been sug-
gested that ROS are important fibrogenic factors in chronic
allograft nephropathy after transplantation (14). The previous
findings suggest that ROS/oxidative stress are critical deter-
miners of consequences such as fibrosis.

Accordingly, the present study was undertaken to define the
role of BMDCs during fibrotic progression, and the molecular
mechanisms responsible, after kidney IRI in mice.

MATERIALS AND METHODS

Animal preparation. Eight-week-old male mice weighing 20–25 g
were used throughout the study. C57BL/6 and enhanced green fluo-
rescent protein (eGFP)-expressing mice [C57BL/6-TgN(ACTbEGFP)10sb]
were purchased from Koatech (Gyeounggido, Korea) and the Jackson
Laboratory, respectively. All animal experiments were approved by
the Institutional Animal Care and Use Committee of Kyungpook
National University. Animals were anesthetized with pentobarbital
sodium (60 mg/kg body wt, Sigma; St. Louis, MO) before surgery.
Kidney ischemia was induced as previously described (25). In brief,
kidneys were exposed via flank incisions. Mice were subjected to 30
min of unilateral renal ischemia using nontraumatic microaneurysm
clamps (Roboz Surgical Instruments, Washington, DC). The incisions
were closed temporarily during ischemia. Reperfusions were visually
confirmed after clamp removal. Body temperatures were maintained
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at 36.5–37.5°C during surgery. Mouse kidneys were harvested at 9
and 21 days after surgery. To detect proliferating cells, mice were
treated with 5-bromo-2=-deoxyuridine (BrdU; 50 mg/kg body wt
daily, Sigma) beginning at 2 days before surgery until the day of
death. Some mice were treated with apocynin (10 mg/kg body wt
daily, Calbiochem), a putative NADPH oxidase inhibitor that acts as
an antioxidant (3, 5), beginning at 1 day after surgery until the day of
death (22). Sham surgery was performed in an identical manner but
without clamping of the renal pedicle. For biochemical and histolog-
ical experiments, kidneys were snap frozen in liquid nitrogen and
perfusion fixed in 30 ml PBS for 2 min and then in 4% paraformal-
dehyde, 75 mM L-lysine, and 10 mM sodium periodate (PLP solution;
Sigma) overnight. Tissues were stored in a deep freezer (�80°C) until
required.

BM transplantation. BM chimeric mice with BM expressing eGFP
were generated as previously described (16). Briefly, eGFP mice
(8–10 wk old) were euthanatized with an overdose of pentobarbital
sodium, and the BM was harvested from femurs and tibias. Recipient

C57BL/6 mice (8 wk old, male) were irradiated with 8 Gy using a
cesium-137 source irradiator, and 10 million eGFP-expressing BM
cells were then injected into each irradiated recipient via a tail vein.
BM-transplanted mice were left to reconstitute BM for 8 wk. When
BM transplantation failed, irradiated mice started to die at about 6
days after irradiation treatment.

Histology. Perfusion-fixed kidneys were excised and placed in PLP
solution overnight at 4°C, and 4-�m paraffin-embedded kidney sec-
tions were obtained using a microtome (Leica, Bensheim, Germany).
Sections were stained with periodic acid-Schiff (PAS) or Masson’s
trichrome staining as previously described (19). PAS-stained kidney
sections were visualized under a stereomicroscope (Leica, Wetzlar,
Germany) and a Nikon Fx35. Collagen deposition was quantified
using the i-solution DT image acquisition and analysis program (iMT
i-solution, Vancouver, BC, Canada) using the Nikon Fx35 in 10 fields
in the outer medulla of each kidney. Morphological damage levels in
PAS-stained kidney sections were scored as previously described
(20). Briefly, 50 tubules in the outer medullar region were scored from
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Fig. 1. Atrophy and tubulointerstitial fibrosis in kidneys after ischemia-reperfusion injury (IRI). Mice were subjected to either unilateral IRI or sham operation
(sham). Kidneys were harvested at 9 or 21 days (d) after surgery. Periodic acid-Schiff (PAS; A and C), immunofluorescent (B), and Masson’s trichrome (E)
staining were performed as described in MATERIALS AND METHODS. A: photomicrograph of a PAS-stained cross-section of the kidney taken with a
stereomicroscope. B: OCT-embedded kidney sections were immunostained with anti-F4/80 (red) antibody. 4=,6-Diamidino-2-phenylindole (DAPI) was used to
detect nuclei (blue). Pictures were taken of the outer medulla. D and F: ten fields of the outer medulla per kidney (n � 4–5 per group) were randomly selected
to evaluate kidney damage and collagen deposition. Scale bar in the stereoscopic microscopic image � 1 mm; scale bars in the optical and fluorescence
microscopic images � 50 �m. Results are presented as means � SE. *P � 0.05 vs. sham.
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0 to 3 as follows: 0 � no damage; 1 � mild damage with rounding of
epithelial cells and dilated tubular lumen; 2 � severe damage with
flattened epithelial cells, loss of nuclear staining, dilated lumen, and
congestion of lumen; and 3 � destroyed tubules with flat epithelial
cells lacking nuclear staining and congestion of lumen. At least four
kidneys per experimental condition were used. Ten fields per kidney
were scored.

Immunofluorescence staining. Immunofluorescence staining was
performed using OCT- or paraffin-embedded kidney sections, as
previously described (21, 26). The antibodies used were as follows:
GFP (Santa Cruz Biotechnology, Santa Cruz, CA), fibroblast-specific
protein (FSP)-1 (Novus, Littleton, CO), collagen type III (Abcam,
Cambridge, MA), �-smooth muscle actin (�-SMA; Sigma), Nox2
(Novus, Littleton, CO), and BrdU (Serotec, Oxford, UK). Sections
were observed under a Nikon Fx35. To identify interstitial cells,
kidney sections were visualized under a V-2A fluorescence filter,
which allowed kidney morphologies and 4=,6-diamidino-2-phenylin-
dole (DAPI)-stained nuclei to be observed (22). Numbers of intersti-
tial cells were determined by counting DAPI-positive cells in inter-
stitium. Numbers of cells were determined in 10 fields/kidney. In a
previous study (22), we confirmed that the GFP signals observed by
immunofluorescence staining with GFP antibody are no different from
original GFP signals. Collagen type III areas were determined using
i-solution software (iMTechnology) and averaged in 10 fields/kidney,
as previously described (22).

Western blot analysis. Western blot analyses were performed as
previously described (34). The antibodies used were as follows: GFP
(Santa Cruz Biotechnology), �-SMA (Sigma), collagen type III (Ab-
cam), Nox2 (Novus), and GAPDH (Santa Cruz Biotechnology).
ImageJ software (National Institutes of Health, Bethesda, MD) was
used to quantify band densities.

Statistics. Results are expressed as means � SE. Statistical differ-
ences between groups were determined using Student’s t-test. Each

experimental group consisted of at least four mice. Differences be-
tween groups were considered statistically significant when P values
were �0.05.

RESULTS

IRI recruited BMDCs into kidneys. First, we confirmed that
IRI led to the development of fibrosis by PAS and Masson’s
trichrome staining in the kidney. As shown in Fig. 1, IRI
kidneys gradually shrank with time (Fig. 1A) and presented
tubular atrophy, expansion of interstitial spaces, and increases
in the interstitial cell population, including macrophages (Fig.
1, B–D). Collagen deposition also gradually increased in IRI
kidneys with time (Fig. 1, E and F). These results indicate that
IRI resulted in fibrosis. Next, to evaluate the involvement of
BMDCs in the progression of fibrosis, we determined the
numbers of GFP-positive cells and GFP expression levels in
IRI kidneys using eGFP-expressing BM chimeric mice. Ini-
tially, we confirmed the reconstitution of 	95% eGFP-BM in
eGFP-BM chimeric mice (22). IRI greatly increased interstitial
cell population, as determined by DAPI staining (Fig. 2A).
GFP-positive cell numbers also greatly increased in the inter-
stitium of IRI kidneys and accounted for �80% of interstitial
cells at 9 and 21 days after IRI (Fig. 2A). The level of GFP
protein also increased 	10-fold after IRI (Fig. 2B). These
findings indicate that BMDCs play a major role in the estab-
lishment of an elevated interstitial cell population after IRI.

Since interstitial area expansion in fibrotic kidneys is asso-
ciated with increased deposition of ECM proteins, including
collagens (19), we investigated whether infiltrating GFP-posi-
tive cells had the features of myofibroblasts (major producers
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Fig. 2. Proportion of bone marrow (BM)-derived cells (BMDCs) in IRI kidneys. Enhanced green fluorescent protein (eGFP) BM chimeric mouse kidneys were
subjected to either unilateral IRI or sham operation. Kidneys were harvested at 9 or 21 days after surgery. A: OCT-embedded GFP-expressing (green) kidney
sections were visualized by fluorescence microscopy. DAPI was used to detect nuclei (blue). Pictures were taken of the outer medulla. Numbers of interstitial
cells were counted under a V-2A fluorescence filter, which enabled cell morphology and DAPI-stained nuclei to be observed. Numbers of interstitial GFP
 cells
and their percentages versus total numbers of interstitial cells were determined in 10 fields/kidney (n � 4–5 per group). B: expression of GFP was evaluated
by Western blot analysis. GAPDH was used as a loading marker (n � 3 per group). Scale bar � 50 �m. Results are presented as means � SE. *P � 0.05 vs.
sham.
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of ECM proteins) by staining kidney sections with �-SMA (a
marker of myofibroblasts) antibody. The �-SMA-positive area
merged with GFP in the total �-SMA-positive area was 16.6%
and 14.5% at 9 and 21 days afte IRI, respectively (Fig. 3, A–C).
In serially sectioned tissue, triple-positive cells for GFP,
�-SMA, and collagen type III were observed (Fig. 3D), indi-
cating that GFP-expressing cells play a role as functional
fibroblasts. In support of this, expression levels of �-SMA and
collagen type III were elevated in IRI kidneys as evaluated by
Western blot analysis (Fig. 3E). These results indicate that
BMDCs play as major contributors in increased numbers of
interstitial cells by moving to injured sites, differentiation into
myofibroblasts, and production of ECM proteins, including
collagen type III.

Recruitment and differentiation of BMDCs in IRI kidneys.
Since ROS are associated with leukocyte infiltration into in-
jured sites and their differentiation into other cells (12, 37, 40),

we examined whether apocynin (a NADPH oxidase inhibitor
and antioxidant) influences the recruitment of BMDCs to IRI
kidneys and their differentiation into fibroblasts. IRI increased
the expression of Nox2 (a major source of ROS in phagocytic
cells) in kidney tissues (Fig. 4A) (6, 33), and daily apocynin
treatment significantly inhibited increases in interstitial cell
numbers (243.3 � 9.8 with vehicle vs. 197.0 � 1.7 with
apocynin, P � 0.05; Fig. 4, B and C) and reduced GFP-positive
cells (222.1 � 9.7 with vehicle vs. 176.8 � 0.8 with apocynin,
P � 0.05; Fig. 4, B and D). Although the expression of FSP-1
in several types of cells has recently been reported (18, 31),
FSP-1 has been used as a marker protein of fibroblasts widely
(22, 39). Daily apocynin treatment inhibited post-IRI increases
in FSP-1-positive cells (63.1 � 2.4 with vehicle vs. 38.8 � 2.1
with apocynin, P � 0.05; Fig. 4E). Apocynin treatment also
reduced the percentage of FSP-1-positive cells among total
interstitial cells (25.9 � 1.4 with vehicle vs. 19.7 � 0.9 with
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apocynin, P � 0.05; Fig. 4F). To further examine whether
BMDCs exhibit fibroblastic features, we performed double
staining using FSP-1 and GFP antibodies. About 95% of
FSP-1-positive cells were found to be GFP positive, and
doubly positive cell numbers were significantly reduced by
apocynin treatment (Fig. 4G). These observations indicate that
BMDCs are major sources of interstitial FSP-1-positive cells
and that antioxidant treatment inhibits FSP-1-positive cell
increases in the interstitium after IRI.

BMDCs proliferated in IRI kidneys. To determine whether
increased interstitial cell levels in kidneys after IRI were due to
the continuous recruitment of BMDCs or to the proliferation of
BMDCs in sites of injury, we examined proliferation using
BrdU incorporation, which is useful for identifying proliferat-
ing cells (22). BrdU-positive cells in the interstitium dramati-
cally increased after IRI (Fig. 5, A and B) and �20% of

interstitial cells were BrdU positive (Fig. 5A), showing that
interstitial cells proliferated in fibrotic kidneys. Furthermore,
increases in BrdU-positive cells were significantly reduced by
daily apocynin treatment (58.8 � 0.7 with vehicle vs. 47.3 �
1.2 cell with apocynin, P � 0.05; Fig. 5, A and B). Further-
more, �80% of BrdU-positive cells were GFP positive (Fig.
5C), indicating that most proliferating interstitial cells origi-
nated from the BM. Apocynin reduced the number of double-
positive interstitial cells to GFP and BrdU in IRI kidneys (Fig.
5C). On the other hand, apocynin enhanced the number of
tubular BrdU-positive cells in IRI kidneys (39.6 � 2.5 with
vehicle vs. 51.1 � 0.2 with apocynin, P � 0.05; Fig. 5D).
Actually, total tubular cell numbers were significantly reduced
by a half compared with those of normal kidneys after IRI
(202.6 � 9.9 with vehicle vs. 116.1 � 0.8 with apocynin, P �
0.05), and this reduction was inhibited by apocynin in IRI
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Fig. 4. BMDC and fibroblast accumulation in IRI kidneys and its inhibition by apocynin. eGFP BM chimeric mouse kidneys were subjected to either unilateral
IRI or sham operation. Mice were treated with apocynin daily from 1 day after surgery until death. Kidneys were harvested at 9 days after surgery. A: expression
levels of Nox2 were evaluated by Western blot analysis. GAPDH was used as a loading control (n � 3 per group). B: paraffin-embedded kidney sections were
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 cells (D), FSP-1
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kidneys compared with vehicle controls (116.1 � 0.8 with
vehicle vs. 126.9 � 0.8 with apocynin, P � 0.05). These
results indicate that ROS play cell-specific roles, that is, ROS
diminish tubule cell proliferation but increase interstitial cell
proliferation.

Apocynin reduced the numbers of interstitial macrophages
and collagen deposition in IRI kidneys. Because monocytes/
macrophages are major players in the process of fibrosis and
they mainly originate from the BM (1, 15, 35, 43), in the
present study, we determined the numbers of macrophages in
the interstitium using F4/80 antibody (a macrophage marker).
As expected, F4/80-positive cell numbers were greatly in-
creased in the kidney after IRI (Fig. 6, A and B). Most of
F4/80-positive macrophages were GFP positive (Fig. 6C), and
F4/80-positive macrophages accounted for 	35% of interstitial
cells in kidneys 9 days are IRI (Fig. 6D). Apocynin signifi-
cantly inhibited increases in F4/80-positive cells in IRI kidneys

(86.4 � 8.2 with vehicle vs. 54.7 � 8.0 with apocynin, P �
0.05; Fig. 6B). These results indicate that most macrophages in
the interstitium originate from the BM and that ROS/oxidative
stress are associated with the recruitment of macrophages. As
observed for F4/80, numbers of Nox2-positive cells were much
increased in IRI kidneys (Fig. 7, A and B) and accounted for
34.3% of total interstitial cells (Fig. 7A). It is known that Nox2
is predominantly expressed in phagocytic cells, although it has
also been shown to be expressed in fibroblasts, endothelial
cells, and kidney cells (6). Apocynin significantly inhibited the
postischemic increase of Nox2-positive cells in the kidney
(83.9 � 5.6 with vehicle vs. 59.1 � 4.4 with apocynin, P �
0.05; Fig. 7B). Furthermore, most Nox2-positive cells coex-
pressed GFP (Fig. 7C). These findings show that the infiltration
of BM-originated phagocytic cells plays an important role in
the progression of fibrosis and that ROS regulate the recruit-
ment of phagocytic cells into IRI kidneys.
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rectangles. Arrows and arrowheads indicate tubular and interstitial BrdU
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Finally, to determine whether BMDC numbers in the inter-
stitium are related to kidney fibrosis after IRI, we investigated
collagen type III deposition. After IRI, both GFP- and collagen
type III-positive areas dramatically increased in the interstitium
of IRI kidneys (Fig. 8). Apocynin significantly inhibited these
post-IRI increases in GFP-positive areas (25.9 � 0.2 with
vehicle vs. 20.7 � 0.7 with apocynin, P � 0.05; Fig. 8B) and
in collagen type III-positive areas (12.11 � 0.02 with vehicle
vs. 9.38 � 0.24 with apocynin, P � 0.05; Fig. 8C), indicating
the existence of a positive relation between BMDC levels and
kidney fibrosis.

DISCUSSION

Our results suggest that inhibition of BMDC recruitment to
sites of injury and their subsequent proliferation and differen-
tiation offers a potential means to prevent IRI-induced kidney
fibrosis. Furthermore, our findings indicate that the elucidation
of the underlying mechanisms of cell-specific responses to

antioxidants might aid the future development of therapeutics
for kidney fibrosis. This view is supported by the following:
1) GFP-positive BMDCs infiltrated the interstitium of IRI
kidneys and comprised a major portion of the interstitial cell
population; 2) GFP-positive cells expressed �-SMA, FSP-1,
and collagen type III, indicating that BMDCs differentiated
into fibrosis-inducing cells; 3) GFP-positive cells proliferated
in sites of injury; and 4) the above changes were inhibited by
daily apocynin treatment, which mitigated kidney fibrosis.

Basile et al. (4) reported FSP-1 in the expanded interstitium
of IRI kidneys that achieved functional recovery. We also
observed that FSP-1-positive cells were predominately local-
ized among interstitial cells around injured tubules and that
tubular epithelial cells were rarely FSP-1 positive (22, 24, 26).
In addition, BM-derived �-SMA-positive cells expressed col-
lagen type III, suggesting that BMDCs differentiate to func-
tional fibroblasts. In this study, BMDCs accounted for �80%
of interstitial cells in IRI-induced fibrotic kidneys, and BMDCs
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expressed FSP-1 (	24.6% on total BMDCs) and �-SMA
(	16.6% of the total �-SMA-positive area). The percentages
of GFP-expressing FSP-1-positive cells and �-SMA were rel-
atively less in total GFP-positive cells, perhaps due to the
proliferation of GFP-positive cells. These observations indicate
that BMDCs are major contributors to the IRI-induced expan-
sion of the interstitium and that they differentiate to fibroblasts
and myofibroblasts. Broekema et al. (8) reported that approx-
imately one-third of myofibroblasts found in IRI kidneys orig-
inated from the BM, and, in another study (29), �30% of
myofibroblasts in adriamycin-induced fibrotic kidneys were
found to be derived from the BM. Recently, we (22) reported
that 55.8% of FSP-1-positive fibroblasts in UUO-induced fi-
brotic kidneys were of BM origin. Furthermore, the findings of
the present study suggest that BMDCs are important sources of
fibroblasts during kidney fibrosis.

Interstitial cell proliferation is as important as the differen-
tiation of recruited and kidney-resided cells in the context of
kidney fibrosis (7). In the present study, BrdU-positive cells

constituted �20% of all interstitial cells and, among them,
�88% were GFP positive, indicating that 12% of proliferating
cells were of non-BM origin and that kidney resident cell-
derived and resident fibroblasts had a minor effect on IRI-
induced fibrosis progression. This finding suggests that BMDCs
possessed great proliferative competence in sites of injury and
played a critical role in increasing interstitial cell numbers
through differentiation and proliferation, although it should be
added that it is possible that circulating BrdU-labeled BMDCs
could have been recruited into kidney interstitium. These
results concur with those of our previous study (22), in which
	90% of BrdU-positive cells in the kidney interstitium were
found to originate from the BM in UUO-induced kidney
fibrosis.

Oxidative stress is deeply associated with the initiation and
progression of kidney fibrosis (10, 23, 26, 36), and a number of
studies have described the pathological consequences of kid-
ney IRI-induced ROS (36, 37). Several studies (10, 24, 26, 32)
have demonstrated that inhibition of ROS production and
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enhancement of ROS scavenging ameliorates kidney fibrosis
by suppressing inflammation and oxidative stress. Recently, we
(26) found intrarenal ROS elevation after IRI was sustained for
�2 wk and that antioxidant treatment reduced kidney fibrosis
after IRI. In the present study, we found that apocynin effec-
tively inhibited post-IRI increases in interstitial cells, that is, of
GFP-, FSP-1-, �-SMA-, F4/80-, and Nox2-positive cells. In
addition, apocynin reduced the proliferation of interstitial cells.
These findings show that ROS/oxidative stress regulate the
recruitment of BMDCs into injured kidneys and the prolifera-
tion and differentiation of BMDCs in the infiltrated site. In the
UUO model, we (22) previously found that apocynin attenu-
ated kidney fibrosis by inhibiting the recruitment of BMDCs
into injured kidneys and their subsequent proliferation and
differentiation. More recently, we and others (24, 26, 32, 38)
reported that antioxidant administration suppresses kidney fi-
brosis by reducing interstitial Nox2 expression, oxidative
stress, and macrophage recruitment into the interstitium. Nox2
is expressed primarily in BMDCs (6) and regulates the recruit-

ment of BMDCs by damaged tissues (41). Djamali et al. (14)
reported that Nox2 is expressed by macrophages in interstitial
cells and that it plays a critical role to the progression of
chronic allograft nephropathy-related kidney fibrosis. In the
present study, IRI triggered increases in Nox2 expression by
�30% of kidney interstitial cells at 9 days after IRI, and this
was suppressed by apocynin, which suggests the recruitment of
Nox2-positive cells into IRI kidneys contributes to IRI-induced
kidney fibrosis.

Monocytes/macrophages have been regarded to be the main
contributors to kidney fibrosis by directly the induction of
kidney fibrosis and by supporting fibrotic progression via the
inflammatory response and secretions of profibrotic cytokines
(7, 22, 27, 30). In the present study, F4/80-positive macro-
phages were much increased and accounted for 35% of total
interstitial cells at 9 days after IRI. Furthermore, the population
of macrophages recruited by IRI kidneys was significantly
reduced by apocynin. These observations suggest that under-
standing of the regulatory roles played by BM-derived mono-
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cytes/macrophages in kidney fibrosis would facilitate the de-
velopment of therapeutics. In a previous study (22), we also
found the removal of macrophages by irradiation attenuated
kidney fibrosis, whereas the reconstitution of macrophage
numbers using RAW 264.7 cells in irradiated mice reversed the
antifibrotic effect of irradiation.

Recently, we (24) reported that Mn(III) tetrakis(1-methyl-4-
pyridyl)porphyrin (an antioxidant and mimetic of superoxide
dismutase) supplementation enhances IRI-induced tubule pro-
liferation but inhibits interstitial proliferation. Similarly, in the
present study, we found that apocynin inhibited interstitial cell
proliferation but enhanced tubular cell proliferation. Anikumar
et al. (2) reported that Nox2 levels are cell specific and that this
results in different levels of intracellular ROS and different cell
responses. Several other authors (2, 9, 13) have concluded that
the effects of ROS on cell proliferation are cell type specific,
even in the same tissues. Furthermore, in a previous study (19),
we found that inhibition of ERK activation during the recovery
phase after IRI accelerated tubular cell proliferation but pre-
vented interstitial cell proliferation. These findings suggest that
the definition of cell-specific roles is required for the develop-
ment of therapeutics in specific diseases.
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