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Abstract

Sulforaphane is a chemopreventive agent present in various
cruciferous vegetables, including broccoli. Here, we show that
treatment with tumor necrosis factor (TNF)-related apoptosis-
inducing ligand (TRAIL) in combination with subtoxic doses
of sulforaphane significantly induces rapid apoptosis
in TRAIL-resistant hepatoma cells. Neither TNF-o- nor Fas-
mediated apoptosis was sensitized in hepatoma cells by
cotreatment with sulforaphane, suggesting that sulforaphane
can selectively sensitize cells to TRAIL-induced apoptosis
but not to apoptosis mediated by other death receptors. We
found that sulforaphane treatment significantly up-regulated
mRNA and protein levels of DR5, a death receptor of TRAIL.
This was accompanied by an increase in the generation of
reactive oxygen species (ROS). Pretreatment with N-acetyl-L-
cysteine and overexpression of catalase inhibited sulfora-
phane-induced up-regulation of DR5 and almost completely
blocked the cotreatment-induced apoptosis. Furthermore, the
sulforaphane-mediated sensitization to TRAIL was efficiently
reduced by administration of a blocking antibody or small
interfering RNAs for DR5. These results collectively indicate
that sulforaphane-induced generation of ROS and the subse-
quent up-regulation of DR5 are critical for triggering and
amplifying TRAIL-induced apoptotic signaling. We also found
that sulforaphane can sensitize both Bcl-xL- and Bcl-2-
overexpressing hepatoma cells to TRAIL-induced apoptosis,
indicating that treatment with a combination of TRAIL
and sulforaphane may be a safe strategy for treating resistant
hepatomas. (Cancer Res 2006; 66(3): 1740-50)

Introduction

The tumor necrosis factor (TNF)-related apoptosis-inducing
ligand (TRAIL), a member of the TNF family, is considered a
promising anticancer agent due to its ability to induce apoptosis
in a variety of tumor cell types while having only negligible effects
on normal cells (1). TRAIL induces apoptosis in tumor cells via
the death receptor pathway using a mechanism similar to that of
TNF (2). TRAIL cross-links with the death receptors DR4 or DR5,
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leading to aggregation of the receptors, recruitment of the adaptor
molecule FADD, and activation of initiator caspase-8 (3). The
activated caspase-8 is released into the cytoplasm and initiates a
protease cascade that activates “effector” caspases, such as
caspase-3 and caspase-7 (4).

Hepatocellular carcinoma is the most common type of liver
cancer and is the fourth leading cause of cancer deaths world-
wide (5). Surgical resection has been considered the optimal
treatment approach, but only a small proportion of patients
qualify for surgery, and there is a high rate of recurrence.
Approaches to prevent recurrence have included chemoembo-
lization before and neoadjuvant therapy after surgery, neither of
which has been proven to be beneficial (6). Therefore, new
therapeutic options are needed for more effective treatment of this
malignancy. Although TRAIL has garnered considerable attention
as a novel anticancer agent, recent studies have shown that
many cancer cells, including hepatoma cells, are resistant to
the apoptotic effects of TRAIL (7, 8). A better understanding of
the molecular mechanisms underlying TRAIL resistance and iden-
tification of the sensitizing agents capable of overcoming this
resistance may facilitate the establishment of TRAIL-based com-
bination regimens for the improved treatment of hepatocellular
carcinoma.

Epidemiologic studies have shown that increased dietary
consumption of cruciferous vegetables may protect against
tumorigenesis (9), suggesting the potential use in the chemo-
prevention of cancer. Sulforaphane [1-isothiocyanato-4-(methylsul-
finyl)-butane], a naturally occurring member of the isothiocyanate
family, has received particular attention because of its anticancer
effects (10). Sulforaphane seems to modulate the carcinogenic
metabolism by inhibiting cytochrome P450-dependent monoox-
ygenases, which are involved in the activation of carcinogenic
chemicals (11), and/or by inducing phase II detoxification enzymes
(12). Furthermore, accumulating evidence indicates that sulfor-
aphane can inhibit growth of human cancer cells by causing
cell cycle arrest and apoptosis (13, 14), suggesting its potential
therapeutic value as an anticancer agent or an adjunct to current
cancer therapies.

We show herein for the first time that sulforaphane is a potent
sensitizer for TRAIL-induced apoptosis not only in a variety of
TRAIL-resistant human hepatocellular carcinoma cells but also
in hepatoma cells overexpressing Bcl-xL or Bcl-2. Moreover,
we present the first evidence that subtoxic doses of sulforaphane
up-regulate expression of DR5 via generation of reactive oxygen
species (ROS), leading to rapid induction of TRAIL-mediated
signaling and cell death in these hepatoma cells.
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Materials and Methods

Chemicals and antibodies. Recombinant human TRAIL/Apo2 ligand
(the nontagged 19-kDa protein, amino acids 114-281) and TNF-a were
from KOMA Biotech, Inc. (Seoul, South Korea). Anti-Fas antibody was
from Upstate Biotechnology (Lake Placid, NY). Calcein-AM, EthD-1, and
6-carboxy-2,7-dichlorofluorescein diacetate (H,DCFDA) were from Molec-
ular Probes (Eugene, OR). Sulforaphane and N-acetyl-L-cysteine (NAC) were
from Sigma (St. Louis, MO). The following antibodies were used: anti-
caspase-8, caspase-3, caspase-7, survivin, and X-linked inhibitor of apoptosis
(XIAP; Stressgen, British Columbia, Canada); anti-caspase-9, caspase-2, FAK,
Cdk2, DR4, c-IAP1, c-IAP2, Bcl-2, and Bcl-xL (Santa Cruz Biotechnology,
Santa Cruz, CA); poly(ADP-ribose) polymerase (PARP; Upstate Biotechnol-
ogy); Bid (Cell Signaling, Beverly, MA); anti-Flag M2 and FITC-conjugated
anti-goat IgG (Sigma); anti-DR5 for Western blotting (Calbiochem, San
Diego, CA); anti-DR5 antibody for fluorescence-activated cell sorting
(FACS) analysis and DR5-specific blocking chimera antibody (R&D Systems,
Minneapolis, MN); and anti-rabbit IgG horseradish peroxidase, mouse IgG,
and goat IgG (Zymed Laboratories, Inc., South San Francisco, CA).

Culture of hepatoma cells and rat hepatocytes. The human hepa-
toma cell lines Hep3B, Huh-7, and HepG2 were cultured in DMEM (Life
Technologies, Grand Island, NY). SNU-398, SNU-423, and SNU-449 cells
were cultured in RPMI 1640 supplemented with 10% fetal bovine serum and
antibiotics (Life Technologies). Pregnant BD rats were used in this study.
Hepatocytes from 5-week-old fetal rats were isolated by collagenase
disruption as described previously (15). The cells were incubated in 7.5%
CO, at 37°C to facilitate attachment and the medium was changed after
4 hours. The hepatocytes used were at least 90% to 95% viable immediately
after isolation.

DNA fragmentation assay. After treatments, cells were lysed in a buffer
containing 10 mmol/L Tris (pH 7.4), 150 mmol/L NaCl, 5 mmol/L EDTA,
and 0.5% Triton X-100 for 30 minutes on ice. Lysates were vortexed and
cleared by centrifugation at 10,000 X g for 20 minutes. Fragmented DNA in
the supernatant was extracted with an equal volume of phenol/chloroform/
isoamyl alcohol mixture (25:24:1) and analyzed electrophoretically on 1.8%
agarose gels containing 0.1 pg/mL ethidium bromide.

Plasmids, transfections, and luciferase assays. The pDR5/Sacl
plasmid [containing DR5 promoter sequence (—2,500/+3)] and pDR5/—605
[containing DR5 promoter sequence (—605/+3)] were gifts from Dr. T. Sakai
(Kyoto Prefectural University of Medicine, Kyoto, Japan). To localize the
promoter regions responsible for sulforaphane-induced DR5 up-regulation,
the reporter constructs containing single (mSpl-1 and mSpl-2), double
(mSp1-3 and mSpl-4), or triple (mSpl-5 and mSp1l-6) point mutations at
putative Spl-binding sites of DR5 promoter were used. The detailed
procedure to generate these mutants was previously described (16). In brief,
Hep3B cells were plated onto 60-mm dishes at a density of 5 X 10° per plate
and grown overnight. Cells were cotransfected with 1 ng of various plasmid
constructs and 0.2 pg of the pCMV-B-galactosidase plasmid for 3 hours using
LipofectAMINE Plus reagent (Life Technologies) following the manufac-
turer’s instructions. After incubation for 24 hours, transfected cells were
further treated or untreated with 10 pmol/L sulforaphane. Luciferase and
R-galactosidase activities were assayed according to the manufacturer’s
protocol (Promega, Madison, WI). Luciferase activity was normalized for
R-galactosidase activity in cell lysates and expressed as an average of
three independent experiments.

Semiquantitative reverse transcription-PCR analysis. Total RNA was
extracted from Hep3B cells using the TRIzol reagent (Invitrogen, Carlsbad,
CA). Following the manufacturer’s protocol [RNA PCR kit (avian myelo-
blastosis virus); TaKaRa Shuzo Co., Ltd. Japan], reverse transcription-PCR
(RT-PCR) was done. Conditions for final analysis were chosen when ampli-
fication of mRNA was in the middle of the exponential amplification phase for
10 pmol/L sulforaphane. Human DR5 mRNA was amplified using the sense
primer 5-GTCTGCTCTGATCACCCAAC-3' and the antisense primer 5'-
CTGCAACTGTGACTCCTATG-3 (corresponding to a 424-bp region of DR5).
For glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the sense primer
5-CGTCTTCACCATGGAGA-3 and the antisense primer 5-CGGCCATCAC-
GCCCACAGTTT-3' was used (corresponding to a 310-bp region of GAPDH).

The PCR cycling conditions (30 cycles) were chosen were as follows: (a)
30 seconds at 94°C, () 1 minute at 70°C for DR5 and 30 seconds at 60°C for
GAPDH, and (c) 1 minute at 72°C with a subsequent 10-minute extension
at 72°C. Reaction products were analyzed on 1.3% agarose gels. The bands
were visualized by ethidium bromide.

Flow cytometry of death receptors. Cells were analyzed for the surface
expression of DR4 and DR5 by indirect staining with primary goat anti-
human DR4 and DR5 (R&D Systems) followed by FITC-conjugated rabbit
anti-goat IgG. Briefly, 5 X 10° cells were stained with 200 pL PBS containing
saturating amounts of anti-DR4 or anti-DR5 antibody on ice for 30 minutes.
After incubation, cells were washed twice and reacted with FITC-conjugated
rabbit anti-goat IgG on ice for 30 minutes. After washing with PBS, the
expressions of these death receptors were analyzed by a FACS sorter
(Becton Dickinson and Co., Franklin Lakes, NY).

Small interfering RNA. The 25-nucleotide small interfering RNA
(siRNA) duplexes used in this study were purchased from Invitrogen and
had the following sequences: DR5 (F01), UUUAGCCACCUUUAUCUCAUU-
GUCC; DR5 (E11), AUCAGCAUCGUGUACAAGGUGUCCC; DR5 (E09),
UACAAUCACCGACCUUGACCAUCCC; and green fluorescent protein
(GFP), AAGACCCGCGCCGAGGUGAAG. Cells were transfected with siRNA
oligonucleotides using LipofectAMINE 2000 (Invitrogen) according to the
manufacturer’s recommendations.

Measurement of ROS. Hep3B or HepG2 cells were plated at a density
of 5 X 10° or 1 X 10° respectively, in 60-mm dishes, allowed to attach
overnight, and exposed to 5 mmol/L NAC alone, 10 pmol/L sulforaphane
alone, or NAC plus sulforaphane for specified time intervals. The cells were
stained with 10 pmol/L H,DCFDA for 10 minutes at 37°C and then
observed under a fluorescence microscope (Axiovert 200M, Carl Zeiss).
Alternatively, the fluorescence intensity of dichlorofluorescein in cells was
determined using the flow cytometer (Becton Dickinson and Co.).

Construction of the expression vector encoding human catalase.
Plasmid DNA encoding human catalase was kindly provided by Dr. M.
Akashi (National Institute of Radiological Sciences, Chiba, Japan). The
human catalase cDNA was amplified by PCR using primers designed
to incorporate a 5 hemagglutinin (HA) epitope. The PCR product was
subcloned into the pcDNA3.1(+) expression vector (Invitrogen). The fidelity
of the PCR and cloning procedures was verified by nucleotide sequencing.

Establishment of the cell lines stably overexpressing Bcl-2, Bel-xL,
or catalase. Mammalian expression vectors encoding Flag-tagged Bcl-xL
and Bcl-2 were kindly provided by Prof. A. Strasser (The Walter and Eliza
Hall Institute of Medical Research, Melbourne, Victoria, Australia). Hep3B
cells were transfected with the expression vectors encoding Flag-tagged
Bcl-xL, Bcl-2, or HA-tagged catalase. Stable Hep3B cell lines overexpressing
Bcl-xL or Bcl-2 were selected with changes of fresh medium containing
puromycin (4 pg/mL). Overexpression of Bcl-xL or Bcl-2 in the stable cell
lines was analyzed by Western blotting using anti-Flag antibody (Sigma).
Stable Hep3B cell lines overexpressing catalase were selected with changes
of fresh medium containing G418 (500 pg/mL). Overexpression of catalase
in the stable cell lines was examined by Western blotting using anti-HA
antibody (Covance, Princeton, NJ).

Results

Subtoxic doses of sulforaphane significantly sensitize
TRAIL-resistant hepatoma cells to TRAIL-induced apoptosis.
The cytotoxic activity of human recombinant soluble TRAIL (amino
acids 114-281) was tested in six hepatoma cell lines: Huh-7, Hep3B,
HepG2, SNU-398, SNU-423, and SNU-449 (Fig. 14). Treatment with
50 to 200 ng/mL TRAIL induced a limited cell death (<10%) over
24 hours, suggesting that these hepatoma cells are resistant to the
apoptotic effects of TRAIL. Next, we examined the cytotoxic effects
of sulforaphane alone or in combination with TRAIL in these cells.
Sulforaphane alone did not induce any morphologic signs of cell
death up to 10 umol/L, although the cellular activity to reduce
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) was slightly decreased at this concentration. However, cell
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viability was significantly reduced by the combined treatment both
when holding the concentration of TRAIL fixed and varying the
concentration of sulforaphane and when holding the concentration
of sulforaphane fixed and varying TRAIL. These results show
that combined treatment with sulforaphane and TRAIL effectively
induces cell death in the tested TRAIL-resistant hepatoma cell lines.
We then investigated whether apoptotic cell death is induced by a
combination of sulforaphane and TRAIL using flow cytometric
analysis, which detects the increase in hypodiploid cell popula-
tions. Cotreatment of Huh-7 cells with 10 umol/L sulforaphane
and 100 ng/mL TRAIL for 16 hours significantly increased the
accumulation of sub-G; phase cells, whereas treatment with
sulforaphane or TRAIL alone did not (Fig. 1B). Pretreatment with
a pan-caspase inhibitor z-VAD-fmk significantly blocked the accu-
mulation of sub-G;-phase cell populations induced by sulforaphane
plus TRAIL. Furthermore, DNA fragmentation analysis by agarose
gel electrophoresis showed a typical ladder pattern of internucleo-
somal DNA fragmentation in Hep3B cells cotreated with 10 umol/L
sulforaphane and 100 ng/mL TRAIL but not in cells treated with
sulforaphane or TRAIL alone (Fig. 1C). DNA fragmentation induced

by sulforaphane plus TRAIL was completely blocked by the
pretreatment with z-VAD-fmk. Collectively, these results suggest
that sulforaphane stimulates TRAIL-induced, caspase-dependent
apoptosis.

We next examined whether caspases were actually activated
during sulforaphane-facilitated, TRAIL-induced cell death of
hepatoma cells (Fig. 24). Huh-7 cells were treated with 10 pumol/L
sulforaphane alone for 16 hours or 100 ng/mL TRAIL alone or
pretreated with sulforaphane (30 minutes) followed by TRAIL for
the indicated times. Treatment with 10 umol/L sulforaphane alone
for 16 hours did not induce any proteolytic processing of caspases.
In response to TRAIL, the 32-kDa procaspase-3 was partially
cleaved to a 20-kDa intermediate form after 4 hours, but further
cleavage into the active pl17 subunit was not detected nor was
other caspase-processing events. However, treatment with sulfor-
aphane plus TRAIL induced the cleavage of caspase-3 into the p20
intermediate form and its subsequent cleavage into the active p17
subunit after 4 hours. Caspase-2, caspase-8, caspase-9, and caspase-7
were also progressively processed after 4 to 8 hours of the
combined treatment. We further assessed the cleavage of several
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key death substrates that indicate the activation of caspases,
including PARP (substrate for caspase-3 and caspase-7), FAK
(caspase-3), and Bid (caspase-8). In parallel with the proteolytic
processing of caspases, these substrate proteins were progressively
degraded from 4 to 8 hours after the combined treatment, whereas
they were not degraded following treatment with TRAIL or
sulforaphane alone. Similar but slower activation patterns of
caspases in Hep3B cells were observed in response to sulforaphane
plus TRAIL, consistent with the slower progression of cell death
in this cell line compared with that in Huh-7 cells.

Sulforaphane does not affect the expression levels of IAPs or
antiapoptotic Bcl-2 family proteins. Recent reports have shown
that several intracellular proteins, including survivin, XIAP, Bcl-2,
and Bcl-xL, are capable of inhibiting death receptor-mediated
apoptosis when present at sufficient levels in cancer cells (17-19).
To explore the underlying mechanisms by which sulforaphane
enhances TRAIL-induced apoptosis in TRAIL-resistant hepatoma
cells, we first examined the possibility that sulforaphane might
down-regulate the expression levels of these antiapoptotic proteins.
We did not observe any significant differences in the protein levels
of the tested IAP protein (survivin, XIAP, c-IAP1, and c-IAP2) or the

tested antiapoptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL)
following treatment with 10 pumol/L sulforaphane alone or 100
ng/mL TRAIL alone (Fig. 2B). Cotreatment with sulforaphane and
TRAIL induced down-regulation of XIAP proteins but did not alter
the expressions of the other proteins in Huh-7 and Hep3B cells.
Because XIAP has been reported previously to be a substrate of
caspase-3, caspase-7, and caspase-9 during apoptosis (20) and
pretreatment with z-VAD, a pan-caspase inhibitor, blocked down-
regulation of XIAP following treatment with sulforaphane and
TRAIL (data not shown), this reduction of XIAP protein levels
might be the result of caspase activation in response to the com-
bined treatment rather than the cause of sulforaphane-stimulated
TRAIL-induced apoptosis.

Sulforaphane up-regulates DR5 in various hepatoma cells.
As the TNF superfamily members reportedly share similar protein
structures and death receptor-mediated apoptotic signaling path-
ways (21), we next tested whether sulforaphane could also sensitize
TNF-o- and/or Fas-mediated apoptosis, possibly targeting the
common component(s) of these death receptor-mediated apopto-
tic pathways. Consistent with our TRAIL results, treatment of
Hep3B cells with TNF-a or anti-Fas antibody alone did not induce
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significant cell death (Fig. 34). Interestingly, cotreatment of these
agents plus sulforaphane had no effect on cell death in Hep3B cells,
which were very sensitive to sulforaphane/TRAIL cotreatment.
These results indicate that sulforaphane selectively facilitates cell
death induced by TRAIL but not the other tested death ligand(s).
Because TRAIL is known to trigger apoptotic signals via two types
of death receptors, DR4 and DR5 (22, 23), we next examined
whether the modulation of DR4 and/or DR5 protein levels by
sulforaphane might be involved in its sensitizing effect on TRAIL-
induced apoptosis. We found that treatment of Hep3B cells with
sulforaphane induced a dose-dependent increase in the protein
levels of DR5 but did not affect the levels of DR4 (Fig. 3B). FACS
analysis showed that the sulforaphane-induced surface expression
of DR5 but not DR4 was also significantly increased in Hep3B
cells (Fig. 3C). Consistent with this, treatment with 10 pmol/L
sulforaphane significantly increased DR5 protein levels in other
human hepatoma cell lines, such as Huh-7, SNU-398, SNU-423, and
HepG2 (Fig. 3D), showing that up-regulation of the DR5 TRAIL
death receptor is a common response of hepatoma cells to
sulforaphane treatment. To clarify the functional role of DR5
in stimulation of TRAIL-induced apoptosis by sulforaphane, we
examined the effect of DR5-specific blocking chimera antibody on
sulforaphane/TRAIL-induced apoptosis. Addition of DR5-specific
blocking antibody dose-dependently inhibited sulforaphane/
TRAIL-induced apoptosis of Hep3B cells (Fig. 3E). Furthermore,
suppression of DR5 expression by transfection of Hep3B cells with
three kinds of siRNAs also effectively inhibited sulforaphane-
stimulated TRAIL-induced cell death (Fig. 3F), supporting the idea
that sulforaphane-induced up-regulation of DR5 is critical for the
enhancement of TRAIL sensitivity in Hep3B cells.

Sulforaphane activates transcription from the DR5
promoter. To examine whether sulforaphane-induced DR5 up-
regulation is controlled at the transcriptional level, we did RT-PCR
analysis of DR5 in sulforaphane-treated Hep3B cells. We found that
treatment with 10 pmol/L sulforaphane was followed by a gradual
increase in DR5 mRNA levels by 12 hours (Fig. 44). We further
explored the underlying mechanisms involved in sulforaphane-
induced transcriptional control of DR5 using the luciferase gene
expression system. We first examined the effects of sulforaphane on
the promoter activities of reporter constructs containing 2.5- and
0.6-kb fragments of the DR5 gene promoter region (pDR5/Sacl and
pDR5/—605, respectively; ref. 24). Hep3B cells were transfected with
these constructs and the luciferase activities were assayed 24 hours
after sulforaphane treatment at different doses. We found that
sulforaphane significantly increased the promoter activities of both
pDR5/Sacl and pDR5/—605 in a dose-dependent manner (Fig. 4B),
suggesting that sulforaphane-responsive elements are localized
within the smaller fragment (605 bp). Previously, Yoshida et al. (24)
showed that the region of the DR5 promoter spanning nucleotides
—605 to +3 contains typical transcription factor binding sites,
including four Spl sites and a TATA-like box site (Fig. 4B). To
examine which Spl site(s) in the DR5 promoter is important for
sulforaphane-induced DR5 up-regulation, we did luciferase assays
using reporter constructs with mutations at the different Spl-
binding sites (Fig. 4C). Transfection with mSp1-3 (mutated at the
—305 and —300 Spl sites), mSpl-5 (mutated at the —305, —300,
and —195 Spl sites), and mSP1-6 (mutated at the —305, —300,
and —159 sites; ref. 16) showed significantly decreased sulfor-
aphane-induced DR5 promoter activities compared with the wild-
type construct (pDR5/—605). Although introduction of any Spl
site mutation decreased the DR5 promoter activity to some

extent, these significant decreases suggest that the two putative
Spl-binding sites present at —305/—300 may play an important role
in sulforaphane-induced enhancement of DR5 promoter activity.

Sulforaphane-induced ROS generation plays a critical role
in the up-regulation of DR5 and the induction of cell death by
cotreatment with sulforaphane and TRAIL. As Singh et al. (25)
reported recently that ROS initiate sulforaphane-induced cell death
in prostate cancer cells, we next examined whether ROS were also
generated in hepatoma cells treated with subtoxic doses of sul-
foraphane. H,DCFDA-based FACS detection revealed that intracel-
lular ROS levels increased in Hep3B cells following treatment with
10 umol/L sulforaphane (Fig. 54). Increased dichlorofluorescein
fluorescence was detected as early as 30 minutes after treatment
with 10 pumol/L sulforaphane (data not shown), peaked at 4 hours
(Fig. 54), and diminished afterward. NAC is a widely used thiol-
containing antioxidant that is a precursor of reduced glutathione
(GSH). GSH scavenges ROS in cells by interacting with OH- and
H,0,, thus affecting ROS-mediated signaling pathways. The
sulforaphane-induced increases in ROS levels were completely
blocked by pretreatment with NAC (Fig. 54). Similar results were
obtained from fluorescence microscopic observation after staining
sulforaphane-treated Hep3B cells or HepG2 cells with H,DCFDA
(data not shown). Next, we examined the role of sulforaphane-
induced ROS generation in the up-regulation of DR5. Western
blotting showed that pretreatment with NAC caused a significant
dose-dependent inhibition of sulforaphane-induced up-regulation
of DR5 protein (Fig. 5B). Moreover, RT-PCR analysis showed that
pretreatment with NAC significantly inhibited sulforaphane-
induced increases in DR5 mRNA (Fig. 5C). We further investigated
whether overexpression of catalase could inhibit sulforaphane-
induced DR5 up-regulation. Sulforaphane-induced up-regulation of
DR5 was significantly attenuated in stable cell lines overexpressing
catalase compared with control cells (Fig. 5D). We also tested
whether treatment of hepatoma cells with H,O, could elevate DR5
protein levels. We found that H,0, time- and dose-dependently
increased the protein levels of DR5 in HepG2 cells (Fig. 5E).
Collectively, these results clearly show that sulforaphane-induced
up-regulation of DR5 requires the generation of ROS. We next
tested whether scavenging of ROS could attenuate the cell death
induced by cotreatment with sulforaphane and TRAIL. Pretreat-
ment of Hep3B with NAC dose-dependently blocked cell death
induced by the combination of sulforaphane and TRAIL (Fig. 5F).
Moreover, the cell death induced by the combination of sulfor-
aphane and TRAIL was significantly attenuated in Hep3B cells
overexpressing catalase, suggesting that ROS generation is required
for the induction of cell death. Taken together, these results
indicate that sulforaphane-induced ROS generation plays a key
role in its ability to up-regulate the DR5 TRAIL receptor and
therefore contributes to its dramatic enhancement of TRAIL-
induced apoptosis.

Combined treatment with sulforaphane and TRAIL enhances
cell death in hepatoma cells overexpressing Bcl-xL or Bcl-2 but
not in rat primary hepatocytes. Because increased expression of
Bcl-xL in human hepatocellular carcinoma is important for
the inhibition of apoptosis that is initiated by various cellular
stresses (26), we next investigated whether overexpression of Bel-xL
or Bcl-2 could affect the sensitizing effect of sulforaphane on TRAIL-
induced apoptosis. Stable Bcl-xL- and Bcl-2-overexpressing cell lines
were established using Hep3B cells (Fig. 64), and the viabilities of
these cells following treatment with 10 pmol/L sulforaphane and
100 ng/mL TRAIL for 24 hours were measured by staining with
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Figure 3. Sulforaphane increases DR5 but not DR4 protein levels in many hepatoma cell lines. A, effect of sulforaphane on TNF-a- or Fas-mediated cell death. Hep3B
cells were pretreated with 10 pmol/L sulforaphane for 30 minutes and further treated with the indicated concentrations of TNF-a, anti-Fas antibody, or TRAIL for

24 hours. Cellular viabilities were measured with calcein-AM and EthD-1 to detect live and dead cells, respectively. Similar results were obtained from three independent
experiments. B, sulforaphane-induced DR5 up-regulation in Hep3B cells. Hep3B cells were treated with the indicated concentrations of sulforaphane for 16 hours,
and Western blotting of DR5, DR4, and Cdk2 as a loading control was done. C, effect of sulforaphane on the surface expression levels of DR5 and DR4 proteins.
Hep3B cells were incubated with or without 10 umol/L sulforaphane for 16 hours and the surface expression of DR5 and DR4 proteins was analyzed by flow cytometry.
X axis, fluorescence intensity; Y axis, relative number of cells. Black histograms, treated cells with sulforaphane; clear histograms, untreated cells; histograms

with gray lines, negative control (i.e., cells incubated in the absence of the respective primary antibody). Representative experiment from a total of three.

D, sulforaphane-induced DR5 up-regulation in several human hepatoma cells. Cells were treated with 10 pmol/L sulforaphane for the indicated times and cell extracts
were prepared for Western blotting of DR5. Cdk2 was used for a loading control of Western blotting. Representative results of two independent experiments. E, effect
of DR5-specific blocking chimera antibody on sulforaphane/TRAIL-induced apoptosis. Hep3B cells were pretreated with or without 10 pmol/L sulforaphane for

30 minutes followed by treatment with or without 100 ng/mL TRAIL for 24 hours in the presence of indicated concentrations of DR5-specific blocking chimera antibody.
Cellular viabilities were measured with calcein-AM and EthD-1 to detect live and dead cells, respectively. Similar results were obtained from three independent
experiments. F, suppression of DR5 expression by siRNAs reduces sulforaphane-stimulated TRAIL-induced apoptosis in Hep3B cells. Hep3B cells were transfected with
GFP siRNA or three kinds of siRNA duplexes against DR5 mRNA. Twenty-four hours after the transfection, cells were treated with 10 umol/L sulforaphane for

16 hours. First, Western blotting of DR5 was done to confirm the down-regulation of DR5 by siRNA transfection. Cdk2 levels were assessed to show equal gel loading
(top). To examine the effect of DR5 down-regulation on sulforaphane/TRAIL-induced apoptosis, Hep3B cells were transfected with siRNAs, incubated for 24 hours,
and further treated with or without 10 pmol/L sulforaphane + 100 ng/mL TRAIL for 24 hours. Cellular viability was determined using calcein-AM and EthD-1 (bottom).

may have a therapeutic effect on hepatoma cells overexpressing
Bcl-xL, which are resistant to many other chemotherapeutic drugs.

Next, we examined whether sulforaphane plus TRAIL shows
cytotoxicity in normal hepatocytes in addition to hepatoma cells.

calcein-AM and EthD-1. Interestingly, overexpression of Bcl-xL or
Bcl-2 in Hep3B cells had no effect on the sensitizing effect of sul-
foraphane on TRAIL-induced apoptosis (Fig. 6B). These results
suggest that combined treatment with sulforaphane and TRAIL
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Primary hepatocytes isolated from rats were treated for 24 hours
with 10 pmol/L sulforaphane alone, 100 ng/mL TRAIL alone, or
sulforaphane plus TRAIL, and viabilities were assessed using calcein-
AM and EthD-1 (Fig. 6C). We did not observe increased cell death in
hepatocytes treated with TRAIL alone, sulforaphane alone, or sulfor-
aphane plus TRAIL compared with untreated hepatocytes. When
we further investigated the effect of sulforaphane on DR5 expression
in primary hepatocytes, we found that DR5 protein levels were
not altered in hepatocytes treated with either sulforaphane and/or
TRAIL compared with those in Hep3B cells treated with the same
agent(s) (Fig. 6D). These results suggest that differential regulation of
sulforaphane-induced DR5 expression may be responsible for the
selective toxicity of the combined treatment against hepatoma cells.
In conclusion, our results collectively indicate that combined
treatment with sulforaphane and TRAIL may provide an effective
treatment strategy for TRAIL-resistant hepatomas.

Discussion

Members of the TNF receptor superfamily, including TNF
receptor, Fas, and TRAIL receptor, share similar conserved
structures (21). Although TNF-a and FasL can trigger apoptosis

in some solid tumors, their clinical usage has been limited by the
risk of lethal systemic inflammation and hepatotoxicity, respec-
tively (27, 28). In contrast, recombinant soluble human TRAIL
(amino acids 114-281) has shown a profound apoptotic effect
on the xenografted melanoma cells without toxicity to human
hepatocytes in vitro and in vivo (29). These results indicate that
this form of TRAIL may prove to be a safe and effective biological
agent for cancer therapy in humans. However, recent studies have
shown that considerable numbers of cancer cells, including human
hepatocellular carcinoma cells, are resistant to the apoptotic
effects of TRAIL (7, 8, 30, 31). Cellular sensitivity to TRAIL can
be affected by the expression levels of the cell membrane TRAIL
receptors, caspase-8, or c-FLIP (32). Further downstream in the
TRAIL-induced apoptotic pathway, Bax mutations (33) or increased
expression of IAP family members, such as XIAP and survivin, also
cause resistance (17, 18). Thus, scientists are currently seeking to
identify TRAIL sensitizers capable of overcoming TRAIL resistance
in cancer cells.

In this study, we investigated the ability of sulforaphane, a
naturally occurring member of the isothiocyanate family of
chemopreventive agents, to enhance TRAIL-induced apoptosis in
human hepatoma cells. We show for the first time that subtoxic
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doses of sulforaphane sensitize many TRAIL-resistant hepatoma
cells to TRAIL-induced apoptosis by up-regulating DR5. We showed
that sulforaphane causes a significant dose- and time-dependent
increase in the levels of mRNA and protein for DR5 but not DR4
in hepatoma cells. A DR5-specific blocking chimeric antibody and
knockdown of DR5 expression by siRNA duplexes inhibited the
cell death induced by the combination of sulforaphane and TRAIL
in Hep3B cells, confirming that this up-regulation of DR5 is func-
tionally significant.

The expression levels of death receptors may play a critical role
in determining the intensity and/or duration of death receptor-
mediated apoptotic signaling in response to death ligands.
TRAIL is known to trigger apoptosis through binding to the death
receptors, DR4 (22) and DR5 (22, 23), which contain cytoplasmic
death domains responsible for recruiting adaptor molecules in-
volved in caspase activation (3). At physiologic conditions (37°C),
TRAIL is known to bind with a higher affinity to DR5 than to
DR4 (34). Moreover, a recent study using phage display of
death receptor-selective TRAIL variants showed that DR5 may
play a more prominent role than DR4 in mediating apoptotic

signals emanating from TRAIL in cells expressing both death
receptors (35). Recently, various agents, including DNA-damaging
agents, such as ionizing irradiation and many anticancer drugs
(36, 37), histone deacetylase inhibitors (16, 38), bile acids (39),
IFN-a (40), triterpenoid methyl-2-cyano-3,12-dioxooleana-1 (41),
and proteasome inhibitors (42), have been reported to up-regulate
DR5 expression. This indicates that the combination of TRAIL and
the agents that are capable of up-regulating DR5 may be a
promising strategy for sensitizing tumors to TRAIL-induced
apoptosis. Although c-Jun NH,-terminal kinase (JNK) has been
proposed to be involved in DR5 up-regulation by bile acid (39) or
methyl-2-cyano-3,12-dioxooleana-1 (41), JNK was not significantly
activated by sulforaphane, and pretreatment with SP600125, a
specific inhibitor of JNK, could not reduce the sulforaphane-
induced DR5 up-regulation in our study (data not shown),
suggesting that novel mechanisms may be responsible for
sulforaphane-induced DR5 up-regulation.

Sulforaphane has been reported to suppress proliferation or
various cancer cells by causing cell cycle arrest, apoptosis, or both
(14, 25, 43). For example, sulforaphane-induced cell cycle arrest
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is associated with activation of Chk2 and the subsequent accu-
mulation of Tyr'®>-phosphorylated (inactive) Cdkl (43). Further-
more, up-regulation of Bax and down-regulation of Bcl-2 occur
during sulforaphane-induced apoptosis in human T-cell leukemia
(14). In our study, however, subtoxic doses of sulforaphane did not
cause any significant changes in the protein levels for various cell
cycle regulators (data not shown) or for Bcl-2 or Bcl-xL. Recently,
Singh et al. reported that treatment with 40 umol/L sulforaphane
induces apoptosis in PC-3 cells and that the initial signal for
sulforaphane-induced apoptosis is derived from ROS (25). They
showed that pretreatment with NAC or overexpression of catalase
significantly inhibits sulforaphane-induced apoptosis. Similarly,
we found that exposure of Hep3B or HepG2 cells to a subtoxic
dose (10 umol/L) of sulforaphane induces ROS generation.
Sulforaphane-induced ROS generation was evident as early as
30 minutes and as late as 6 hours after treatment with sulfor-
aphane, whereas a significant increase in the mRNA and protein
levels of DR5 was observed only after 8 hours. Pretreatment with
NAC or overexpression of catalase blocked the sulforaphane-
induced increase in DR5 expression. In addition, treatment with
H,0, significantly enhanced DR5 protein levels. Finally, pretreat-

ment of Hep3B cells with NAC or overexpression of catalase blocked
the induction of cell death by cotreatment with sulforaphane and
TRAIL. These results collectively show that ROS act as upstream
signaling molecules for the initiation of sulforaphane-induced DR5
expression and are critical for the sensitization of the cells to
TRAIL-induced apoptosis.

To explore the mechanisms underlying sulforaphane-induced
ROS generation, we tested the possibility that depletion of GSH
might be associated with sulforaphane-induced ROS generation in
hepatoma cells. Consistent with the findings of Singh et al. (25),
treatment of HepG2 cells with apoptosis-inducing doses of
sulforaphane (>20 pmol/L) significantly decreased intracellular
GSH levels (data not shown). However, treatment with 10 pmol/L
sulforaphane only weakly decreased the intracellular GSH levels,
suggesting that mechanisms other than reduced GSH levels may
also contribute to the ability of subtoxic doses of sulforaphane to
induce ROS generation in hepatoma cells. A recent study suggested
that the increased expression of cytochrome P450 protein mediates
sulforaphane-induced oxidative stress in the lungs of rats (44).
Spontaneous hydrolysis of the -N=C=S moiety in isothiocyanates
(45) and mitochondrial damage by isothiocyanates (46) may also
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explain the generation of ROS in sulforaphane-treated cells. Clearly,
further studies will be necessary to determine the mechanisms by
which sulforaphane induces the generation of ROS in hepatoma
cells.

Many cancer cells with mutations in p53 resist chemotherapy-
induced apoptosis (47) and 30% to 60% of hepatocellular
carcinoma patients have altered p53 expression (48). In our study,
we showed that the combined treatment with sulforaphane and
TRAIL effectively induced irreversible cell death not only in
human hepatoma cells with wild-type p53 (HepG2 cells; ref. 49) but
also in those with mutant p53 [Huh-7 cells, Hep3B (p53 deleted),
SNU-398, and SNU-449; refs. 49, 50] commonly through DR5 up-
regulation. These results suggest that this combined treatment with
sulforaphane and TRAIL could be useful for hepatoma cells whose
p53 function has been compromised by aflatoxin B-mediated
mutations or by binding of the X protein of hepatitis B virus (51).
Bcel-xL, which is overexpressed in human hepatoma cells, is a
significant prognostic factor for the progression of human
hepatocellular carcinoma (52). However, the cell death induced

by sulforaphane plus TRAIL was not blocked by overexpression
of BclxL or Bcl-2. In contrast, the combined treatment with
sulforaphane and TRAIL was not cytotoxic to primary hepato-
cytes. In addition, treatment with sulforaphane selectively sensi-
tized cells to TRAIL-induced apoptosis but not to apoptosis
mediated by other death receptors that can cause lethal systemic
inflammation or hepatotoxicity. In conclusion, the use of TRAIL
in combination with subtoxic doses of sulforaphane may provide
an effective therapeutic strategy for safely treating resistant
hepatomas.
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