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Abstract—Neointimal formation, the leading cause of restenosis, is caused by proliferation of vascular smooth muscle cells
(VSMCs). Patients with diabetes mellitus have higher restenosis rates after coronary angioplasty than nondiabetic
patients. Cilostazol, a selective type 3 phosphodiesterase inhibitor, is currently used to treat patients with diabetic
vascular complications. Cilostazol is a potent antiplatelet agent that inhibits VSMC proliferation. In the present study,
we examine whether the antiproliferative effect of cilostazol on VSMCs is mediated by inhibition of an important cell
cycle transcription factor, E2F. Cilostazol inhibited the proliferation of human VSMCs in response to high glucose in
vitro and virtually abolished neointimal formation in rats subjected to carotid artery injury in vivo. Moreover, the
compound suppressed high-glucose–induced E2F–DNA binding activity, and the expression of E2F1, E2F2, cyclin A,
and PCNA proteins. These data suggest that the beneficial effects of cilostazol on high-glucose–stimulated proliferation
of VSMCs are mediated by the downregulation of E2F activity and expression of its downstream target genes, including
E2F1, E2F2, cyclin A, and PCNA. (Hypertension. 2005;45:552-556.)
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Neointimal hyperplasia and restenosis are major problems
limiting the long-term efficacy of percutaneous translu-

minal coronary angioplasty.1,2 Common events in vascular
response to arterial injury include proliferation and migration
of vascular smooth muscle cells (VSMCs) within arterial
intimal and neointimal formation in injured vessels.2,3 Pa-
tients with diabetes mellitus have higher restenosis rates after
coronary angioplasty than nondiabetic patients.2,4

The transcription factor, E2F, has been implicated in the
periodic regulation of cellular genes required for transition
through G1 and entry into the S phase, including dihydrofo-
late reductase, c-myc, DNA polymerase, cdc2, and prolifer-
ating cell nuclear antigen (PCNA).5–7 E2F activity is regu-
lated by interactions with RB family members. As cells
progress toward S phase, RB family proteins are phosphory-
lated by G1 cyclin-complexes, resulting in the release of
transcriptionally active E2F, which then leads to the activa-
tion of genes required for cell cycle progression.8–10 We
recently showed that high glucose activates the DNA-binding
activity of E2F, and decoy oligodeoxynucleotides against
E2F inhibit the proliferation of VSMCs.11 These data suggest
that downregulation of E2F could constitute a therapeutic
target to prevent restenosis after angioplasty in patients with
diabetes.

Cilostazol increases intracellular cAMP concentrations by
selectively blocking phosphodiesterase type III. The clinical
implications and pharmacokinetics with respect to the effects
and safety of this drug have been well-established, especially
in peripheral vascular disease.12 Cilostazol is a potent anti-
platelet agent currently used in clinical practice to treat
patients with diabetic vascular complications.13–15 Several
lines of evidence indicate that cilostazol additionally inhibits
the proliferation of VSMCs, reduces neointimal formation in
balloon-injured rat carotid arteries,16–18 and inhibits resteno-
sis after percutaneous transluminal coronary angioplasty.19,20

One mechanism by which cilostazol may inhibit VSMC
proliferation is via an increase in intracellular cAMP, because
cAMP inhibits the proliferation of VSMCs by induction of
p53-mediated and p21-mediated apoptosis.21 However, Nadri
et al demonstrated that increased cAMP leads to inhibition of
phosphorylation of pRB, which regulates the activity of the
E2F family, and consequently leads to arrest of cells at G1 in
human lymphocytes.22 Data from this investigation suggest
another mechanism by which cilostazol inhibits VSMC pro-
liferation, specifically through the suppression of E2F-
mediated transcription. In the present study, we examine
whether the antiproliferative effect of cilostazol on VSMCs is
mediated by inhibition of E2F, which is regulated by pRB
phosphorylation.
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Materials and Methods

Animals
Nine- to 10-week-old male Sprague-Dawley rats (Hyochang, Daegu,
Korea) weighing 280 to 320 grams were used in the experiments. All
procedures were used in accordance with the institutional guidelines
for animal research.

Rat Carotid Artery Balloon Injury
We examined the possible beneficial effects of cilostazol on neoin-
timal formation by using a rat carotid artery balloon-injury model.11

Cilostazol (100, 30, and 10 mg/d per kg) was administered daily by
gavage, and balloon injury was performed on day 4. Rats were
anesthetized with 50 mg/kg of sodium pentobarbital (Entobar;
Hanlim Pharmaceutical, Yong-In, Korea). Cilostazol treatment was
continued until rats were euthanized at 2 weeks after balloon injury.

Cell Culture
Human VSMCs (HVSMCs) were isolated from the thoracic aorta of
kidney transplantation donors by the explant method as described
previously.11 Tissue collection was approved by the local Ethics
Committee. HVSMCs were cultured in DMEM (Gibco BRL, Grand
Island, NY) containing 20% fetal bovine serum (Gibco BRL). In
each preparation, HVSMC purity was determined by staining with
smooth muscle-specific �-actin monoclonal antibodies (Sigma, St
Louis, Mo). Cells from the third and fifth passages were used in all
experiments.

Growth Assay
HVSMCs were seeded into 96-well tissue culture plates. At 30%
confluence, cells were rendered quiescent by incubation for 24 hours
in defined serum-free medium. Cilostazol was donated by Otsuka
Pharmaceutical Co (Osaka, Japan). The indicated dose of cilostazol
was added to the wells, and cells were incubated at 37°C for a further
5 hours. After 48 hours, indices of cell proliferation were determined
with a WST cell counting kit (Wako, Osaka, Japan).

Electrophoretic Mobility Shift Assay
Nuclear extracts were prepared from HVSMCs, as described previ-
ously.11 Briefly, the DNA probe for E2F was labeled with
[�-32P]ATP and T4 polynucleotide kinase. After end-labeling, the
probe was purified with a NAP-5 column. Protein–DNA binding
reactions were performed at room temperature for 20 minutes in a
total volume of 20 �L. After incubation, samples were loaded onto
a 4% native polyacrylamide gel in 0.5 � Tris-borate-EDTA buffer,
and performed at 150 V for 2 hours. The gels were dried and
visualized by autoradiography.

Luciferase Assay
The [E2F]�4 luciferase reporter construct, which contains 4 E2F
sites with the TTTCGCGC sequence, was used in transient transfec-
tion assays, as described previously.23

Histological Analysis
Immunohistochemistry and morphological analysis of neointima
were performed as described previously.11

Western Blot Analysis
Total protein extraction, Western blotting, and densitometric mea-
surement of bands were performed as described previously.24

Statistical Analysis
All results are expressed as means�SEM. Analysis of variance was
performed with Duncan test and used to determine significant
differences in multiple comparisons. Values of P�0.05 were taken
as statistically significant. All experiments were performed at least 3
times.

Results

Effect of Cilostazol on Neointimal Formation in
Balloon-Injured Rat Carotid Arteries
As shown in Figure 1, neointimal formation was detected in
the vessels 2 weeks after injury. Treatment with cilostazol
reduced neointimal formation in a dose-dependent manner.

Effects of Cilostazol and cAMP Stimulants on
Inhibition of HVSMC Growth In Vitro
As expected, high glucose (22 mmol/L D-glucose) signifi-
cantly increased the proliferation of cultured HVSMCs,
compared with normal glucose (P�0.05). Cilostazol
(100 �mol/L, 10 �mol/L, and 1 �mol/L) inhibited this
stimulation in a dose-dependent manner (P�0.01, P�0.05,
and P�0.05, respectively). Similarly, cAMP stimulants, such
as forskolin (100 �mol/L) and 8-bromo-cAMP (3 mmol/L),
also suppressed HVSMC growth stimulated by high glucose
(P�0.01) (Figure 2).

Figure 1. Effect of cilostazol on neointimal formation after bal-
loon injury to the rat carotid artery. A representative cross-
section of the left common carotid artery of a control rat 14
days after balloon injury, and 14 days after balloon injury with
100, 30, and 10 mg�d�1�kg�1 cilostazol. The bars represent the
intimal area of common carotid arteries after balloon injury in
each group of animals (n�5). Statistical significance was deter-
mined as *P�0.01, compared with control, #P�0.01, and
**P�0.05, compared with balloon-injured rats.
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Effect of Cilostazol on the DNA-Binding Activity
of E2F
In view of the finding that cilostazol inhibits the proliferation
of HVSMCs and neointimal formation, we examined its
effect on the cell cycle regulatory transcription factor, E2F.
The increase in E2F–DNA binding activity under high
glucose conditions was attenuated by cilostazol at a dose of
10 �mol/L (P�0.05). Cilostazol (100 �mol) completely
attenuated E2F–DNA binding activity (Figure 3A).

Effects of Cilostazol and cAMP Stimulants on
Promoter Activity in HVSMCs
To further confirm the inhibition of E2F–DNA binding
activity by cilostazol, we used E2F-responsive promoter
constructs containing 4 E2F binding sites in the promoter.
High glucose markedly stimulated E2F responsive promoter
activity, compared with normal glucose (P�0.05). This
increased luciferase activity was attenuated by cilostazol in a
dose-dependent manner (100 �mol/L, 10 �mol/L, and

1 �mol/L) (P�0.01, P�0.05, and P�0.05, respectively).
Similarly, forskolin (100 �mol/L) and 8-bromo-cAMP
(3 mmol/L) inhibited luciferase gene expression (P�0.01)
(Figure 3B).

Effects of Cilostazol and cAMP Stimulants on
Expression of E2F and PCNA Proteins
We next examined the expression patterns of E2F down-
stream genes, such as cyclin A and PCNA. Treatment with
high glucose increased the expression of E2F1, E2F2, cyclin
A, and PCNA proteins. This glucose-induced stimulation of
protein expression was inhibited by cilostazol and cAMP
stimulants, such as forskolin and 8-bromo-cAMP (Figure 4).

To demonstrate the inhibitory effect of cilostazol on E2F
downstream gene expression in vivo, we stained the neointi-
mal region with PCNA. A marked increase in PCNA-positive
cells in the neointimal region and dividing endothelial cells
were noted 2 weeks after injury. The number of PCNA-
positive cells in vessels treated with cilostazol was signifi-
cantly lower than that in untreated vessels (Figure 5).

Discussion
Patients with diabetes mellitus have higher restenosis rates
after coronary angioplasty than nondiabetic patients.2,4 Hy-
perglycemia is believed to play a pivotal role in this vascular
response, the major pathogenesis being the proliferation of
VSMCs.2,4,25 Multiple mechanisms involving protein kinase
C and NF-�B have been implicated in the genesis of
high-glucose–induced VSMC proliferation.26,27 Over the past
decade, the transcription factor E2F has emerged as a key
component of cellular proliferation, during which it controls
the expression of genes required for cell cycle progres-
sion,28,29 especially in high-glucose–stimulated VSMCs.11,30

However, only a few investigators have examined the effects
of pharmacological agents on E2F activity and VSMC pro-
liferation.31,32 Here, we show that cilostazol effectively re-
duces high-glucose–stimulated E2F activity, as well as pro-
liferation of HVSMCs in vitro and in vivo. In agreement with

Figure 2. The inhibitory effect of cilostazol on HVSMC prolifera-
tion. HVSMCs were treated with cilostazol (100, 10, and 1 �mol/
L), forskolin (100 �mol/L), and 8-bromo-cAMP (3 mmol/L). Pro-
liferation is presented as means�SEM of 3 separate
measurements. NG indicates HVSMCs cultured with normal glu-
cose (5.5 mmol/L D-glucose); HG, HVSMCs cultured with high
glucose (22 mmol/L D-glucose). *P�0.05 compared with NG;
#P�0.01 compared with HG; **P�0.05 compared with HG.

Figure 3. Effect of cilostazol on E2F–DNA binding activity and promoter activity. A, Effect of cilostazol on E2F–DNA binding activity.
Typical gel shift assay of HVSMC lysates treated with cilostazol (upper). Electrophoretic mobility shift assay results are expressed as
means�SEM of 3 separate measurements (lower). B, Effect of cilostazol on promoter activity. HVSMCs were treated with cilostazol
(100, 10, and 1 �mol/L), forskolin (100 �mol/L), and 8-bromo-cAMP (3 mmol/L), and each lysate was assayed for �-galatosidase and
luciferase. NG indicates HVSMCs cultured with normal glucose (5.5 mmol/L D-glucose); HG, HVSMCs cultured with high glucose
(22 mmol/L D-glucose); 8-b-cAMP, 8-bromo-cAMP. Data are presented as means�SEM of 3 separate measurements. Statistical signif-
icance was determined as *P�0.05 compared with NG; #P�0.01 compared with HG; and **P�0.05 compared with HG.
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our previous data,11 high glucose increases E2F–DNA bind-
ing and luciferase activity of the [E2F]�4-luciferase con-
struct, consequently stimulating VSMC proliferation. These
results provide a theoretical background for the use of
cilostazol in the treatment of vascular disease in diabetic
patients.

In mammals, 6 members of the E2F family have been
identified (E2F1 to E2F6), of which transcriptionally active
E2F proteins are structurally and functionally divided into 2
groups. Expression of E2F1 to E2F3 is low in quiescent cells,
and increases during growth stimulation, whereas E2F4 and
E2F5 accumulate in quiescent cells or during differentia-
tion.28,33,34 Several studies show that E2F proteins stimulate
their own activity directly through the presence of binding
sites in the promoters (E2F1 and E2F2),35 and E2F down-
stream transcription is mediated by the synthesis of new E2F1
and E2F2.36–38 Moreover, a previous study by our group
demonstrated that high glucose increased the expression of
endogenous targets of E2F, cyclin A, and PCNA. This
expression was successfully inhibited by E2F decoy oligode-
oxynucleotides. Accordingly, we investigated whether
cilostazol could attenuate the increased expression of E2F1,
E2F2, cyclin A, and PCNA mediated by high-glucose–
stimulated E2F–DNA binding activity. Our data establish that
cilostazol inhibits the high-glucose–stimulated increase in
E2F1 and E2F2 proteins and their endogenous downstream
targets, cyclin A, and PCNA. This study additionally shows

that cilostazol attenuates the increase in PCNA-positive cells
in the neointimal region and completely abolishes neointimal
formation induced by balloon injury.

Recently, the mechanisms by which cAMP suppresses the
proliferation and migration of VSMCs and prevents postan-
gioplasty neointimal formation have been investigated.21,39,40

Newman et al reported that cAMP inhibits the production of
IL-6 and migration of HVSMCs.39 Andolfi et al showed that
the activation of cAMP-dependent protein kinase inhibits
neointimal formation after vascular injury in a model of
restenosis after angioplasty.40 Hayashi et al reported that
cAMP directly inhibits abnormal VSMC growth and induces
the expression of the anti-oncogenes, p53 and p21, and
apoptosis.21 In addition, results from the present study
strongly suggest that the inhibitory effect of cAMP on VSMC
proliferation is mediated by downregulation of E2F activity.

Figure 4. Effect of cilostazol on E2F1, E2F2, cyclin A, and
PCNA protein expression. Typical Western blot of E2F1, E2F2,
cyclin A, and PCNA in HVSMCs treated with cilostazol (100, 10,
and 1 �mol/L), forskolin (100 �mol/L), and 8-bromo-cAMP
(3 mmol/L). NG indicates HVSMCs cultured with normal glucose
(5.5 mmol/L D-glucose); HG, HVSMCs cultured with high glu-
cose (22 mmol/L D-glucose). Data are presented as
means�SEM of 3 separate measurements. Statistical signifi-
cance was determined as *P�0.01 compared with NG;
#P�0.001 compared with HG; **P�0.01 compared with HG,
and ##P�0.05 compared with HG.

Figure 5. Effect of cilostazol on PCNA expression of the neointi-
mal region after balloon injury. PCNA staining of control vessel,
balloon-injured vessel without cilostazol, and balloon-injured
vessels with 100, 30 and 10 mg�d�1�kg�1 cilostazol are shown.
PCNA-positive cells appear brown–black, and the number of
PCNA-positive cells in the neointimal region in vessels treated
with cilostazol was lower than that in untreated vessels. All fig-
ures are depicted at 200� magnification. The arrow represents
the neointimal region. The scale bar represents 50 �m.
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Perspectives
The present study has clearly demonstrated that phosphodi-
esterase type 3 inhibitor, cilostazol, effectively reduces high-
glucose–stimulated E2F activity and proliferation of
HVSMCs in vitro and in vivo. The data presented herein are
consistent with other reports showing a role for cAMP in
VSMCs proliferation and neointimal formation. Taken to-
gether, these studies suggest that these agents increase cAMP
in the vasculature, which thereby helps to prevent the devel-
opment of restenosis after percutaneous transluminal coro-
nary angioplasty, especially in patients with diabetes.
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