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Background: The activation of guanine nucleotide binding protein-coupled receptors, such as adenosine receptor 

(ADR) and opioid receptor (OPR), protects the heart against ischemia and reperfusion injury. We hypothesized that 

ADR or OPR might be involved in polyphenol (-)-epigallocatechin gallate (EGCG)-induced cardioprotection. 

Methods: Langendorff perfused rat hearts were subjected to 30 min of regional ischemia and 2 h of reperfusion. 

Hearts were treated with 10 μM of EGCG, with or without the ADR or OPR antagonist at early reperfusion. Infarct size 

measured with 2,3,5-triphenyltetrazolium chloride staining was chosen as end-point.

Results: EGCG significantly reduced infarct volume as a percentage of ischemic volume (33.5 ± 4.1%) compared to 

control hearts (14.4 ± 1.1%, P < 0.001). A nonspecific ADR antagonist 8-(p-sulfophenyl) theophylline hydrate (27.1 

± 1.9%, P < 0.05 vs. EGCG) but not a nonspecific OPR antagonist naloxone (14.3 ± 1.3%, P > 0.05 vs. EGCG) blocked 

the anti-infarct effect by EGCG. The infarct reducing effect of EGCG was significantly reversed by 200 nM of the A1 

ADR antagonist DPCPX (25.9 ± 1.1%, P < 0.05) and 15 nM of the A2B ADR antagonist MRS1706 (29.3 ± 1.7%, P < 0.01) 

but not by 10 μM of the A2A ADR antagonist ZM241385 (23.9 ± 1.9%. P > 0.05 vs. EGCG) and 100 nM of the A3 ADR 

antagonist MRS1334 (24.1 ± 1.8%, P > 0.05). 

Conclusions: The infarct reducing effect of EGCG appears to involve activation of ADR, especially A1 and A2B ADR, 

but not OPR. (Korean J Anesthesiol 2012; 63: 340-345)
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Introduction

Polyphenol (-)-epigallocatechin gallate (EGCG), a major 

catechin of green tea, by targeting ischemia [1] and reperfusion 

[2] pro vides cardioprotection against ischemia-reperfusion 

injury. We recently reported that the cardioprotective effect 

by EGCG was mediated via the ATP-sensitive potassium (KATP) 

channels [2].

On the other hand, homeostatic regulation and stress 

responses are mainly regulated by the extracellular signals 

transduced by guanine nucleotide binding protein (G-protein)-

coupled receptor (GPCR) in the heart [3]. Adenosine receptor 

(ADR) and opioid receptor (OPR) belong to the GPCR family 

and activation of these upstream receptors might protect the 

heart by triggering second messengers [4,5]. 

We hypothesized that ADR or OPR might be activated by 

EGCG-induced cardioprotection. We therefore investigated the 

infarct reducing effect with ADR or OPR antagonists in EGCG-

induced cardioprotection in isolated rat hearts. 

Materials and Methods

The experimental procedures and protocols used in this 

study were reviewed and approved by our Institutional Animal 

Care and Use Committee. 

Drugs and chemicals

EGCG, 8-(p-sulfophenyl)theophylline hydrate (8-SPT), 

and 2,3,5-triphenyltetrazolium chloride (TTC) were ob-

tained from Sigma-Aldrich Chemical, St. Louis, MO, USA. 

Naloxone was purchased from Reyon Pharmaceutical Co., 

Seoul, Republic of Korea. Fluorescent polymer microspheres 

were purchased from Duke Scientific, Palo Alto, CA, USA. 

8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), 4-(2-[7-amino-

2-(2-furyl)[1,2,4]triazolo [2,3-a][1,3,5]triazin-5-ylamino]

ethyl)phenol (ZM241385), N-(4-acetylphenyl)-2-[4-(2,3,6,7-

tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]

acetamide (MRS1706), and 1,4-dihydro-2-methyl-6-phenyl-4-

(phenylethynyl)-3,5-pyridinedicarboxylic acid 3-ethyl-5-[(3-

nitrophenyl)-methyl]ester (MRS1334) were purchased from 

Tocris Bioscience, Ellisville, MO, USA. Other chemicals were 

obtained from Sigma-Aldrich Chemical. 

EGCG, 8-SPT and naloxone were dissolved in distilled water. 

DPCPX, ZM241385, MRS1706 and MRS1334 were dissolved in 

dimethyl sulfoxide. Stock chemicals were stored at -20oC and 

were diluted with Krebs-Henseleit (KH) solution to the required 

final concentrations on the day of each experiment.

Langendorff isolated heart perfusion preparation

Male Sprague-Dawley rats, weighing 280-330 gm obtained 

from KOATECH Co., Cheongwon-gun, Republic of Korea, were 

used. They received 50 mg/kg of pentobarbital sodium and 

300 IU of heparin intraperitoneally. Hearts were isolated and 

perfused with modified KH solution containing (in mM) 118.5 

NaCl, 4.7 KCl, 1.2 MgSO4, 1.8 CaCl2, 24.8 NaHCO3, 1.2 KH2PO4, 

and 10 glucose, as described previously [6]. Regional ischemia 

was induced by pulling the snare which was made at the level 

of the proximal length of the left coronary artery (LCA) and 

its major branches and confirmed by regional cyanosis and 

a substantial decrease in left ventricular developed pressure 

(LVDP). Reperfusion was started by releasing the snare. 

Experimental protocol 

All hearts were subjected to 30 min of regional ischemia and 

120 min of reperfusion. Infusion of EGCG and antagonists was 

started 10 min before the onset of reperfusion and continued 

for 40 min (Fig. 1). To assess the involvement of ADR or OPR in 

EGCG-induced cardioprotection, ADR and OPR antagonists 

were perfused via 2nd port 10 min before EGCG perfusion. 

The concentrations of all chemicals were based on our and 

other previous studies on isolated working rat hearts that had 

no effect on infarct size in hearts subjected to ischemia and 

reperfusion [5,7-11]. 

Determination of area at risk and infarct size

At the end of each experiment, the LCA perfusion circuit 

was precluded, and diluted fluorescent polymer microspheres 

(Duke Scientific Corp., Palo Alto, MA, USA) were infused to 

demarcate the area at risk (AR). The hearts were cut into 2-mm 

Fig. 1. Experimental protocols. Hearts were subjected to 30 min of 
regional ischemia and 2 h of reperfusion. Polyphenol (-)-epigallo-
catechin gallate (EGCG) was perfused from 5 min before reperfusion 
to 30 min after reperfusion. Adenosine or opioid receptor antagonists 
were pre-treated 10 min before EGCG perfusion.
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thick transverse slices using a rat heart slice matrix (Zivic Instru-

ments, Pittsburgh, PA, USA). The slices were incubated in 

1% 2,3,5-triphenyltetrazolium chloride (TTC, Sigma-Aldrich 

Chemical, St. Louis, MO, USA) in sodium phosphate buffer (pH 

= 7.4) at 37oC for 20 min and subsequently immersed in 10% 

formalin to enhance the contrast. The left ventricle (LV) was 

removed from the remaining tissue. The myocardial AR in the LV 

was identified by illuminating with UV light. The necrotic area 

(AN, unstained with TTC) and AR (nonfluorescent under UV 

light) were traced on a clear acetate transparent sheet (Fig. 2B 

and 2C) and quantified with UTHSCSA Image Tool, version 3.0 

(Department of Dental Diagnostic Science at The University 

of Texas Health Science Center, San Antonio, Texas, USA). The 

areas were converted into volumes by multiplying them by slice 

thickness. The AN volume was expressed as a percentage of the 

AR volume. All morphometric measurements were performed 

in a blinded fashion by a separate technician. 

Statistical analysis

Data are presented as means ± SEM. Data analysis was per-

formed with a personal computer statistical software package 

(SPSS for windows, Release 17.0; SPSS Inc, Chicago, IL, USA). 

Data were analyzed using one-way analysis of variance (ANOVA) 

with Tukey’s HSD post-hoc testing. Null hypotheses of no 

difference were rejected if P values were less than 0.05.

Results

A total of 96 rat hearts were used for infarct measurement 

experiment. Four rats were excluded during the stabilization 

period because of a CF > 18 ml/min or < 8 ml/min (2), LVDP < 

80 mmHg (1), or HR < 250 beats/min (1). A further two hearts 

were excluded due to irreversible post-ventricular fibrillation 

pump failure (1 in control and 1 in EGCG + ZM241385). There-

Fig. 2. (A) Regional ischemia was induced by pulling the snare at the level of the proximal left coronary artery, (B) The area at risk of left ventricle 
slice was identified by UV light illumination as the tissue without fluorescence. (C) The area of necrosis was identified by unstained area by TTC 
(closed circle) in area at risk. 

Table 1. Morphometric Data (each group n = 9)

Group
BW

(gm)
HW

(gm)
HW/BW

(%)
LV volume

(cm3)
AR volume

(cm3)
AR/LV

(%)

CON
EGCG
EGCG + NAL
EGCG + SPT
EGCG + DPCPX
EGCG + ZM241385
EGCG + MRS1706
EGCG + MRS1334

315.6 ± 5.7
316.7 ± 5.7
315.6 ± 4.7
311.5 ± 5.7
318.8 ± 5.6
316.7 ± 5.7
313.3 ± 4.2
314.9 ± 5.3

1.58 ± 0.03
1.61 ± 0.05
1.60 ± 0.03
1.61 ± 0.05
1.61 ± 0.04
1.60 ± 0.07
1.59 ± 0.05
1.59 ± 0.03

0.50 ± 0.01
0.51 ± 0.01
0.51 ± 0.01
0.52 ± 0.02
0.51 ± 0.01
0.51 ± 0.03
0.51 ± 0.01
0.51 ± 0.01

0.708 ± 0.027
0.717 ± 0.023
0.698 ± 0.018
0.692 ± 0.020
0.723 ± 0.008
0.738 ± 0.023
0.740 ± 0.032
0.693 ± 0.031

0.492 ± 0.023
0.527 ± 0.035
0.461 ± 0.037
0.465 ± 0.032
0.468 ± 0.020
0.487 ± 0.031
0.468 ± 0.018
0.467 ± 0.037

69.6 ± 2.6
73.7 ± 4.8
65.7 ± 4.4
67.3 ± 4.1
64.8 ± 2.8
66.3 ± 4.6
63.5 ± 1.7
66.9 ± 2.4

Values are means ± SEM. CON: untreated control heart, EGCG: polyphenol (-)-epigallocatechin gallate, NAL: nonspecific opioid receptor anta-
gonist naloxone, SPT: nonspecific adenosine receptor (ADR) antagonist 8-(p-sulfophenyl)theophylline hydrate, DPCPX: A1 ADR antagonist, 
ZM241385: A2a ADR antagonist, MRS1706: A2b ADR antagonist, MRS1334: A3 ADR antagonist, BW: body weight, HW: heart weight, LV: left 
ventricle, AR: area at risk. There were no significant differences among groups.
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fore, we report the data for 90 successfully completed infarct 

experiments (each group n = 9). 

There were no significant group differences in body weight, 

heart weight, heart to body weight ratio, LV volume, AR 

volume and AR to LV ratio (Table 1). Ten μM of EGCG targeting 

reperfusion significantly reduced infarct size over risk area from 

33.5 ± 4.1 % to 14.4 ± 1.1% (P < 0.001 vs. CON) (Fig. 3). Ten μM 

of the nonspecific OPR antagonist naloxone (14.3 ± 1.3%, P < 

0.001 vs. CON) could not block the infarct-limitation effect by 

EGCG. However, 1 μM of the nonspecific ADR antagonist 8-SPT 

(27.1 ± 1.9%, P > 0.05 vs. CON) blocked the anti-infarct effect by 

EGCG. Naloxone and 8-SPT itself did not alter infarct size (30.9 

± 4.5% for NAL and 29.6 ± 3.2% for 8-SPT, P > 0.05 vs. CON). 

All four ADR antagonists had a tendency to attenuate the 

infarct-sparing effect by EGCG. The infarct reducing effect 

of EGCG was significantly reversed by 200 nM of the A1 ADR 

antagonist DPCPX (25.9 ± 1.9%, P < 0.01) and 15 nM of the A2B 

ADR antagonist MRS1706 (29.3 ± 1.7%, P < 0.01) but not by 10 

μM of the A2A ADR antagonist ZM241385 (23.9 ± 1.9%) and 100 

nM of the A3 ADR antagonist MRS1334 (24.1 ± 1.8%) (Fig. 4). 

Discussion

In the present study, EGCG targeting reperfusion effectively 

reduced infarct size after myocardial ischemia and reperfusion. 

Interestingly, the infarct reducing effect by EGCG was totally 

Fig. 3. (A) Representative sequential left ventricle (LV) slices from 
each group showing area of necrosis (pale area) with TTC staining. (B) 
% of infarct area (AN) over area at risk (AR). All data are expressed 
as means ± SEM. CON: untreated control hearts, EGCG: polyphenol 
(-)-epigallocatechin gallate, NAL : nonspecific opioid receptor 
antagonist naloxone, SPT: nonspecific adenosine receptor antagonist 
8-(p-sulfophenyl)theophylline hydrate. *P < 0.05 vs. CON, †P < 0.05 
vs. EGCG.

Fig. 4. (A) Representative sequential left ventricle (LV) slices from 
each group showing area of necrosis (pale area) with TTC staining 
after adenosine receptor (ADR) antagonist pretreatment in EGCG 
treat hearts. (B) % of infarct area (AN) over area at risk (AR). All 
data are expressed as means ± SEM. CON: untreated control hearts, 
EGCG: polyphenol (-)-epigallocatechin gallate, DPCPX: A1 ADR 
antagonist, ZM241385: A2a ADR antagonist, MRS1706: A2b ADR 
antagonist, MRS1334: A3 ADR antagonist. *P < 0.05 vs. CON, †P < 0.05 
vs. EGCG. 
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blocked by a nonspecific ADR antagonist 8-SPT but not by a 

nonspecific OPR antagonist naloxone, implying the involvement 

of ADR in EGCG-induced cardioprotection. We further tested 

the involvement of subtypes of ADR in the infarct limitation 

effect by EGCG with four different ADR subtypes (A1, A2A, 

A2B, and A3) antagonists. A1 and A2B ADR subtype antagonists 

attenuated the infarct-sparing effect by EGCG. Our data suggest, 

for the first time, that EGCG-induced cardioprotection may 

attenuate myocardial ischemia-reperfusion injury, at least in 

part, through ADR activation. 

Meanwhile, our present data clearly suggest that there is 

a functional coupling between EGCG and ADR in mediating 

EGCG-induced cardioprotection in the isolated rat heart, 

although the exact mechanism of this interaction between 

EGCG treatment and cardiac ADR is not known. One possible 

mechanism is that EGCG may further increase myocardial 

levels of adenosine. Adenosine is produced primarily through 

the metabolism of adenosine triphosphate (ATP) and its level 

increases during stressful situations when ATP utilization 

increases, such as in our myocardial ischemia reperfusion 

injury model. Therefore, it may be possible that EGCG further 

increase the release of adenosine. However, there is scant 

information about the adenosine level change by EGCG treat-

ment in the heart. Navarro-Peran et al. [12] demonstrated that 

EGCG produces a significant increase in a specific ADR in colon 

cancer cells and adenosine can modulate different signaling 

pathways by binding to its specific receptors. In their study, 

A3 ADR antibody expression was significantly increased after 

EGCG treatment in cytosolic fractions of Caco-2 cells. Therefore, 

the change in adenosine level by EGCG treatment in the 

myocardial ischemia-reperfusion model should be determined 

in the future. Meanwhile, cardioprotection does not necessarily 

correlate with increased adenosine production. Thus, adenosine 

concentration is not crucial to the beneficial effects of ischemia-

reperfusion of the injured rat heart [13]. In this regard, another 

possible mechanism might involve endogenous activation of 

ADR itself without increase in adenosine level. 

ADR is a GPCR and there are four subtypes, A1, A2A, A2B 

and A3. The activation of these ADR subtypes has been shown 

to be cardioprotective [14-16]. During the past two decades, 

numerous mechanisms of adenosine-mediated cardio-

protection have been proposed. ADR activation has been 

suggested to reduce cell death through the mitochondrial 

KATP (mKATP) channel as well as protein kinase C and mitogen-

activated protein kinase (MAPK) signaling [17,18]. Meanwhile, 

we previously reported the role of mKATP channel in EGCG-

induced cardioprotection in isolated rat hearts [2]. The infarct 

limitation effect by EGCG was totally blocked by the non-

selective KATP channel blocker glibenclamide and the selective 

mKATP channel blocker 5-hydroxydecanoate, implying that KATP 

channels, especially mKATP channels, play a crucial role in the 

cardioprotection by EGCG. Taken together, it is highly plausible 

that EGCG may provide cardioprotection via mKATP channel 

activation by ADR activation. However, the involvement of 

MAPK signaling in EGCG-induced cardio pro tection is not clear. 

Previous studies in this laboratory have shown that that EGCG 

treatment did not increase the phosphorylation of ERK and 

Akt compared to untreated control hearts (data not shown). 

Therefore, it is not likely that ADR activation by EGCG involves 

MAPK downstream signaling. 

In the present study, we perfused EGCG targeting early 

reperfusion phase. Interestingly, it has been proposed that 

activation of both A1 and A3 ADR is cardioprotective when 

triggered ischemic period. For example, intracoronary injection 

of A1 ADR agonist N6-1-(phenyl-2R-isopropyl)adenosine 

reduced infarct size as effective as ischemic preconditioning in 

isolated rabbit heart [19]. In contrast, it has been demonstrated 

that the cardioprotection by activation of A2 ADR is beneficial 

during reperfusion [20,21]. Potent A2B ADR agonist NECA 

infused from 5 min reperfusion mimicked ischemic postcon-

ditioning's effect on infarct size in in situ rabbit hearts [22]. In 

this study, EGCG-induced infarct limitation was blocked by A1 

and A2B ADR. This suggests ADR may be involved in the EGCG 

treatment targeting both ischemia and reperfusion. 

In conclusion, the infarct reducing effect of EGCG appears 

to involve activation of ADR, especially A1 and A2B ADR, but not 

OPR in isolated rat heart. Further studies in an ADR knockout 

mouse heart model and ADR level measurement by Western 

blot analysis should be undertaken in the future. 
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