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  P2Y receptors are metabotropic G-protein-coupled receptors, which are involved in many important 
biologic functions in the central nervous system including retina. Subtypes of P2Y receptors in retinal 
tissue vary according to the species and the cell types. We examined the molecular and pharmacologic 
profiles of P2Y purinoceptors in retinoblastoma cell, which has not been identified yet. To achieve this 
goal, we used Ca2＋ imaging technique and western blot analysis in WERI-Rb-1 cell, a human retino-
blastoma cell line. ATP (10 μM) elicited strong but transient [Ca2＋]i increase in a concentration- 
dependent manner from more than 80% of the WERI-Rb-1 cells (n=46). Orders of potency of P2Y 
agonists in evoking [Ca2＋]i transients were 2MeS-ATP＞ATP＞＞UTP=αβ-MeATP, which was compatible 
with the subclass of P2Y1 receptor. The [Ca2＋]i transients evoked by applications of 2MeS-ATP and/or 
ATP were also profoundly suppressed in the presence of P2Y1 selective blocker (MRS 2179; 30 μM). 
P2Y1 receptor expression in WERI-Rb-1 cells was also identified by using western blot. Taken together, 
P2Y1 receptor is mainly expressed in a retinoblastoma cell, which elicits Ca2＋ release from internal 
Ca2＋ storage sites via the phospholipase C-mediated pathway. P2Y1 receptor activation in retino-
blastoma cell could be a useful model to investigate the role of purinergic [Ca2＋]i signaling in neural 
tissue as well as to find a novel therapeutic target to this lethal cancer.
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INTRODUCTION

  Extracellular nucleotides have been demonstrated to act 
as signaling molecules by activation of P2 purinoceptors. 
Two groups of P2 receptors have been identified: the iono-
tropic P2X receptors and the metabotropic P2Y receptors, 
which belong to the superfamily of G-protein-coupled re-
ceptors [1-3]. P2Y receptors are especially widespread in 
the central nervous system and play important roles in reg-
ulating the activity of a large number of physiological func-
tions [4,5]. Up to date, eight subtypes of P2Y receptors 
(P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) 
have been identified in mammals [1,5]. P2Y1, P2Y2, P2Y4, 
P2Y6, and P2Y11 receptors are coupled to Gq, to activate 
phospholipase C (PLC) leading to the formation of inositol 
1,4,5-triphosphate (IP3). P2Y12, P2Y13, and P2Y14 are cou-
pled to Gi, to inhibit adenylyl cyclase (AC). P2Y11 receptor 
has the unique property to couple through both Gq and Gs 
[4-7]. Subtype distribution varied among the different spe-
cies and cell types [8] and each subtype of P2Y receptors 
may have different functional roles [9,10].
  Retina is a part of the CNS in contrast to all other ocular 

tissues [11]. Expression profiles and physiological charac-
teristics of P2Y receptors have been investigated in various 
retinal tissues. Several subtypes of P2Y receptors, including 
P2Y1, P2Y2, P2Y4, and P2Y6, are expressed in retinal neu-
rons and glial cells [8,10-13]. Particularly, P2Y2 receptor 
mRNA has been verified in the ganglion cell layer and the 
inner nuclear layer of adult Rhesis Macaques and albino 
rabbits [9]. P2Y signaling in retinal tissues are involved 
in cellular processes such as neurotransmission, fluid secre-
tion, differentiation, and cell death, which are important 
for retinal function and diseases [14-16].
  Human retinoblastoma is the most common intraocular 
cancer of childhood, which is a malignant tumor originated 
from multipotential embryonic retinal cells [17]. Recently, 
much attention has been paid to this tumor cell since it 
provided a good model for studying mechanisms underlying 
differentiation, apoptosis, and tumorigenesis in neuronal 
cells [18]. So far, however, it has not been investigated 
about the response to extracellular ATP and purinoceptors 
mediating this signaling in retinoblastoma cells. In this re-
gard, the present study was aimed at elucidating P2Y re-
ceptors in WERI-Rb-1 cells using Ca2＋ imaging technique 
and western blot analysis.
  We found that P2Y1 receptor protein was identified to 
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be expressed in the WERI-Rb-1 cells. Furthermore, the 
[Ca2＋]i transients by application of 2-MeS-ATP and/or ATP 
was also strongly suppressed in the presence of P2Y1 se-
lective blocker, which means that P2Y1 receptor is the main 
functional P2Y isotype in retinoblastoma cells. 

METHODS

Cell culture

  WERI-Rb-1 human retinoblastoma cell lines were pur-
chased from the American Type Culture Collection (Rockville, 
MD, USA) and maintained according to the distributor’s in-
structions [19]. Briefly, cells were transferred into 25-cm2 
culture flasks containing 90% RPMI 1640 medium (Cambrex, 
Walkersville, MD, USA) and 10% fetal bovine serum 
(GibcoBRL, Grand Island, NY, USA), and grown in a hu-
midified atmosphere with 5% CO2 at 37oC. Antibiotics 
(penicillin 100,000 unit/l and streptomycin 100 mg/l) were 
added to the culture medium. Cells were subcultured again 
every three to four days. For the experiments, cells were 
plated on poly-L-lysine coated glass coverslips for 1 hr be-
fore use.

Fluorescence imaging of [Ca2＋]i in single cells

  WERI-Rb-1 cells were loaded with Ca2＋-sensitive fluo-
rescent dye, Fluo 3-AM (5 μM; Invitrogen, Eugene, OR, 
USA), at 37oC for 40 min in culture medium. Then, the cells 
were incubated for an additional 30 min in Fluo 3-AM-free 
physiological buffer (CaPSS, composition: 145 mM NaCl, 5 
mM KCl, 0.8 mM MgCl2, 1.8 mM CaCl2, 10 mM HEPES, 
and 10 mM D-glucose; adjusted to pH 7.4 with NaOH) at 
room temperature (24∼26oC) to remove extracellular traces 
of the dye and to complete de-esterification. Subsequently, 
the coverslips were mounted cell-side up in the free bottom 
of a perfusion chamber, placed on the stage of an inverted 
microscope (IX51, Olympus, Tokyo, Japan). Throughout the 
experiments, cells were continuously perfused at approx-
imately 2 ml/min by means of a gravity-driven perfusion 
system with drug-free or drug-containing buffer solutions. 
The dye-loaded cells were excited at 488 nm by a mono-
chromatic light source (LAMDA DG-4, Sutter, Novata, CA, 
USA) with 175-W xenon lamp and fluorescence images were 
captured at 530 nm through an objective lens (40×, UApo/340, 
Olympus, Tokyo, Japan) by an intensified CCD camera 
(Cascade, Roper, Duluth, GA, USA) controlled by a computer. 
Fluorescence images were acquired every 1 sec during drug 
applications; however, the interval was increased to every 
30 sec during recovery or the wash-out period to minimize 
cell injury from phototoxicity. Data are expressed as F/F0 
by using MetaFluor 6.1 software package (Universal Imaging 
Corporation, Downingtown, PA, USA). F0 represents the 
basal fluorescence value of fluo-3-loaded cells before stim-
ulation, and F represents the change in fluorescence occur-
ring during stimulation of the cell. All fluorescence meas-
urements were performed at room temperature.

Western blot analysis

  Immunoblot technique was performed to identify proteins 
representing P2Y1 and P2Y2 receptor subtypes expressed 
in cell membrane using respective antibodies of each sub-
types (Abcam, UK) according to the method by Xia et al. 

[20]. In details, a confluent monolayer of WERI-Rb-1 cells 
(5×106) was isolated by 0.5% trypsin-EDTA and rinsed 
twice with ice cold PBS (150 mM NaCl, 4.52 mM NaH2PO4, 
15.48 mM Na2HPO4, pH 7.4) and then harvested using a 
rubber policeman. After a brief centrifugation at 1,000×g 
for 10 min, the cells were resuspended in a 0.5 ml modified 
radioimmunoprecipitation (RIPA) buffer containing 50 mM 
Tris-HCl, pH=7.4, 1% NP-40, 0.25% sodium deoxycholate, 
150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM NaF, apro-
tinin 1 μl/ml, pepstatin 1 μg/ml. The mixture was left on 
ice for 30 min, with gentle shaking every 10 min. The cells 
were disrupted by dounce homogenization using glass 
douncers, and the undisrupted cells and cellular debris 
were removed by centrifugation at 12,000×g for 15 min at 
4oC. The supernatant was then diluted fivefold with lysis 
buffer and subjected to high-speed centrifugation at 92,500 
g in a 70.1 Ti rotor (Beckman Optima LE-80K; 30,000 rpm) 
for 1 hr at 4oC. The resulting pellet was resuspended in 
500 μl of lysis buffer. The sample was then diluted 1：1 
with Laemmli sample buffer (62.5 mM Tris-HCl, pH 6.8, 
2% SDS, 25% glycerol, 0.01% bromophenol blue) containing 
20 mM DTT and incubated at 95oC for 5 min before being 
loaded onto a gel. Stabilized proteins were separated on a 
10% Tris-HCl Ready Gel (Bio-Rad) for 90 min at 20 mM 
and electrophoretically transferred to polyvinylidene fluo-
ride membranes (Pall, MI, USA) for 60 min at 225 mA. The 
membranes were blocked with 5% nonfat dry milk in PBST 
buffer (0.05% Tween-20) for 1 hr and then immediately in-
cubated for 1 hr with anti-purinergic polyclonal antibodies 
(1：500) dissolved in TBST. The antibody used for peptide 
blocking was treated with 1 μg peptide/μg antibody for 1 
hr at room temperature immediately before being in-
cubated with the membrane. Dilutions of the antibodies 
were similar in the presence and absence of peptide. After 
being washed 3 times for 15 min with PBST, the mem-
branes were incubated for 1 hr with horseradish perox-
idase-conjugated goat anti-rabbit IgG (Jackson ImmunoLabs, 
West Grove, PA). Membranes were washed and then de-
tected using ECL Plus western blotting detection reagents 
(Amersham, Piscataway, NJ) following the manufacturer’s 
instructions. 

Solutions and drugs

  WERI-Rb-1 cells were continuously superfused by gravity 
at a flow rate of 2 ml/min with the bath solutions (normal 
PSS) or experimental solutions. Normal PSS contained 135 
mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 10 mM 
HEPES and 10 mM glucose and was adjusted to pH 7.4 
with NaOH. Adenosine 5’-triphosphate (ATP), uridine 
5’-triphosphate (UTP), 2-methylthioadenosine 5’-triphosphate 
(2MeS-ATP), αβ-methylene ATP (αβ-MeATP), and MRS 
2179 were purchased from Sigma (St. Louis, MO, USA). 
Fluo-3/AM was dissolved into dimethyl sulfoxide (DMSO), 
and all other drugs were dissolved into the distilled water 
as stock solutions of mM order and stored into a freezer. 
Each stock solution was diluted to appropriate concen-
trations with the normal PSS just before the start of the 
experiment. 

Statistical significance

  Quantitative data are represented as the mean±S.E.M. 
Statistical comparisons were made by the two-tailed t-test 
and ANOVA, and when p＜0.05, the differences were con-
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Fig. 1. ATP-evoked Ca2＋ signaling in 
WERI-Rb-1 cells. (A) Original trace of Ca2＋

responses evoked by four different 
concentrations of ATP in the same group of 
cells. (B) Dose-response curve fitting the 
peak responses obtained from five different 
groups of cells. F0: basal fluorescence after 
Fluo 3-AM loading, F: change in fluorescence 
after introducing ATP, n=total cell number, 
N=number of experiment.

Fig. 2. Concentration-response curve of P2Y receptor agonists in 
WERI-Rb-1 cells. Each curve shows the peak calcium responses of 
increasing concentrations of 2MeS-ATP, a selective P2Y1 agonist, 
αβ-MeATP, a P2X agonist, and UTP, a P2Y2/P2Y4/P2Y6 agonist. 
Both αβ-MeATP and UTP did not induce calcium rise. Values are 
means±S.E.M. n=total cell number, N=number of experiments. 

sidered to be significant. 

RESULTS

Changes in [Ca2＋]i via ATP in control WERI-Rb-1 
cells

  We observed the ATP-induced [Ca2＋]i changes in WERI- 
Rb-1 cells to determine the existence of P2 purinoceptor. 
As shown in Fig. 1, ATP triggered [Ca2＋]i responses in a 
dose-dependent manner confirming the implication of P2 
purinergic receptors. ATP (10 μM) applied for 30 sec pro-
duced a sharp [Ca2＋]i spike within 1∼2 s on application 
and recovered rapidly after removal of ATP. During re-
peated applications with 7 min intervals, ATP-induced [Ca2＋]i 
transient was not desensitized prominently showing about 
93% of the first one after the 3rd application (data not 
shown). We found that more than 80% of the cells examined 
by fluo-3 imaging exhibited [Ca2＋]i responses to ATP. 

Effects of purinergic agonists on [Ca2＋]i response

  The characteristics of functional purinergic receptors 
were examined using more selective agonists to P2 re-
ceptors in WERI-Rb-1 cells. 2MeS-ATP, a selective P2Y1 re-
ceptor agonist, evoked intracellular [Ca2＋]i transient in a 
concentration-dependent manner, which was more potent 
than ATP (Fig. 2). Interestingly, applications of 100 μM 
αβ-MeATP (P2X3, P2X4 agonist) and 100 μM UTP (P2Y2, 
P2Y4, P2Y6 agonist) did not elicit any [Ca2＋]i rise, implying 
that P2 receptors other than P2Y1 act a negligible func-
tional role in WERI-Rb-1 cells. 

Pharmacological characterization of ATP-induced Ca2＋ 
response

  The ATP (10 μM)-induced [Ca2＋]i transient was almost 
completely abolished by pretreatment with 30 μM MRS 
2179, a selective P2Y1 antagonist (92.5±1.6% inhibition; 
n=45; N=4; Fig. 3). In addition, MRS 2179 also successfully 
blocked the 2MeS-ATP (1 μM)-induced [Ca2＋]i response 
(n=76, N=6, Fig. 4). These evidences strongly indicate that 
purinergic [Ca2＋]i signaling is mainly mediated by P2Y1 re-

ceptor in WERI-Rb-1, a human retinoblastoma cell line. 

Functional expression of major P2Y receptor(s) in 
human retinoblastoma

  To further clarify the subtype of P2Y receptors in WERI- 
Rb-1 cells, we used western blot analysis. We tested the 
protein expression of P2Y1 and P2Y2 receptor, since it has 
been reported that P2Y2 receptor is widely expressed in ocu-
lar tissues [9]. As shown in Fig. 5, we identified a band 
for P2Y1 subtype at approximately 70 kDa that is compat-
ible with the deduced size of P2Y1 receptor protein in west-
ern blot analysis. Interestingly, we could not detect any 
band for P2Y2 receptor. 
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Fig. 3. Differential effect of P2Y agonists on [Ca2＋]i in WERI-Rb-1 
cells. Original traces (A) and graph (B) showing calcium transient 
evoked by ATP (10 μM), a putative P2Y agonist, and its suppression
after application of 30 μM MRS2179, a selective P2Y1 antagonist. 
F0: basal fluorescence after Fluo 3-AM loading, F: changes in 
fluorescence after introducing agonist or antagonist, n=total cell 
number, N=number of experiment. ***Denotes p<0.001.

Fig. 4. Effect of P2Y1 antagonist on 2-MeS-ATP-induced [Ca2＋]i
changes in WERI-Rb-1 cells. Original traces (A) and graph (B) 
showing calcium transient evoked by 2-MeS-ATP (1 μM), a P2Y1
agonist, and its suppression after application of the 30 μM 
MRS2179, a selective P2Y1 antagonist. F0: basal fluorescence after 
Fluo 3-AM loading, F: changes in fluorescence after introducing 
agonist or antagonist, n=total cell number, N=number of 
experiment, ***denotes p<0.001.

Fig. 5. Immunoblots of P2Y receptor subtypes in WERI-Rb-1 cells. 
P2Y1 purinoceptor was identified by the band at around 70 kDa, 
which is compatible with its deduced protein size.

DISCUSSION

  In this study, we pursued the expressional and functional 
profiles of P2Y receptor subfamilies in WERI-Rb-1 cells, a 
human retinoblastoma cell line, by using [Ca2＋]i measure-
ment and western blotting techniques. Results showed that 
P2Y1 receptor subtype was functionally expressed and in-
duced a marked increase in [Ca2＋]i in WERI-Rb-1 cells.
  Increase in [Ca2＋]i is a regulatory signal for many normal 
developmental events such as fertilization, embryogenesis, 
cell proliferation, and even for cell death [21,22]. In addi-
tion, it may also be involved in various pathophysiologic 
changes [8,23]. Muscarinic and purinergic receptors are 
well known to raise [Ca2＋]i by releasing Ca2＋ from intra-
cellular stores [24]. We, previously, demonstrated that the 
M3 and M5 muscarinic subtypes were expressed and mobi-
lized Ca2＋ via PLC-IP3-dependent pathway in retinoblas-
toma cells [25]. The involvement of PLC in the Ca2＋ re-
sponses to acetylcholine (ACh) and ATP were demonstrated 
by the inhibitory effect of U-73122. U-73343, the succini-
mide analog of U-73122, showed no significant inhibitory 
effect on the ACh response [25].
  In the present study, we tried to identify the subtypes 
responsible for ATP-induced [Ca2＋]i transient by pharmaco-
logical approach and western blot analysis. As earlier men-
tioned, WERi-Rb-1 cells expressed at least 7 different P2Y 

receptor subtypes at the mRNA level. All of these subtypes 
are metabotropic G-protein-coupled receptors. However, 
MRS 2179, a selective P2Y1 blocker, markedly suppressed 
the ATP-induced calcium transients by 92.5±1.6% of ATP 
effect. P2Y1 agonist (2MeS-ATP; 1 μM) also increased [Ca2＋]i 
up to 85.9±3.1% of 10 μM ATP-induced response. There 
was not any [Ca2＋]i change by the application of 100 μM 
αβ-MeATP (P2X3 and P2X4 agonist) and 100 μM UTP 
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(P2Y2, P2Y4, P2Y6 agonist) (Fig. 2). P2Y1 receptor protein 
was also identified by western blot. From these results, 
P2Y1 receptor subtype was dominantly expressed and func-
tionally involved in calcium mobilization in WERI-Rb-1 
cells. 
  P2Y2 receptors have been identified in a wide variety of 
ocular cell types, particularly, in retina [26], retinal pig-
ment epithelium [27-29], cornea [30,31], conjunctiva [32], 
lens [33], and ciliary epithelia [9,34]. P2Y2 receptor signal-
ing and its function are apparent in the eye [35], and regu-
lates multiple cellular functions in ocular physiology by cal-
cium mobilization [9] including ion transport and fluid ab-
sorption [27,29], and mucin discharge [36]. Those synthetic 
P2Y2 receptor agonists INS37217 and INS 365 are cur-
rently being adopted in clinical applications for the treat-
ment of retinal detachment and dry eye disease, re-
spectively [37-40]. In this study, however, we could not de-
tect the P2Y2 receptor protein by using western blotting 
technique, which is consistent with scarce [Ca2＋]i response 
to P2Y2 agonist in retinoblastoma cells. 
  P2Y1 receptor has been reported to be expressed in the 
retina of rat [8,11,12], developing chick embryo [13], and 
human glial cells [10]. However, little information is avail-
able to understand the role of P2Y1 activation not only for 
physiologic action but also for tumorigenesis in retino-
blastoma cells. Moreover, it could be worthy to elucidate 
the expressional changes in P2Y subtypes during malignant 
transformation. Further studies about P2Y receptors may 
provide a clue to understand the roles of purinergic signal-
ing in the regulation of cellular functions of retina as well 
as the process of malignant transformation in retinoblastoma.
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