(1)

소조사면 광자선의 팬톰산란인수 결정

계명대학교 동산의료원 방사선종양학과, *의공학과

오영기·최태진*·김진희·김옥배

본 연구에서는 얇은 엠엘씨 등을 사용하여 불규칙한 모양의 조사면으로 방사선수술을 시행하거나 필수적으로 소조사면 을 포함할 수 밖에 없는 세기조절 방사선치료를 위해 중요한 요소인 소조사면의 출력인수 S_o,를 측정하였고 동일한 위 치의 공기중에서 물등가 재질로 만든 선량증가두겁을 이용하여 제한기산란인수 S_o를 측정함으로서 이 결과를 이용하여 팬톰산란인수 S_p를 계산하였다. S_o,의 측정에서 기준 측정기인 0.125 cc 부피의 이온전리함과 이극소자측정기의 결과는 잘 일치하고 있으나 0.015 cc 부피의 소형 이온전리함의 결과는 4.2×4.2 cm² 이상의 조사면에서는 1~4% 정도 낮게 나타 났고 1.8×1.8 cm², 이하의 소조사면에서는 이극소자측정기에 비해 8~16% 낮게 측정되었다. 물등가 재질로 만든 선량증 가 두겁을 덮은 이극소자 측정기를 이용한 Sc의 측정은 전자오염 등으로 인해 약간의 오차를 보여주고 있으나 전체적인 추세는 잘 일치하고 있음을 확인하였고 이 결과들을 이용하여 계산한 Sp는 다른 연구결과들의 범주에 포함되는 결과를 얻었다.

중심단어: 소조사면, 출력인수, 제한기산란인수, 팬텀산란인수

서 론

최근에 얇은 엠엘씨(micro-MLC) 등을 사용하여 불규칙 한 모양의 조사면으로 방사선수술(stereotactic radiosurgery: SRS)을 시행하거나 필수적으로 소조사면을 포함할 수 밖 에 없는 세기조절 방사선치료(intensity modulated radiation therapy: IMRT)가 널리 시행되고 있다. 이러한 SRS나 IMRT 에서는 방사선치료용 선형가속기(linear accelerator: LINAC) 의 모니터단위(monitor unit: MU)이 일반적인 방사선치료에 서 사용하던 값보다 매우 커지게 되기 때문에 보다 정확한 선량 및 MU 계산이 뒤따라야 한다. 따라서, 소조사면에 대 한 출력인수(scatter factor: S_{cp})의 정확한 측정자료는 물론 선량계산을 위해 필수적인 팬텀산란인자(phantom scatter factor: S_p)와 제한기산란인자(head scatter factor: S_c)에 대한 정확한 자료가 필요하다. 이러한 인자들 사이의 관계식은 Holt 등¹⁾에 의해 다음 식 (1)과 같이 표현된다.

이 논문은 2009년 5월 29일 접수하여 2009년 6월 12일 채택되었음. 책임저자 : 오영기, (700-712) 대구시 중구 동산동 194 계명대학교 동산의료원 방사선종양학과 Tel: 053)250-7683, Fax: 053)250-7984

```
E-mail: ykoh@dsmc.or.kr
```

 $S_{cp}=S_c \times S_p$

여기서 각 인자들은 10×10 cm²의 기준 조사면으로 규격 화 된 값들이다. S_{cp}는 각 LINAC의 구조에 따라 달라지는 값으로 팬텀속에서 기준 조사면 10×10 cm²에서의 선량에 대한 동일한 위치에서의 임의의 조사면의 선량의 비로서 측정을 통하여 얻을 수 있고, S_c는 팬텀에 의한 산란을 없 애기 위해 공기중에서 기준 조사면에서의 선량에 대한 동 일한 위치에서의 임의의 조사면의 선량의 비로서 측정하여 야 한다. 이 때, 측정체적 주위에는 전자평형을 이루기 위 해서 충분한 산란물질이 둘러싸여 있어야 한다. S_p는 LINAC의 구조와 상관없이 오직 방사선의 선질과 조사면적 에 의존한다. 따라서 S_p는 적절한 수식을 통해 표준화된 값 을 사용할 수도 있고 측정을 통해 구한 S_c와 S_c를 이용하 여 식 (1)로부터 얻을 수도 있다.

Sc 측정의 경우 전자평형을 유지하기 위해 일반적으로 알려진 선량증가(build-up) 두께인 6 MV 광자선의 경우 1.5 cm 이상의 물등가 산란물질로 둘러싸여야 하므로 정상적 인 방사선치료거리와 동일한 FSD (focus-to-phantom surface distance)가 100 cm에서 4×4 cm² 이하의 조사면의 Sc 측정은 brass 등과 같은 고밀도 물질로 만든 선량증가두겁(build-up cap)을 사용하거나^{2.4)} FSD를 3~4 m로 늘여서 얻을 수 있 다.⁵⁻⁷⁾ 고밀도 물질을 사용하면 조사면의 크기를 줄일 수

이 논문은 원자력기술개발사업 고유강점기술육성(2007-01036)의 지 원으로 수행되었음.

있으나 방사선질의 경화(beam hardening)가 일어나고 다량 의 2차전자가 발생되어 Se 값을 증가시킨다고 보고되고 있 으며⁸⁾ FSD를 3~4 m로 늘리는 경우 측정 위치에서 조사면 적이 커지게 되어 소조사면 측정이 가능하지만 측정기의 정렬 등에서 오는 오차가 더욱 커지게 되어 측정의 신뢰성 에 문제가 있는 것으로 알려지고 있다.5-7,99 따라서 정상조 건(FSD=100 cm)에서 S.를 측정하는 것이 보다 정확하고 신 뢰성 있는 결과를 얻을 수 있으나 조사면적이 작아짐에 따 라 산란물질의 측방향 폭도 줄어들어야하고 이는 측방향 전자평형(lateral electron equilibrium: LEE)을 이룰 수 없게 된다. 그러나 1995년 Li 등¹⁰⁾에 의한 보고에서 조사면 폭이 4 cm 이상인 경우의 S, 측정에서 LEE가 보존될 필요가 없 고, 단지 LEE 영역보다 작은 두께를 갖는 산란물질에서 전 자오염(electron contamination)이 문제가 될 뿐이라고 밝혔 다. 전자오염에 따른 S_c의 변화는 소조사면서는 중요한 문 제가 되지 않으며 따라서 매우 좁은 선량증가두겁을 이용 하여 Sc를 측정하는 것이 아무런 문제가 없음을 여러 연구 자들에 의해 계속 보고되고 있고,¹¹⁾ 2007년에 McKerracher 등¹²⁾은 이극소자측정기(diode detector)를 이용하여 5 cm 깊 이와 dmax 깊이의 선량증가두겁을 사용하여 S,를 측정한 결 과 0.2% 정도로 그 차이가 크지 않음을 보고하였다.

본 연구에서는 IMRT는 물론 SRS에서도 중요한 요소인 4×4 cm² 이하의 소조사면에서 S_{cp}를 측정하고 또한 S_c를 측 정하기 위하여 이극소자측정기에 부착할 수 있는 물등가 재질로 만든 소형 선량증가두겁을 제작하고 이를 이용하여 직접 S_c를 측정하여 그 결과를 미리 측정한 S_{cp} 값에 나눔 으로서 S_p를 구하여 다른 연구자들의 결과들과 비교함으로 서 소형 선량증가두겁의 타당성과 소조사면에서의 S_p 결정 방법을 제시하였다.

재료 및 방법

1. 측정기

소조사면의 방사선에 대한 선량을 측정하는 데는 이극소 자측정기, 소형 이온전리함 등이 주로 사용되며 EBT 필름 등을 써서 비교하기도 한다. Wilcox 등¹³⁾에 의하면 EBT 필 름이 몬테칼로 계산 결과에 가장 잘 부합하며 이극소자측 정기는 밀도가 물에 비해 상대적으로 높아 1~3% 정도 높 게 측정된다고 보고하고 있다. 그러나, 본 연구에서와 같이 S,를 측정하기 위해서는 필름은 공기중에 정확히 설치하기 가 거의 불가능하고 buildup 조건을 맞추기 어렵다. 따라서, S,의 측정과 이를 이용한 S_P의 결정 및 TMR 등의 계산을 하기 위해서는 이극소자측정기나 소형 이온전리함들을 이 용할 수 밖에 없다. 또한 4×4 cm² 이상의 조사면에 대한 출 력선량과 S。측정값에 대한 기준값을 비교하기 위해서는 일반적으로 절대선량측정에 사용하고 있는 이온전리함을 이용하여야 한다. 본 실험에 사용한 기준 이온전리함인 0.125 cc 부피의 이온전리함, 0.015 cc 부피의 소형 이온전 리함, 이극소자측정기들의 상세한 제원은 Table 1에 나타내 었다.

2. 선량증가두겁

S.를 얻기 위해서는 전자평형조건이 갖추어진 공기중에 서 측정하여야 한다. 일반적으로 전자평형조건은 선량증가 깊이에 해당하는 두께를 가진 물질로 측정기 주위를 감싸 도록 하고 있다. 그러나 본 연구와 같이 6 MV 광자선에서 소조사면의 제한기산란인수를 측정하기 위해서는 1.5 cm의 두께를 갖는 두겁을 사용하면 폭이 3 cm 이하의 조사면에 서는 측정에 심각한 오차가 발생한다. 따라서 소조사면에

Table 1. Specifications of radiation dose detectors used in this measurement.

Detector	Manu- facture	Active volume	Outer diameter	Length
Semiflex Chamber	PTW	0.125 cc	6.9 mm	7.2 mm
Pinpoint Chamber	PTW	0.015 cc	3.4 mm	5.7 mm
Diode	PTW	Detection area	7 mm	Thickness
		1 mm^2		$2.5 \mu\mathrm{m}$

Fig. 1. Solid water build-up cap with 15 mm-thickness for diode detector.

서 측방으로의 산란에 의한 측정값의 기여가 무시할 정도 임을 감안하여 오직 빔의 방향으로만 전자평형조건을 이루 도록 두께를 1.5 cm으로 하고 측방은 최소한으로 줄이는 것이 큰 부피의 선량증가두겁을 이용하는 것 보다는 훨씬 정확한 측정값을 얻을 수 있다. 따라서 본 연구에서 사용한 선량증가두겁은 Fig. 1에 나타낸 것과 같이 두께는 6 MV 광자선의 선량증가 깊이와 같은 1.5 cm로 하였고, 약간의 홈을 파서 이극소자 측정기 위에 안정되게 놓여 있게 하였 다. 이 때, 가능한한 조사면을 벋어나지 않도록 하기위해 측방으로는 1 mm가 되도록 하여 전체 지름이 9 mm인 물 등가 재질로 제작하여 이극소자 측정기에 덮을 수 있도록 하였다. 지름 9 mm는 측정하고자하는 최소조사면의 크기 6 mm 보다 크다고 할 수 있으나 이는 이극소자 측정기의 외경이 7 mm이기 때문에 그 위에 덮을 수 있도록 만들기 위해 어쩔수 없이 소조사면보다 커지게 되었으나 이극소자 측정기의 실제 측정센서의 면적이 1 mm²이므로 측방향의 선량증가 두께를 갖는 것으로 생각할 수 있다.

3. 실험 방법

조사면의 크기가 작아질수록 조사면의 중심에서부터 측 방향으로의 선량부포는 급격히 줄어들기 때문에 소조사면 의 출력선량을 측정하는데 있어 측정기의 위치에 대한 오 차는 실험 결과에 매우 중요한 요인이 된다. 따라서 측정기 를 정확히 조사면의 중심에 위치시키는 것이 무엇보다도 우선되어야 한다. 본 연구에서는 SRS에 이용되는 BrainLab 사의 얇은 엠엘씨인 M3를 Varian사의 선형가속기 Clinac iX에 장착하고 Winston-Lootz 방법을 이용하여 정확히 축교 점(isocenter)을 일치시킨후 PTW사의 3D 팬텀인 MP3를 설 치하여 0.125 cc 부피의 기준 이온전리함을 이용하여 먼저 10×10 cm² 조사면의 대칭도(symmetry)와 평탄도(flatness)를 깊이별로 스캔하여 정확한 방사선의 중심축을 찾은 후 측 정기를 Fig. 2와 같이 SSD=95 cm, 깊이 5 cm의 축교점에 위치시키고 방사선 조사면의 크기를 4×4 cm²에서 10×10 cm²까지 변화시키면서 각 조사면에 대한 출력선량을 측정 하였다. 측정기를 0.015 cc 소형 이온전리함과 이극소자 측 정기로 바꾸고 같은 방법으로 일치시킨 후 0.6×0.6 cm², 1.2×1.2 cm², 1.8×1.8 cm², 4.2×4.2 cm², 6.0×6.0 cm², 8.0×8.0 cm² 그리고 10×10 cm²의 조사면에 대한 출력선량을 측정 하여 10×10 cm²의 값으로 규격화 함으로서 출력인수를 구 하였다. 4.2×4.2 cm², 6.0×6.0 cm², 8.0×8.0 cm², 10×10 cm²의 조사면에 대한 측정은 앞서 측정한 기준 측정기의 결과와 비교하기 위한 것이다. 소형 이온전리함으로 측정한 출력

Fig. 2. Setup diagram for measurement of output factor and head scatter factor. The diode detector was positioned without build-up cap at isocenter of 5 cm-depth from water surface for output factor measurement and with build-up cap at same position in air for S_c measurement.

Table 2. The results of output factor measured at d_{max} with each detector and normalized to an 10x10 cm^2 field.

Field size (cm)	Semiflex chamber	Diode detector	Pinpoint chambet
0.6×0.6	_	0.686	0.530
1.2×1.2	_	0.857	0.752
1.8×1.8	_	0.886	0.813
4.2×4.2	0.928	0.931	0.893
6×6	0.957	0.956	0.933
8×8	0.981	0.981	0.97
10×10	1	1	1

선량의 결과가 Table 2에서 알 수 있는 것과 같이 2×2 cm² 이하의 소조사면에서 이극소자 측정기의 결과와 차이가 많 고, 많은 논문에서 보고된 바와^{2-7,9-12} 같이 전리함의 물리적 체적으로 인해 원천적인 불확도를 갖고 있어 임상에 적용 하기 부적절하다고 판단되어 S_c의 측정은 배제하였다. 그 위치에 이극소자 측정기를 고정한 상태에서 물을 뺀 공기 중에서 선량증가두겁을 장착하고 다시 0.6×0.6 cm², 1.2×1.2 cm², 1.8×1.8 cm², 4.2×4.2 cm², 6.0×6.0 cm², 8.0×8.0 cm² 그 리고 10×10 cm²의 조사면에 대한 공기중에서의 선량을 측 정한 후 10×10 cm²의 값으로 규격화하여 제한기 산란인수 Sc를 구하였다. 측정위치를 dmax에 두면 전자오염 등에 의 한 왜곡이 있을 수 있고 이를 보완하기 위해 5 cm 깊이에 서 측정하는 것을 고려하였으나, 5 cm 길이의 팬텀을 이극 본 연구에서 측정한 Sc 값을 Table 3에 나타내었고 Fig. 4
에 조사면의 크기에 따른 Sc 값을 그래프로 표현하였다. 각
조사면에 대해 5회측정을 수행하였으며 모든 조사면에서 0.3% 이내의 재현성을 갖고 있었다. 10×10 cm²의 값에 비해 8×8 cm²과 6×6 cm²의 값이 0.1~0.2% 더 높게 측정되었는데 이는 다른 연구자들에⁹⁻¹²⁾ 의해 제기된 전자오염 때문 인 것으로 생각된다. 따라서, 정확한 Sc의 측정을 위해서는 전자오염을 제거할 수 있는 방법이 중요하다. 또한 0.6×0.6
cm²에서 측정된 Sc 값 0.883은 detector의 크기와 그에 따른 선량증가두겁의 크기에 대해 상대적으로 조사면이 작기 때 문에 정확한 값으로 보기는 어렵다. 그러나 전자오염에 의

Fig. 3. Graph of output factor (S_{cp}) measured at d_{max} with each detector and normalized to an 10×10 cm² field. The uncertainty at one standard deviation was 0.3% for all detectors.

Fig. 4. Graph of head scatter factor (S_c) measured at d_{max} with diode detector and normalized to an 10×10 cm² field. The uncertainty at one standard deviation was 0.1% for all detectors.

소자 측정기 위에 붙여야 하므로 셋업에 문제가 있을 수 있으며 1 cm 이하의 소조사면의 경우는 그 팬텀을 충분히 덮을 수 없어 오히려 더 오차가 크기 때문에 측정위치를 dmax로 하는 것이 가장 적절하다고 판단하였다.

결 과

먼저 측정기별 출력인수 Scn를 10×10 cm²의 값으로 규격 화 한 값으로 Table 2에 나타내었다. 기준 측정기의 4.2×4.2 cm², 6.0×6.0 cm², 8.0×8.0 cm²의 값 0.928, 0.957, 0.981에 비 교하면 이극소자 측정기의 경우 각각 0.931, 0.956, 0.981로 매우 잘 일치하고 있으나 소형 이온전리함의 경우 조사면 이 10×10 cm²에서 4.2×4.2 cm²로 줄어들면서 1~4% 정도 출 력인수가 낮게 나타나고, 0.6×0.6 cm², 1.2×1.2 cm², 1.8×1.8 cm²의 소조사면에서는 이극소자 측정기에 비해 8~16% 더 욱 큰 차이를 보여주고 있음을 Fig. 3에서 확인할 수 있다. 이 결과는 소조사면의 선량분포 면에서 보면 중심에서부터 측방으로 선량의 감소가 나타나는데 특히 6×6 cm²과 같이 극히 작은 조사면에서는 그 차이가 더욱 두드러지게 나타 나 소형 이온전리함의 5 mm 길이로는 정확한 선량을 측정 할 수 없기 때문이다. 따라서 소형 이온전리함의 소조사면 에 대한 결과를 신뢰할 수 없어 출력인수는 이극소자 측정 기로 측정한 결과를 사용하였다. 물론 이극소자 측정기의 경우 여러 연구자들에^{2.5)} 의해 1~3% 정도 선량을 높게 평 가한다고 알려져 있으나 본 연구의 목적이 팬텀산란인수를 구하기 위해 제한기산란인수를 측정하는 것이기 때문에 제 한기산란인수를 측정할 때도 동일한 특성을 보인다면 서로 상쇄되어질 것으로 판단하여 S,를 측정함에 있어 본 연구 에서는 이극소자 측정기를 이용하기로 하였다.

Table 3. Head scatter factor (S_c) measured at d_{max} with diode detector and phantom scatter factor (S_p) calculated from S_{cp} and S_c results.

Field size (cm)	S_{cp}	S _c	S _p
0.6×0.6	0.686	0.883	0.777
1.2×1.2	0.857	0.952	0.900
1.8×1.8	0.886	0.972	0.912
2.4×2.4	_	0.987	_
3×3	_	0.994	_
3.6×3.6	_	0.998	_
4.2×4.2	0.931	0.9997	0.9313
6×6	0.956	1.001	0.955
8×8	0.981	1.002	0.979
10×10	1	1	1

Fig. 5. Graph of phantom scatter factor (S_p) calculated from S_{cp} and S_c results, compared with those of other authors represented as upper and lower limits at small fields.

한 오차를 약 1~3% 정도 고려한 전체적인 S, 값의 추세는 이론에 잘 부합하는 것으로 생각된다. 보다 정확한 제한기 산란인수를 측정하기 위해서는 추후 연구를 계속해야 할 것이나 출력인수 측정과 동일한 자세(setup)에서 제한기산 란인수를 측정할 수 있는 것 자체로도 큰 의미를 갖는다고 볼 수 있고 동일한 자세이므로 전자오염 등의 오차를 함께 갖고 있어 여기서 얻어진 결과를 이용하여 팬텀산란인수를 계산할 때 상쇄될 수 있다고 판단된다.

식 (1)로부터 Sp를 계산하여 Table 3에 함께 나타내었는 데 4.2×4.2 cm²에서의 S_p 값은 0.9313, 1.8×1.8 cm²은 0.912, 1.2×1.2 cm²은 0.90, 0.6×0.6 cm²은 0.777로 계산되었다. 본 실험에서 사용한 방사선의 선질은 TPR20/10의 값이 0.666인 Varian Clinac 6 MV이었다. McKerracher 등¹⁴⁾은 선질이 0.663인 Varian 600CD LINAC으로 방사선수술용 구형 제한 기(collimator)의 S_p를 구하여 이를 사각형 조사면에 대한 값 으로 변환하여 10×10 cm²의 값으로 규격화였고 선질이 0.678, 0.992 등인 기존의 다른 연구자들의 결과¹⁵⁻¹⁷⁾도 함께 보여주었다. 4×4 cm²의 S_p 값은 측정기와 LINAC에 따라 $0.93 \sim 0.98$, 1.75×1.75 cm² $\stackrel{\circ}{\leftarrow}$ 0.89 ~ 0.96 , 1.25×1.25 cm² $\stackrel{\circ}{\leftarrow}$ 0.85 ~0.92, 0.5×0.5 cm²은 0.69~0.81으로 본 연구에서의 결과 와의 비교를 위해 Fig. 5에 나타내었는데 0.6×0.6 cm²에서 4.2×4.2 cm² 까지의 소조사면에서 다른 연구자들의 값들의 범주에 포함됨을 알 수 있다. 일반적으로 Sp는 선형가속기 의 구조나 디자인 등에는 무관하고 오직 방사선의 선질 및 조사면의 크기, 측정위치 등에만 의존하는 것으로 알려져 있으나 Sen 및 Se의 측정에 있어 각 연구자들에 따라 사용 하는 팬텀 및 측정기의 종류가 달라 이를 이용한 S_p의 결과

가 선형가속기의 종류에 따라 달라지는 것으로 나타난다. 따라서 동일한 조사면에 대한 S_p의 정확성을 비교한다는 것 자체가 다양한 변수를 포함하고 있고 본 연구 결과의 S_c 값이 전자오염에 의한 오차를 포함하고 있기 때문에 비교 가 큰 의미는 없는 것으로 생각할 수 있다. 그러나, IMRT, SRS 등 소조사면을 사용하는 방사선치료가 점점 확대되고 있는 실정에서 치료의 정확성을 기하기 위해서는 S_p를 구 하고 이를 임상에 적용하는 것이 무엇보다 중요하다.

결 론

본 연구에서는 IMRT나 SRS 치료에서 중요한 요소인 소 조사면의 출력인수를 측정하였고 동일한 위치의 공기중에 서 물등가 재질로 만든 선량증가두겁을 이용하여 괜텀산란인수 란인수를 측정함으로서 이 결과를 이용하여 괜텀산란인수 를 계산하였다. 소조사면 측정에 사용되는 소형 이온전리 함과 이극소자 측정기의 결과를 기준 측정기의 값과 비교 하여 소형 이온전리함은 2×2 cm²의 소조사면에서는 적절 하지 않음을 확인하였고 따라서 제한기산란인수의 측정에 는 이극소자 측정기를 이용하였다. 제한기산란인수의 결과 는 전자오염 등에 따른 오차가 있었으나 전체적으로는 이 론에 잘 부합되었다 이를 이용하여 계산된 팬텀산란인수는 다른 연구결과들과 유사한 값을 얻을 수 있었으나 선질과 조사면의 크기 등이 달라 정확한 비교가 이루어지지 않았 다. 따라서 소조사면의 방사선 선질에 대한 표준화된 S_p를 얻기 위해서는 다양한 연구와 측정이 뒤따라야 한다.

- Holt JG, Laughlin JS, Moroney JP: The extension of the concept of tissue-air-ratios (TAR) to high-energy X-ray beams. Radiology 96:437-446 (1970)
- Heydarian M, Hoban PW, Beddoe AH: A comparison of dosimetry techniques in stereotactic radiosurgery. Phys Med Biol 41:93–110 (1996)
- Rice RK, Hansen JL, Svensson GK, Siddon RL: Measurements of dose distributions in small beams of 6 MV X-rays. Phys Med Biol 32:1087–1099 (1987)
- Sixel KE, Podgorsak EB: Build up region of high-energy X-ray beams in radiosurgery. Med Phys 20:761-764 (1994)
- Argovito G, Piermattei A, D'Abramo G, Bassi FA: Dose measurements and calculations of small radiation fields for 9–MV X rays. Med Phys 12:779–784 (1985)
- Houdek PV, VanBuren JM, Fayos JV: Dosimetry of small radiation fields for 10–MV X rays. Med Phys 10:333–336 (1983)
- 7. Zhu TC, Bjarngard BE: The head scatter factor for small field

sizes. Med Phys 21:65-68 (1994)

- Jursinic PA, Thomadsen BR: Measurement of head scatter factors with cylindrical build-up caps and columnar mini-phantoms. Med Phys 26:512–517 (1999)
- 9. 오영기, 최태진, 김진희, 김옥배: The experience in small field dosimetry for IMRT and SRS technique. 대한방사선수술물리연 구회 제6차 정기학술대회. 서울 (2008), pp. 19
- Li AX, Soubra M, Szanto J, Gerig LH: Lateral electron equilibrium and electronic contamination in measurements of heas scatter factors using mini-phantoms and brass caps. Med Phys 22:1167–1170 (1995)
- Venselaar JL, Heukelom S, Jager N, et al: Effect of electron contamination on scatter correction factors for photon beam dosimetry. Med Phys 26:2099–2106 (1999)
- McKerracher C, Thwaites DI: Head scatter factors for small fields. Part II: The effects of source size and detector MV photon.

Radiother Oncol 85:286-291 (2007)

- Wilcox EE, Daskalov GM: Evaluation of GAFCHROMIC EBT film for CyberKnife dosimery. Med Phys 34:1967–1974 (2007)
- McKerracher C, Thwaites DI: Phantom scatter factors for small MV photon fields. Radiother Oncol 86:272–275 (2008)
- Chierego G, Francescon P, Colombo F, Pozza F: From radiotherapy to stereotactic radiosurgery: physical and dosimetrical considerations. Radiother Oncol 29:214–218 (1993)
- Rice RK, Hansen JL, Svensson GK, Siddon RL: Measurements of dose distributions in small beams of 6 MV X-rays. Phys Med Biol 32:1087-1099 (1987)
- McKerracher C, Thwaites DI: Head scatter factors for small MV photon fields. Part I:A comparison of phantom types and methodologies. Radiother Oncol 85:277–285 (2007)

Determination of Phantom Scatter Factors for Small Photon Fields

Young-Kee Oh, Tae-Jin Choi*, Jin-Hee Kim, Ok-Bae Kim

Departments of Radiation Oncology, *Medical Engineering, Keimyung University Dongsan Medical Center, Deagu, Korea

Total scatter factor (S_{cp}), head scatter factor (S_c) and phantom scatter factor (S_p) are very important for accurate radiation therapy at stereotactic radiosurgery (SRS) with irregular field shape using micro-MLC and intensity modulated radiation therapy (IMRT) including many small field sizes. In this study we measured and compared S_{cp} with reference ion chamber, pinpoint chamber and diode detector and adapted the resuls form diode detector. Head scatter factors for small field sizes were also measured with diode detector covered 1.5 cm-thick solid water build-up cap. Some errors like as electron contamination of $1 \sim 3\%$ were included in the values of Sc but trend of total results of S_c was coincided with basic theory. Phantom scatter factors for small field sizes were calculated form S_{cp} and S_c . The results of S_p were compared and were well-agreed with those of other authors.

Key Words: Small field size, Output factor, Head scatter factor, Phantom scatter factor