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Abstract
AIM: To investigate serotonergic Ca2+ signaling and the 
expression of 5-hydroxytryptamine (5-HT) receptors, 
as well as Ca2+ transporting proteins, in hepatic stellate 
cells (HSCs).

METHODS: The intracellular Ca2+ concentration ([Ca2+]i) 
of isolated rat HSCs was measured with a fluorescence 
microscopic imaging system. Quantitative PCR was per-

formed to determine the transcriptional levels of 5-HT 
receptors and endoplasmic reticulum (ER) proteins in-
volved in Ca2+ storage and release in cultured rat HSCs. 

RESULTS: Distinct from quiescent cells, activated HSCs 
exhibited [Ca2+]i transients following treatment with 
5-HT, which was abolished by U-73122, a phospholipase 
C inhibitor. Upregulation of 5-HT2A and 5-HT2B receptors, 
but not 5-HT3, was prominent during trans-differenti-
ation of HSCs. Pretreatment with ritanserin, a 5-HT2 
antagonist, inhibited [Ca2+]i changes upon application 
of 5-HT. Expression of type 1 inositol-5’-triphosphate 
receptor and type 2 sarcoplasmic/endoplasmic reticulum 
Ca2+ ATPase were also increased during activation of 
HSCs and serve as the major isotypes for ER Ca2+ stor-
age and release in activated HSCs. Ca2+ binding chap-
erone proteins of the ER, including calreticulin, calnexin 
and calsequestrin, were up-regulated following activa-
tion of HSCs. 

CONCLUSION: The appearance of 5-HT-induced [Ca2+]i 
response accompanied by upregulation of metabotropic 
5-HT2 receptors and Ca2+ transporting/chaperone ER 
proteins may participate in the activating process of 
HSCs.
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INTRODUCTION
Hepatic stellate cells (HSCs), also known as “Ito cells” 
or “fat-storing cells”, localize between hepatocytes and 
sinusoids (space of  Disse) in mammalian livers. In their 
healthy state, HSCs control retinoid homeostasis, sinusoi-
dal blood flow, macromolecule transport, and potentially 
act as antigen-presenting cells in the liver[1,2]. However, in 
response to hepatic injury, HSCs undergo gross morpho-
logical and functional changes, transforming to a myofi-
broblast-like phenotype in a process called “activation” 
or “trans-differentiation”[3,4]. Manifestations of  activated 
HSCs include: (1) the expression of  contractile cytoskele-
tal proteins such as α-smooth muscle actin (α-SMA)[5,6]; (2) 
enhanced extracellular matrix synthesis[7,8]; (3) increased 
cell size and proliferation[9]; (4) decreased size of  lipid 
droplets[8,10]; and (5) well developed endoplasmic reticulum 
(ER), Golgi bodies, and compacted microfilaments[11,12]. In 
particular, the deposition of  cross-linked collagen during 
the activation process may result in cirrhotic changes ac-
companied by life-threatening hepatic dysfunction.

Serotonin [5-hydroxytryptamine (5-HT)] is a neurotrans-
mitter that also acts as a multifunctional hormone in vari-
ous tissues[13], where it modulates proliferation and dif-
ferentiation of  muscle, neurons, and mammary glands[14-16]. 
Serotonin released from platelets at sites of  injury plays 
an important role in liver regeneration and fibrosis[17]. It 
has been reported that patients with cirrhosis of  the liver 
and portal hypertension have increased plasma serotonin 
levels[18]. The expression levels of  5-HT2A and 5-HT2B 
are increased in the liver after hepatectomy as well as in 
activated HSCs[2,17]. Moreover, 5-HT2 receptor antagonists 
suppress cell proliferation and expression of  key fibro-
genic factors in activated HSCs[2,19]. Among the mamma-
lian 5-HT receptors (5-HT1 to 5-HT7), the 5-HT2 receptor 
family is coupled to the Gq/11 protein and increases intra-
cellular Ca2+ concentration ([Ca2+]i) mobilized from ER 
reservoirs[20].

As the major intracellular calcium storage site, the ER 
possesses various kinds of  calcium regulatory proteins that 
participate in: (1) pumping Ca2+ into the ER lumen, such 
as the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 
(SERCA); (2) releasing Ca2+ into the cytosol, such as IP3 or 
ryanodine receptors; and (3) buffering Ca2+, such as calre-
ticulin and calnexin, which are also known as chaperones. 
ER Ca2+ homeostasis is maintained by a balance between 
Ca2+ release and replenishment[21]. The free Ca2+ concentra-
tion in the ER ([Ca2+]ER) ranges from 60-400 μmol/L, and 
disturbances in [Ca2+]ER

 homeostasis can affect many of  
the functions of  the ER including protein synthesis, secre-
tion[22], protein folding[23], and sensitivity of  cells to apop-
tosis[24]. Further, [Ca2+]ER

 homeostasis might be critically 
required for the activation process of  HSCs in order to 

keep up with accelerated protein synthesis. However, until 
now, the compensatory changes in ER protein expression 
involved in Ca2+ homeostasis and chaperone function have 
not been clearly elucidated.

[Ca2+]i may be important for the activation of  HSCs, 
primarily because [Ca2+]i regulates the transcription of  
genes critical for cell function[25], and secondly because 
contractile elements such as α-SMA respond sensitively to 
[Ca2+]i

[26]. We hypothesized that serotonin, acting as an au-
tocrine or paracrine mediator, can elicit a Ca2+ signal, and 
this signal might be involved in the activation of  HSCs. 
Moreover, there may be an alteration in the ER function 
of  HSCs such as Ca2+ release and protein folding. In this 
study, we isolated and cultured rat HSCs on plastic dishes 
in vitro, which has been widely accepted as an appropriate 
model for the study of  activated HSCs[8,27]. Appearance 
of  [Ca2+]i transients induced by 5-HT and the upregula-
tion of  5-HT2 receptors and ER proteins were observed 
during HSC activation. These observed changes may par-
ticipate in an activation signal as well as adaptive changes 
during the trans-differentiation of  HSCs.

MATERIALS AND METHODS
Isolation of rat HSCs
HSCs were isolated from male Sprague-Dawley rats (150- 
250 g) by means of  a collagenase/pronase perfusion 
and Nycodenz-gradient centrifugation, as previously de-
scribed[28,29]. HSCs were cultured with DMEM containing 
fetal bovine serum (10%) and antibiotics-antimycotics 
(Invitrogen, Carlsbad, CA, USA) in a humidified incuba-
tor (5% CO2, 37℃). The purity of  HSCs was > 95% as 
assessed by their typical microscopic morphology and 
positive immunocytochemical staining for desmin at 24 to 
48 h after seeding.

Quantitative reverse transcription-polymerase chain 
reaction analysis
Total cellular RNA was isolated and purified from HSCs 
at different culture periods, and reverse transcription (RT) 
was performed with random hexamers. Quantitative real 
time PCR using SYBR Green PCR Master mix (Applied 
Biosystems, Foster City, CA, USA) was performed on an 
ABI PRISM 7900HT Sequence Detection System (Applied 
Biosystems). Sequence specific oligonucleotide primers for 
the genes of  interest were designed based on rat sequenc-
es deposited in the GenBank database (Tables 1 and 2), 
and the amplification program included the activation of  
AmpliTaq Gold at 95℃ for 10 min, followed by 45 cycles 
of  a two-step PCR reaction with denaturation at 95℃ for 
15 s and annealing/extension at 60℃ for 1 min. The con-
stitutively expressed housekeeping gene glyceraldehydes-
3-phosphate dehydrogenase (GAPDH) was selected as an 
endogenous control to correct for potential variation in 
RNA loading and efficiency of  amplification reactions. 

Fluorescent [Ca2+]i measurement
HSCs at 3 d or 2 wk after isolation were seeded on glass 
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coverslips and loaded with fura-2/AM (5 μmol/L) in a 
dark room for 30 to 60 min at room temperature. Dye-
loaded cells were then washed and transferred to a per-
fusion chamber on a fluorescence microscope (IX-70, 
Olympus, Tokyo, Japan). The HSCs were alternately 
excited at 340 and 380 nm by a monochromatic light 
source (LAMDA DG-4; Sutter, Novato, CA, USA), and 
fluorescence images were captured at 510 nm with an 
intensified CCD camera (Cascade; Roper, Duluth, GA, 
USA). Images were analyzed using the Metafluor 6.1 soft-
ware package (Universal Imaging Corporation, Downing-
town, PA, USA). 

Immunocytochemistry
HSCs cultured on coverslips were fixed in 4% paraformal-
dehyde and immunocytochemical staining was performed 
using an antibody for α-SMA (Sigma Chemical Co., St 
Louis, MO, USA). After incubating with a biotinylated 
secondary antibody, an avidin-conjugated peroxidase com-
plex was added to the slides and 3-amino-9-ethylcarbazole 
(AEC) was used as the chromogen.

Electrophysiology
Whole-cell membrane currents were recorded using the 
gramicidin-perforated patch-clamp technique as described 

previously[28]. All experiments were performed at room 
temperature (20-24℃). The internal solution for the per-
forated patch clamp contained (in mmol/L): 140 KCl, 5 
EGTA, 10 HEPES, 0.5 CaCl2, 5 NaCl, and gramicidin 
(50 μg/mL) (pH 7.2). The external solution contained 
(in mmol/L): 135 NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2, 5 
HEPES, and 10 glucose (pH 7.4).

Statistical analysis
Quantitative data are expressed as the mean ± SE. Statisti-
cal comparisons were made by the two-tailed Student’s 
t-test and ANOVA. Differences with P < 0.05 were con-
sidered to be significant. PCR from each cDNA sample 
was done in triplicate and n indicates the number of  ex-
periments. For quantitative comparisons, the expression 
level of  each gene was normalized to that of  GAPDH 
and presented as relative expression ratio (target/GAP-
DH) by applying the formula 2-ΔΔCt[30]. 

RESULTS
Serotonergic signaling and receptor expression during 
HSC activation 
We isolated HSCs using density gradient-based separa-
tion with Nycodenz. Most of  the harvested cells (> 95%) 
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Table 1  Primers for reverse transcription-polymerase chain reaction

Name Sequence Accession code  Position Product (bp)

5-HT1A

   (+) 5'-TCAGCTACCAAGTGATCACC-3' NM_012585.1     98-117 211
   (-) 5'-GTCCACTTGTTGAGCACCTG-3'   308-289
5-HT1B

   (+) 5'-TACACGGTCTACTCCACGGT-3' NM_022225.1   610-629 258
   (-) 5'-TCGCACTTTGACTTGGTTCAC-3'   867-847
5-HT2A

   (+) 5'-GTGTCCATGTTAACCATCCT-3' NM_017254   446-465 376
   (-) 5'-GTAGGTGATCACCATGATGG-3'   821-802
5-HT2B

   (+) 5'-CATGCATCTCTGTGCCATTTC-3' NM_017250   652-672 352
   (-) 5'-TGTTAGGCGTTGAGGTGGC-3' 1003-985
5-HT3A

   (+) 5'-TCCTCAACGTGGATGAGAAG-3' NM_024394.1   553-572 352
   (-) 5'-ATGTTGATGTCCTGGATGGT-3'   904-885
5-HT3B

   (+) 5'-AAGCCCATCCAGGTGGTCTC-3' NM_022189.1   459-478 428
   (-) 5'-GACATGTTGACCCTGAAGAC-3'   886-867
5-HT4

   (+) 5'-TCATGGTGCTGGCCTATTAC-3' NM_012853.1   640-659 377
   (-) 5'-CTCATCATCACAGCAGAGGA-3' 1016-997
5-HT5A

   (+) 5'-GAACAGGAGGAAGGAAGAGA-3' NM_013148   1535-1554 109
   (-) 5'-TAAGTCTCCTTGGTGTGAGG-3'   1643-1624
5-HT5B

   (+) 5'-TTCACCGTACTCGTGGTAAC-3' L10073.1   453-472 132
   (-) 5'-GGTCGAGGCTACCAAGTTAT-3'   584-565
5-HT6

   (+) 5'-CCTGAGAGTGTGCTGAATTG-3' NM_024365.1   1716-1735 129
   (-) 5'-AGCCACACTACACAAGCAAC-3'   1844-1825
5-HT7

   (+) 5'-GTGTGTCCACTGTCAAATCC-3' NM_022938   2072-2091 148
   (-) 5'-TCACTCATCTCCAGTTACCG-3'   2219-2200

5-HT: 5-hydroxytryptamine.
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exhibited positive intra-cytoplasmic staining for desmin 
and glial fibrillary acidic proteins (GFAP). Expression 
of  HSC trans-differentiation markers was tested at 1 d, 
1 wk and 2 wk after isolation. In activated HSCs (2 wk 
after isolation), bundles of  α-SMA were clearly observed 
as cytoskeletal fibers in immunocytochemical staining  
(Figure 1A), which was not evident in quiescent cells. In 
a voltage-clamp mode, nimodipine (10 μmol/L)-sensitive 
L-type Ca2+ currents were recorded only for activated 

HSCs (Figure 1C). The expression level of  α-SMA and 
the L-type Ca2+ channel (Cav1.2) were proportional to 
the activation period elicited by culturing cells on plastic 
dishes (Figure 1B and D). Transforming growth factor-β1 
(TGF-β1), an abundant isoform of  TGF in both normal 
and cirrhotic liver, is known as the main profibrogenic 
cytokine[31]. We observed that the type Ⅰ receptor for 
TGF-β1 (Tβ-RI) was also upregulated during activation 
(Figure 1E), while the expression of  28S RNA as well as 
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Table 2  Primers for quantitative reverse transcription-polymerase chain reaction

Name Sequence Accession code Position Product (bp)

5-HT2A

   (+) 5'-GGGTACCTCCCACCGACAT-3' NM_ 234-252 101
   (-) 5'-TTTCCAGCAATGGTGAGAATAATC-3' 17254 334-311
5-HT2B

   (+) 5'-CGCCATCCCAGTCCCTATTA-3' NM_ 781-800 101
   (-) 5'-AGAGCATGAAACTGCCAAAGC-3' 17250 881-861
IP3R 1
   (+) 5'-GCAGAAGCAGATTGGCTATG-3' NM_ 2072-2091 261
   (-) 5'-GTCTCAATCAGGATGTCAGC-3' 1007235 2332-2313
IP3R 2
   (+) 5'-CAAGAAGTTCAGAGACTGCC-3' NM_ 396-415 295
   (-) 5'-ACGCATGGCATTCTTCTCCA-3' 31046.3 690-671
IP3R 3
   (+) 5'-GATGTGGTGTTGCTGCAGAA-3' NM_ 390-409 137
   (-) 5'-TTGTTGCTCTTCATGTGCAG-3' 13138.1 526-507
RyR 1
   (+) 5'-CTGAATGTCTGCTCTCCAAG-3' AC 35577-35596 112
   (-) 5'-GAAGGGCAGAGAGACAAGAT-3' 165142.3 35688-35669
RyR 2
   (+) 5'-ATGTAGGCTTCTTCCAGAGC-3' XR_ 11405-11414 136
   (-) 5'-TGCAGTACCTTCTCTCCTGA-3' 8338.1 11540-11521
RyR 3
   (+) 5'-TACCTTGCCTGGTACACAAC-3' XM_001080527.1 13957-13976 123
   (-) 5'-AGTCACAGATGACAGGATCG-3' 14079-14060
SERCA 1
   (+) 5'-CCAAGGAGCCTCTTATCAGT-3' NM_017254 2516-2535 111
   (-) 5'-CCTCTGCATACAAGAACCAC-3' 2626-2607
SERCA 2
   (+) 5'-AGTTCATCCGCTACCTCATC-3' M 23114 2297-2316 119
   (-) 5'-CACCAGATTGACCCAGAGTA-3' 2415-2396
SERCA 3
   (+) 5'-CTCATGCAGAAGGAGTTCAC-3' NM_172812 1563-1582 140
   (-) 5'-CGCTCAATTACACTCTCAGG-3' 1702-1683
Calreticulin
   (+) 5'-AGAAGACTGGGATGAACGAG-3' NM_ 683-701 109
   (-) 5'-GTCCTCAGGCTTCTTAGCAT-3' 22399.1 791-772
Calsequestrin-2
   (+) 5'-CAGATGGCTATGAGTTCCTG-3' NM_ 988-1007 118
   (-) 5'-CAGTAAGCAACAAGCAGAGG-3' 17131.2 1105-1086
Calnexin
   (+) 5'-GTGTTTGCTACTGGTCCTTG-3' NM_ 21-40 146
   (-) 5'-ATGGAGGAGTGCTGGTATCT-3' 172008.1 166-147
TGF-β type 1 R
   (+) 5'-ACCAGCTATTGCCCATAGAG-3' L 26110 1011-1030 106
   (-) 5'-GGCAGAATCATGTCTCACAG-3' 1116-1097
α-SMA
   (+) 5'-GCAGAGCAAGAGGGATCCT-3' X 06801 222-242   73
   (-) 5'-CATGTCGTCCCAGTTGGTGAT-3' 294-274
Cav1.2 (α1c)
   (+) 5'-GACCCGTAGGAGCACGTTTG-3' NM_012517 2327-2346   71
   (-) 5'-CCTCCCCGGTCAGGATCT-3' 2397-2380

5-HT: 5-hydroxytryptamine; SERCA: Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase; α-SMA: α-smooth muscle actin; RyR: Ryanodine 
receptor; TGF: Transforming growth factor.
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GAPDH was not changed during the activation process 
of  HSCs (Figure 1F).

Serotonergic signaling has been suggested as a candi-
date for triggering activation of  HSCs[2,17]. We focused on 
[Ca2+]i signaling in HSCs, which has been emphasized by 
previous work as having an important role in the activa-
tion process[26,32]. As shown in Figure 2A and B, strong 
[Ca2+]i transients followed by a slow plateau increase were 
recorded in response to 5-HT (10 μmol/L) application 
only from most of  the activated HSCs (2 wk after isola-
tion; 81 cells out of  92 cells), but not from quiescent cells 
(3 d after isolation; 0 out of  11 cells). The 5-HT-induced 
[Ca2+]i increase was dose-dependent in activated HSCs 
(Figure 2C). Consistent with a previous report[33], ATP 
also evoked [Ca2+]i transients in activated HSCs while ace-
tylcholine did not (Figure 3).

Among the 5-HT receptors, 5-HT2 is known to re-
lease Ca2+ from the ER while 5-HT3 acts as a ligand-gated 
cation channel[20]. We estimated the steady-state mRNA 
levels of  5-HT receptor isotypes (5-HT1 to 5-HT7) using 
reverse transcription-polymerase chain reaction (RT-PCR) 
and found that the 5-HT2A and 5-HT2B receptors, but not 
5-HT3, were abundantly transcribed (Figure 2D). Consis-
tent with the observed changes in [Ca2+]i, the expression 
of  5-HT2A was increased by about 17-fold after 2 wk of  
isolation (5-HT2A/GAPDH; from 0.004 at 1 d to 0.067 
at 2 wk). 5-HT2B was also found to be upregulated in acti-
vated HSCs (from 0.003 to 0.008) using quantitative RT-
PCR (Figure 2E).

It has been recognized that 5-HT2 receptors are coupled 
with the Gq/11-phospholipase C pathway. Figure 4A and B 
show that the 5-HT-induced [Ca2+]i changes were abolished 
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Figure 1  Expression of α-smooth muscle actin, L-type calcium channels and type 1 transforming growth factor-β receptors in activated rat hepatic stel-
late cells. A: Immunocytochemical staining for α-smooth muscle actin (α-SMA) was performed on hepatic stellate cells (HSCs) cultured for 1 wk; C: Whole cell Ca2+ 
currents in a voltage-clamp mode were recorded from 2 wk-cultured HSCs, and were completely blocked by nimodipine (10 μmol/L); Changes in the transcript levels 
of α-SMA (B), the α1c subunit of the L-type Ca2+ channel (Cav1.2) (D), the type 1 receptor of transforming growth factor-β (Tβ-RI) (E), and 28S RNA (F) during HSC 
culturing (1 d, 1 wk and 2 wk) were measured by quantitative real-time reverse transcription-polymerase chain reaction analysis. Expression levels were normalized to 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and expressed as a relative expression ratio (target/GAPDH). Data are presented as the mean ± SE (n = 3). 
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by pretreatment with 1 μmol/L U73122, a phospholipase 
C inhibitor (0.05 ± 0.05 peak changes of  Fura-2 ratio 
from 0.66 ± 0.12, n = 13). We also observed that [Ca2+]i 
transients induced by 5-HT were not altered in extracel-
lular Ca2+-free conditions (data not shown). These results 
suggest that 5-HT activates phospholipase C to produce 
IP3, which induces Ca2+

 release from ER in activated 
HSCs. To confirm the receptor subtype, we tested block-
ing effects of  a universal 5-HT2 antagonist, ritanserin, 
which does not discriminate among 5HT2 isotypes. 5-HT-
induced [Ca2+]i responses were attenuated by pretreatment 

with 10 μmol/L ritanserin by 46.3% (0.34 ± 0.08 from 0.89 
± 0.10, n = 11).

Upregulation of calcium transporting and binding 
proteins in the ER 
In mammalian cells, there are three major subtypes of  
the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 
(SERCA1, 2, and 3) which pump Ca2+ into the ER lu-
men. We observed SERCA2 to be the dominant subtype 
in HSCs. SERCA2, especially SERCA2b, is considered 
to be a house-keeping protein expressed constitutively 
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Figure 4  5-hydroxytryptamine-induced intracellular Ca2+ concentration transients via metabotropic 5-hydroxytryptamine2 receptor in activated hepatic 
stellate cells. A, B: 5-hydroxytryptamine (5-HT)-induced intracellular Ca2+ concentration ([Ca2+]i) transients were completely abolished by pretreatment with U73122 
(1 μmol/L), a phospholipase C blocker (n = 3, 11 cells); C, D: Ritanserin (10 μmol/L), a 5-HT2 antagonist, inhibited the [Ca2+]i responses to 5-HT in activated hepatic 
stellate cells (2 wk-cultured cells; n = 3, 13 cells). Data are presented as the mean ± SE. 
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in most kinds of  cells; however, in HSCs, the expression 
of  SERCA2 tends to increase during activation. Specifi-
cally, the relative expression ratio of  SERCA2 (SERCA2/
GAPDH) at 1 d after isolation was 0.058, and increased to 
0.106 after 1 wk in culture and 0.164 after 2 wk in culture 
in vitro (Figure 5A). The expression of  SERCA3 was also 
increased during culture (SERCA3/GAPDH; 0.4 × 10-3 at 
1 d and 6.9 × 10-3 at 2 wk).

Among the three isoforms (types 1 through 3) of  the 
IP3 receptor, the type 1 IP3 receptor was the main subtype 
expressed in activated HSCs. We observed that the expres-
sion of  the type 1 IP3 receptor increased by about 7-fold 
(IP3R 1/GAPDH = 0.037) after 1 wk of  culture, and 
20-fold (0.100) after 2 wk of  culture compared to (0.005) 
levels 1 d after isolation (Figure 5B). In contrast, the ex-
pression level of  ryanodine receptors, which are a family 
of  Ca2+-releasing channel proteins expressed in the ER, 
either did not change or was decreased during the activa-
tion of  HSCs (Figure 5C).

We investigated whether Ca2+ binding chaperones of  
the ER could be up-regulated following the activation 
process of  HSCs. There were similar increases in the ex-
pression levels of  calreticulin (calreticulin/GAPDH; from 
0.204 at 1 d to 0.655 at 2 wk), calnexin (calnexin/GAP-
DH; from 0.240 at 1 d to 0.750 at 2 wk), and calsequestrin 
in HSCs. In the case of  calsequestrin, the expression level 
in HSCs at 1 d after isolation was undetectable, but was 
markedly increased (calsequestrin/GAPDH; 0.217) after 
2 wk of  culturing (Figure 5D).

DISCUSSION
Trans-differentiation of  HSCs is accompanied by marked 
increases in protein synthesis, including collagen, elastin, 
and glycoproteins[7]. It is well known that Ca2+ homeosta-
sis in the ER is critical for the synthesis, folding, and se-
cretion of  protein[22,23]. In HSCs, the depletion of  ER Ca2+ 
stores inhibits protein synthesis and increases intracellular 
degradation of  collagen[34]. Maintaining a high Ca2+ gradi-
ent across the ER membrane (around 1000-fold) is ac-
complished by active Ca2+ transport by SERCAs. Among 
the three different isoforms of  SERCAs, SERCA2 is con-
sidered to be a house-keeping protein expressed in the ER 
of  most cell types, including HSCs[34]. We observed that 
SERCA2 was the main isotype in quiescent and activated 
HSCs (Figure 5A). During activation, the expression of  
SERCA2 (and also SERCA3) was increased, which likely 
helped to maintain appropriate ER Ca2+ concentrations.

Chaperone proteins in the ER facilitate the folding 
of  newly synthesized proteins and glycoproteins. In par-
ticular, calreticulin and calnexin are important chaperones 
involved in a “quality control” system for protein synthe-
sis[35]. In addition, these chaperones act as Ca2+ binding 
proteins in the ER. Overexpression of  calreticulin increas-
es the total amount of  Ca2+ in intracellular stores, whereas 
calreticulin-deficient cells have reduced ER Ca2+ storage 
capacity[36]. Impaired collagen synthesis has been observed 
in cells derived from mice possessing genetic defects in 
ER chaperone proteins[37]. In this study, we observed for 
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the first time that the expression of  ER Ca2+ binding pro-
teins was markedly increased during the activation process 
of  HSCs, which might be an important adaptive change 
for trans-differentiation. 

Upon stimulation from the extracellular space, ER 
Ca2+ is the main source for releasing Ca2+ and is respon-
sible for enabling biologic signaling mediated by Ca2+. In 
addition, Ca2+ release from the ER stimulates store-oper-
ated Ca2+ entry into the cytosol, which eventually increases 
the refilling of  the ER Ca2+ reservoir. It has been shown 
that cytosolic Ca2+ signaling is important for proliferation 
and differentiation of  HSCs[25]. Similar to myofibroblast-
like cells, activated HSCs can have a contractile response 
to [Ca2+]i changes, which may increase vascular resistance 
leading to portal hypertension in vivo[32]. During trans-
differentiation, the expression of  L-type calcium channels 
increases, which may contribute to cytosolic Ca2+ signaling 
in HSCs[26,38]. In the present study, we observed that 5-HT 
increased [Ca2+]i only in activated HSCs via a serotonergic 
receptor. Until now, 5-HT-induced [Ca2+]i changes have 
not been reported in HSCs. Physiologic concentrations of  
5-HT in plasma are known to be less than 100 nmol/L, 
but those in cirrhotic patients are significantly elevated 
(3-4 fold) compared to controls[39]. Moreover, intrahepatic 
neighboring cells secrete 5-HT to act as an autocrine/
paracrine regulator[40]. Thus, we hypothesize that local 
5-HT concentration close to the releasing cells might be 
higher than the plasma level and repetitive exposure may 

have additive effects on [Ca2+]i-mediated changes in the 
process of  HSC activation.

We observed that 5-HT elicited a [Ca2+]i response via 
the metabotropic 5-HT2 receptor in activated HSCs. This 
was demonstrated by the findings that 5-HT-induced [Ca2+]i 
transients were (1) completely blocked by a PLC inhibitor; 
(2) not altered by nominally Ca2+ free conditions; and (3) 
reduced by a 5-HT2 blocker. 5-HT2A is known to mediate 
mitogenic effects in fibroblasts[41], while 5-HT2B is involved 
in the development of  the heart and enteric nervous 
system[42]. However, we did not discriminate whether the 
5-HT2A and/or 5-HT2B receptor mediated the serotonergic 
Ca2+ signaling in activated HSCs. We also observed that the 
type Ⅰ IP3 receptor (IP3R 1) is the main isoform expressed 
in activated HSCs, which is consistent with a recent report 
by Kruglov et al[32]. The expression level of  IP3R 1 was in-
creased during the activation process (Figure 5B). 

Various ligands for Gq/11-coupled metabotropic recep-
tors could be important extracellular stimuli, as they gen-
erate IP3 by activating phospholipase-C. Interestingly, it 
has been reported that the expression of  the P2Y metabo-
tropic purinoceptor (P2Y6) is rapidly upregulated follow-
ing activation of  HSCs, with a similar increase in ATP-
induced [Ca2+]i transients[33]. The same study also reported 
that extracellular UDP increases the transcription of  
procollagen in activated HSCs via activation of  the P2Y 
receptor, and this effect is partially inhibited by a P2Y 
receptor blocker. These results add further support to the 
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hypothesis that Ca2+ signaling released from ER stores is 
associated with HSCs undergoing the process of  activa-
tion. We also observed that ATP increased [Ca2+]i, which 
might be mediated by the metabotropic P2Y receptor 
(Figure 3). However, acetylcholine did not induce calcium 
changes, indicating that muscarinic acetylcholine receptors 
do not functionally exist in activated HSCs, even in the 
presence of  machinery for ER Ca2+ release. 

In this study, we observed the pronounced increase 
in serotonergic [Ca2+]i response related to the upregula-
tion of  metabotropic 5-HT2 receptors, type 1 inositol-5’-
triphosphate receptor, type 2 sarcoplasmic/endoplasmic 
reticulum Ca2+ ATPase, and Ca2+ binding ER chaperone 
proteins following trans-differentiation of  HSCs. These 
changes may be involved in the pathophysiologic (profi-
brotic) process of  rat HSCs as well as being a compensa-
tory mechanism for maintaining ER Ca2+ homeostasis 
and protein synthesis/maturation. Switching on and off  
of  the serotonergic signaling pathway might be implicated 
in potential treatment for portal hypertension. Yet, the 
biological relevance of  a 5-HT-induced [Ca2+]i transient in 
HSCs remains to be clarified. Moreover, it is not obvious 
whether simply switching-off  this serotonergic signal-
ing is an ideal target for developing treatments for liver 
cirrhosis. While there is evidence to suggest that 5-HT2 

antagonists reduce proliferation and increase cell death 
of  isolated HSCs[2,19], a recent study found that fibrotic 
changes induced by CCl4 are not ameliorated by a 5-HT2 

antagonist[29,43]. Further studies to elucidate the detailed 
role of  serotonergic signaling in HSCs are needed in order 
to develop therapeutic approaches to hepatic fibrosis.
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