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- Abstract -

Background: UCP3 is a mitochondrial membrane protein expressed selectively in
the skeletal muscle and brown adipose tissue. Since the skeletal muscle is the
main organ determining insulin sensitivity in the body, it was hypothesized that UCP3
overexpression in skeletal muscle cells would improve glucose metabolism.
Methods: An adenovirus-UCP3 was produced by a recombinant DNA method.
OLETF rats were divided into 2 groups. Four rats were injected with the adenovirus-
UCP3 (UCP3 group) and others were injected with the adenovirus (control group)
in the skeletal muscle. The UCP3 group was provided with the same quantity of food
as that consumed by the control group on the previous day. Insulin sensitivity was
evaluated by the euglycemic hyperinsulinemic clamp method. In a separate
experiment, glucose transport and glycogen synthesis we evaluated in C2C12
cells transfected with ether an adenovirus or the adenovirus-UCP3.

Results: The insulin sensitivity improved significantly and the body weight decreased
in the UCP3 group. The glucose transport and glycogen synthesis were higher in
the UCP3-C2C12 skeletal muscle cells at the basal state. After insulin treatment,
glucose transport and glycogen synthesis were also higher in the UCP3-C2C12 cells
but the increments were reduced after treatment with wortmannin, a PI3K inhibitor.
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Conclusion: Insulin sensitivity was higher in the UCP3-overexpressed OLETF rats in
the J/n wvivo study. UCP3 transfection also increased glucose transport and

glycogen synthesis in the cultured skeletal

muscle cells by a PI3K dependent

mechanism (J Kor Diabetes Asso 25:460” 468, 2001).
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Fig. 1. Upper panel shows the amount of food intake. UCP3 group (closed circle) were provided by the same amount of

food as that comsumed by control group on the previous day (closed circle). Lower panel shows the body weight
changes between two groups. The body weight was siginificantly decreased in UCP3 group compared to control

group. *: p<0.05 vs control

10 euglycemic hyperinsulinemic clamp
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0.05N NaOH
7.
c2C12 UCP3-C2C12

— 462 —



50

40+

30+

20

101

Glucose infusion rate (tmol/kg/min)

0% 20 40

60 80 100 120 140
Time (min)

Fig. 2. When euglycemic hyperinsulinemic clamp was done to control (open
circle) and UCP3 group (closed circle), the insulin sensitivity was
siginificantly higher in UCP3 group. *: p<0.05 vs control

, wortmannin
1 5mmol/L glucose 05 |Ci of D-[U-"C]
glucose MEM 90
100y 30% KOH
95%
8.
SPSS (SPSS Inc., Chicago,
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p<0.05
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Fg. 3. The glucose transport was increased in UCP3-overexpressed C2C12 skeletal muscle cells at basal state (upper panel).
After insulin treatment (lower panel), the glucose transport was also increased in UCP3-overexpressed C2C12 skeletal
muscle cells. The increment was diminished after treatment of wortmannin.

*: p<0.05 compared to control. t: p<0.05 compared to UCP3
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Fg. 4. The glycogen synthesis was increased in UCP3-overexpressed C2C12 skeletal muscle cells at basal state (upper
panel). After insulin treatment (lower panel), the glycogen synthesis was also increased in UCP3-overexpressed
C2C12 skeletal muscle cells. The increment was diminished after treatment of wortmannin.

*: p<0.05 compared to control. t: p<0.05 compared to UCP3

3.81+0.20 pmol/L/min (Fig. 3).
C2C12 0.25+0.01
pmol/L/min 0.4540.01 pmol/L/min
. UCP3-C2C12

0.62+0.01 pmol/L/min

1.26+454 pmol/L/min

UCP3-C2C12 wortmannin
UCP3-C2C12 0.80+0.04
mol/L/min (Fig. 4).
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