Evaluation of Vascular Endothelial Function

In Kyu Lee

Department of Internal Medicine, Keimyung University, College of Medicine

```
17,18)
                                                         가
                                                                                       가
                                                                       19)
                              (Endothelial depen-
dent relaxing factor: EDRF)
                                      (nitric oxide:
NO)
                  1,2)
                                                                                             (flow-mediated
                                                 7),
                6)
                                                          vasodilatation, endothelial dependent vasodilation:
                         8)
                                                          FMD)
                                                                              17,20,21)
                                                12),
                                   9~11)
                                                            가
       13),
                    14)
                                                                                                  22)
                                                                      가
                                                                               가
                          가
                                                                                                (Endothelial
                                                          dependent vasodilation, Flow-mediated vasodilation:
        가
                                                          FMD)
                                                                                                     (Endo-
                                         가
                                                          thelial independent vasodilation: EID)
                                              15,16)
                    가
```

23)

Fig. 1. Special device, which was designed for holding transducer and arm in the same position without movement.

(Endothelial dependent vasodilation, Flowmediated vasodilation: FMD) (Endothelial independent vasodilation: EID) 가 1.

Celermajer 17) 가

> . 7.0 ~ 11.3 Mhz 8~9

> > 12

22 2 10 가 12 가 (cuff)

(hyperextended and externally rotated) 10 5 4~8 cm 1.5 ~ 2.0 cm 가 가

가 (image parameters) 60

3 B-mode (ante-

2 cm

cubital fossa) B-mode (m-line)

(Fig. 1, 2).

3

R

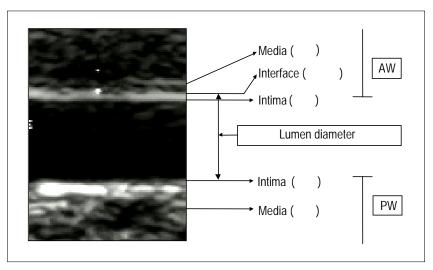


Fig. 2. Measurement of lumen diameter were taken from the anterior interface between intima and media to the posterior intima line (AW: anterior wall of brachial artery).

PW: posterior wall brachial artery).

3.

2.

5 180 mmHg 가 15 0.6 5 180 mmHg 12 4 mg 1 (45~75 가 가 가 가 20 4. 300 mmHg 5 0 mmHg (variability) 2% 12 가 Celemajor 60 가 1.7%, 2.3% 가 가 7~10%

Table 1. Endothelium-dependent (FMD) and Independent (EID) Vasodilation in Diabetic Patients and Normal Controls

		Control (n=12)	DM (n=12)
FMD	L. d (cm)	0.376±0.068	0.366±0.057
	VA (%)	8.9±2.7	6.3±2.1*
	IRT (sec)	20.4±2.8	29.5±5.4**
EID	VA (%)	19.7±3.8	18.5±5.5
	IRT (sec)	83.4±12.9	86.7±15.7

FMD: flow-mediated, endothelium-dependent vasodilation, EID: endothelium-independent vasodilation, L.d: lumen diameter, VA: vasoactivity, IRT (initial reaction time): lag time to initiation of flow-mediated, endothelium dependent vasodilation).

** : p<0.0001 vs control * : p<0.05 vs control

1~3% . Sorensen 40 24) 0.1 mm 0.04 mm 1.8%, 가 Initial Reaction 2.5% . 4~8% Time peak time 27) 가 2% . 가 (initial reaction time of FMD: IRT of FMD) 가 0.004±0.038 mm 0.005±0.091 mm $0.07 \pm 1.29\%$ $0.17 \pm$ 25) 12 (12 (25.6±1.8) 1.26% 26.3±3.5) 0.05 27) ± 0.03 mm, 0.10 ± 0.02 mm 5. 가 (p>0.05). $8.9 \pm$

2.7%,

(p<0.05).

6.3±2.1%

가

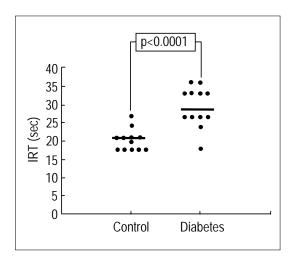


Fig. 3. Comparison of IRT(initial reaction time: lag time to initial reaction of flow-mediated, endotheliumdependent vasodilation) between control and diabetes.

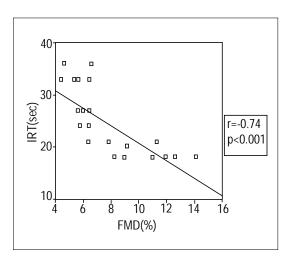


Fig. 4. The correlation between IRT (initial reaction time: lag time to initial reaction of flow-mediated, endothelium-dependent vasodilation) and FMD (flow-mediated vasodilation).

18.5±5.5% 19.7±3.8%, 24.3 ± 2.8 28.8± 가 (p>0.05).3.6 20.4 ± 2.8 35.5 ± 4.7 $8.4 \pm 1.7\%$ 29.5 ± 5.4 sec sec. 34.5 ± 2.6 $6.9 \pm 1.5\%$ (p<0.0001). 32.5±5.2 sec 31.5±3.7 sec 가 (p>0.05) (Table 1). 가 19.1± 3.1% 15.9 ± 2.5% (r=-0.74, p<0.001) (Fig. (Table 2, 3). 3, 4). 가 50 3 30 1. 23) 가 가 23) 가 가 22 2. 가

Table 2. Results of Continuous Monitoring of Flow Mediated Vasodilation between Two Groups

	Young group	Old group	Р
Baseline lumen (mm)	4.14±0.33	4.64 ± 0.42	NS
Maximal vasoactivity (%)	8.4 ± 1.7	6.9 ± 1.5	NS
Time of initial response (sec)	24.3 ± 2.8	28.8 ± 3.6	0.017
Time of peak vasoactivity (sec)	35.5 ± 4.7	34.5 ± 2.1	NS

NS: nonspecific, p>0.05

Table 3. Results of Continuous Monitoring of Endothelial Independent Vasodilation between Two Groups

	Young group	Old group	Р
Baseline lumen (mm)	4.13±0.38	4.43±0.41	NS
Maximal vasoactivity (%)	19.1±3.1	15.9 ± 2.5	0.033
Time of initial response (sec)	80.7 ± 13.3	80.0 ± 19.0	NS
Time of peak vasoactivity (sec)	177.5 ± 10.4	171.3±13.8	NS

NS: nonspecific, p>0.05

26	6)		가		±4.7%. p<0.05), p<0.05)	(8.0±3.9% 가	15.1±4.0%. NTG
		가				가	
2	가				(Fig. 5, 6).		
۷	71					가	
	•						•
			,		3.		
					28)	2	
(n=18)	(n=16)						
						2	11
nitr	oglycerin (N	ITG)			(: 59.0±5.5	5)	
					8	3	
,	,		, LDL-			(Endothelial deper	ndent vasodil-
, HDL	- ,				ation, flow-mediated	d vasodilation : FN	MD)
						(Endothelia	l independent
(1	3.7±6.2% v		3.9%. p<0.05)		vasodilation: EID)		75 gm
		(13	3.7±6.2% 20	0.1		. 75	gm

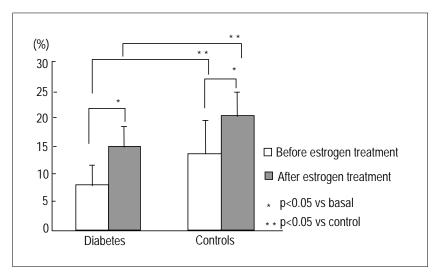


Fig. 5. The percent increase in arterial diameter during reactive hyperemia in postmenopausal controls and diabetes

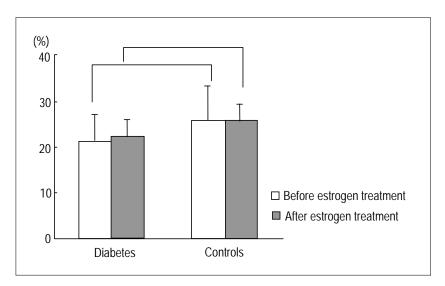
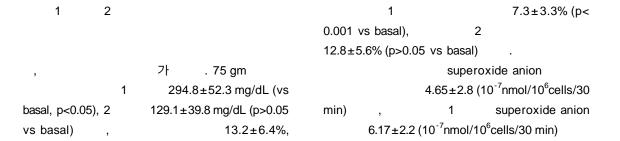



Fig. 6. The percent increase in arterial diameter in response to nitroglycerin

Table 4. The Results of Endothelial Function According to Serum Glucose Concentration and Superoxide Anion Production (n=11)

•		Basal	1 hour	2 hour
	GC (mmol/L)	7.4±1.2	16.4±2.9*	7.2±2.2
FMD	S-BP (mmHg)	121.8±9.8	124.5 ± 9.1	116.3±9.2
FINID	L. d (cm)	0.455 ± 0.16		
	VA (%)	13.2 ± 6.4	7.3±3.3**	12.8 ± 5.6
EID	L. d (cm)	0.463 ± 0.17		
בוט	VA (%)	20.4 ± 2.5	19.6±3.4	20.9 ± 2.8
02-		4.65±2.8	6.17±2.2*	

FMD: endothelial dependent vasodilation, EID: endothelial independent vasodilation,

O2-: superoxide anion formation from isolated neutrophils (x10⁻⁷ nmol/10⁶ cells/30min),

GC: glucose concentration, S-BP: systolic BP (mmHg), L. d: lumen diameter,

VA: vasoactivity, Mean±SD, *: p<0.05. **: p<0.001

Table 5. Output of FMD and EID After Alpha-lipoic Acid Treatment (n=11)

		Baseline	1 wk	2 wk	3 wk
	To	38.7±11.0	30.2±3.1*	37.6±14.5	25.4±2.8**
EMD	Тр	38.7 ± 11.0	30.3±3.1*	37.9 ± 14.6	25.9±3.6**
FMD	L. d (mm)	0.425 ± 0.069			
	VA (%)	4.2±2.1	5.8±2.2*	3.6 ± 2.3	5.5±1.9*
	То	101.4±21.2	91.0±14.0	92.4±7.2	103.0±25.5
EID	Тр	151.8±32.0	156.9 ± 37.1	174.3 ± 36.5	159.6 ± 31.3
	L. d (mm)	0.446 ± 0.059			
	VA (%)	8.6 ± 2.6	10.0 ± 3.9	9.0 ± 4.0	9.3 ± 5.6

To: lag time to initial response, Tp: lag time to peak VA, L. d: lumen diameter, VA: vasoactivity *: p<0.05 vs baseline, **: p<0.005 vs baseline

Table 6. Effect of -lipoic Acid on Superoxide Anion Formation in Neutrophil and Fasting Blood Glucose (n=11)

-lipoic acid	Superoxide (nmol/10 ⁷ cell/min	Fasting blood sugar (mg/dL)
Baseline	8.6±1.6	159.1±53.8
1 wk	6.1 ± 1.2 [†]	123.2±47.1*
2 wk	6.2 ± 1.5	134.0 ± 39.2
3 wk	$4.2 \pm 1.8^{++}$	122.0±40.5**

^{*:} p<0.005 vs baseline, **: p<0.05 vs baselin

t: p<0.005 vs baseline tt: p<0.003 vs baseline

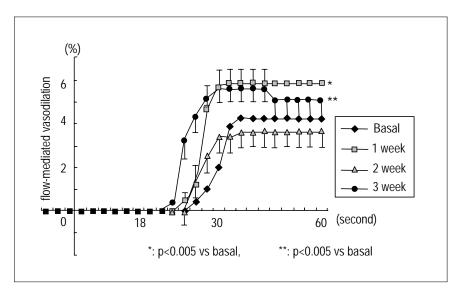


Fig. 7. Effect of -lipoic acid on Continuous monitoring of flow-mediated vasodilation (n=11)

```
(p<0.005) (Table 5, 6, Fig. 7).
                             6.1±1.2
                                           6.2 \pm 1.5
                                                                                (superoxide anion)
                                                                                                             가
nmol/10<sup>7</sup> cell/min
                         가
                                               ALA
1200 mg
                    6.2 \pm 1.5
                                  4.2 \pm 1.8 \text{ nmol}/10^7
                                                                                              가
cell/min (p<0.003)
                                                                                                   ALA
                                                             가
                   ALA
                              1
                                       4.2±2.1%
  5.8±2.2%
                 가
                          (p<0.005), 1
       5.8±2.2
                   3.6±2.3%
                                           (p<0.005
vs 1 ),
                          ALA
                                           3.6 \pm 2.3
                                                           ALA
                             가
      5.5 \pm 1.9\%
```

Table 7. Brachial Artery Diameter, Baseline and Hyperemic Blood Flow, and % Diameter Change Before and After High- and Low-Fat Meals and a High-Fat Meal With Vitamin E

	Preprandial	At 2 hours	At 4 hours	At 6 hours
High-fat meal				
Baseline arterial diameter,mm	3.58 ± 0.27	3.72 ± 0.23	3.78 ± 0.24	3.68 ± 0.23
Baseline blood flow, mL/min	255 ± 69	552±294	301 ± 81	455 ± 239
Hyperemic blood flow, mL/min	335 ± 66	711±346	303 ± 57	545 ± 282
% diameter change	13±4	7±4 ^{††}	7±2 ^{††}	13±3
Low-fat meal				
Baseline arterial diameter,mm	3.36 ± 0.24	3.66 ± 0.25	3.68 ± 0.22	3.65 ± 0.25
Baseline blood flow, mL/min	264 ± 64	432±276	282 ± 69	381 ± 300
Hyperemic blood flow, mL/min	323 ± 80	505±289	321 ± 55	443±295
% diameter change	15±2	14±3	14±3	13±3
High-fat meal with vitamin E				
Baseline arterial diameter,mm	3.59 ± 0.24	3.66 ± 0.26	3.66 ± 0.30	3.68 ± 0.27
Baseline blood flow, mL/min	234±39	429±347	292±73	270 ± 67
Hyperemic blood flow, mL/min	307 ± 75	553 ± 364	360 ± 70	348 ± 73
% diameter change	15±2	15±2	13±2	15±3

All values are mean \pm SD. \pm p<0.001 compared with each of the other meals. \pm p<0.01 compared with baseline.

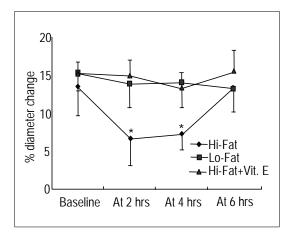
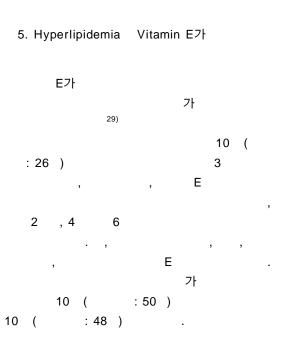



Fig. 8. Flow-mediated endothelium-dependent vasodilation expressed as percent change in diameter for 6 hours following each of 778 calorie meals. Asterisks indicate p<0.01 compared with baseline and with each of the other meals. The error bars represent 1 SD from the mean

Table 8. Comparison of Brachial Artery Diameter, Baseline and Hyperemic Blood Flow, and % Diameter Change Between Patients and Normal Subjects Before and After a High-Fat Meal With Vitamin E

	Preprandial	At 2 hours	At 4 hours	At 6 hours
Control				
Baseline arterial diameter, mm	3.59 ± 0.24	3.66 ± 0.26	3.66 ± 0.30	3.68 ± 0.27
Baseline blood flow, mL/min	234 ± 39	429 ± 347	292±73	270 ± 67
Hyperemic blood flow, mL/min	307 ± 75	553 ± 364	360 ± 70	348 ± 73
% diameter change	15±2	15±2	13±2	15±3
Coronary Artery Disease				
Baseline arterial diameter,mm	3.86 ± 0.63	3.89 ± 0.56	3.89 ± 0.55	3.91 ± 0.54
Baseline blood flow, mL/min	230±98	267 ± 103	276±101	255±80
Hyperemic blood flow, mL/min	284 ± 100	352±118	336±89	314±86
% diameter change	$9\pm4^{+}$	13±4 [†]	13±4 [†]	11±6 [†]
Diabetes				
Baseline arterial diameter,mm	4.07 ± 0.39	4.15 ± 0.43	4.19 ± 0.45	$4.32 \pm 0.45^{+}$
Baseline blood flow, mL/min	245 ± 68	322 ± 92	323 ± 91	327 ± 88
Hyperemic blood flow, mL/min	303 ± 99	387 ± 114	398±148	402±176
% diameter change	10±5 [†]	11±3 [†]	13±4	10±3

All values are mean \pm SD. \pm p<0.05 compared with control.

[†]p<0.05 compared with baseline.

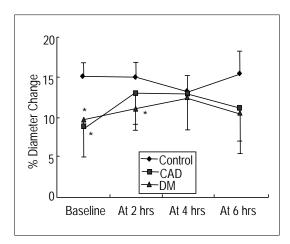


Fig. 9. Flow-mediated endothelium-dependent vasodilation expressed as percent change in diameter for 6 hours following 778 calorie high-fat meals with Vitamin E. *: p<0.05 compared with control group. The error bars represent 1 SD from the mean.

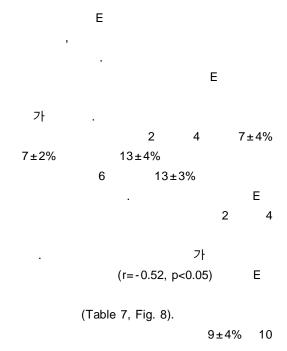


Table 9. FMD of CAD Patients before, after 2 Hour and 1 Month Taking GBE

	В	efore	After	2 hours	After 1 month
	CAD Contro		CAD	Control	CAD
	n=33	n=20	n=33	n=20	n=32
Baseline					
Diameter (mm)	4.42 ± 0.67	4.46 ± 0.59	4.45 ± 0.66	4.52 ± 0.54	$4.64 \pm 0.60^{\dagger}$
Flow (ml/min)	225 ± 98	203±98	225 ± 102	190±98	235 ± 90
Hyperemic					
Diameter (mm)	4.80 ± 0.68	5.06 ± 0.61	5.01 ± 0.68	5.15 ± 0.57	5.26 ± 0.64
Flow (ml/min)	266±123 [§]	254±121	283±132 [§]	211±122	280±137 [§]
% diameter changes	8.9 ± 3.9 *	13.7 ± 3.2	13.4±4.5 †	14.1±3.8	13.7±4.0 [†]

CAD: coronary artery disease, Before: baseline study before taking GBE, After 2 Hours: study performed 2 hours after taking GBE, After 1 Month: study performed 1 month after regularly taking GBE *: p<0.001 compared with controls, †: p=0.001 compared with data performed at before or 2 hours after taking GBE in patients with CAD, †: p<0.001 compared with data performed at before taking GBE, §: p<0.005 compared with baseline flow, : p<0.01 compared with baseline flow.

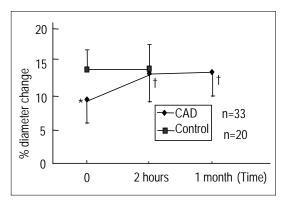
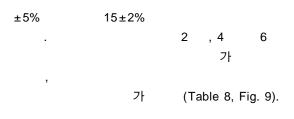
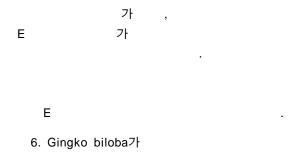
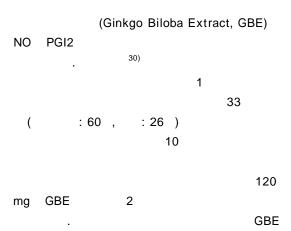





Fig. 10. Serial changes of the endothelial function, expressed as percent diameter changes, after taking GBE in normal subjects(control) and patients with coronary artery disease(CAD). *: p<0.001 compared with control, †: p<0.001 compared with data performed at before taking GBE.

1

160 mg

Table 10. FMD and EID of Healthy Control, DM and CAD Patients

		DM	CAD	CAD Mini	Normal
FMD	L. d (cm)	0.434 ± 0.053	0.470 ± 0.064	0.462 ± 0.067	0.449±0.073
	VA (%)	5.3 ± 1.8	2.4 ± 2.1	5.5 ± 2.1	6.4 ± 2.0
	P-time (sec)	39.9 ± 4.4	39.5 ± 5.1	39.0 ± 5.6	33.6 ± 5.4
	Initial-rx (sec)	35.4 ± 6.1	37.0 ± 5.0	33.7 ± 7.3	25.9 ± 6.9
	L. d (cm)	0.427±0.052	0.462±0.065	0.467±0.056	0.436±0.060
EID	VA (%)	11.8 ± 3.7	8.5 ± 3.5	9.7 ± 4.7	15.9 ± 3.1
	P-time (sec)	168.5 ± 16.9	161.7±27.8	170.7±37.8	171.3±16.5
	Initial-rx (sec)	106.1±28.2	103.9 ± 50.5	107.1±35.1	71.4 ± 27.6

L. d: lumen diameter, VA: vasoactivity, P-time: lag time to peak, Initial-rx: lag time to initial reaction

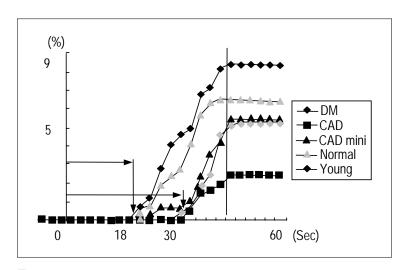
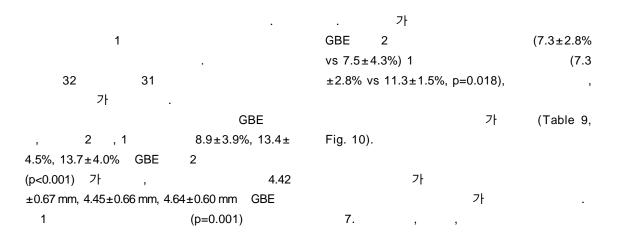



Fig. 11. Flow mediated vasodilation of healthy control, DM and CAD patients.

apoptosis nitric

가

37)

36)

32)

L-arginine nitric oxide cell adhesion molecules

10. L-arginine

가

가

oxide synthetase

L-arginine Nitric oxide

endothelin

L-arginine

가

L-arginine

34)

가

9 g L-arginine

1

22~35 68

50~76

11.

cyclooxygenase

29 (

56.1)

50%

(CAD) 14

(CADmin)

(Initial response time:Initial-RX)

(Table 10, Fig. 11).

가

2

60.5 , 57.7

6.4±2.0%, DM

5.5±2.1%, CAD

35.4±6.1 , CADmin

37.0±5.0 DM, CAD

가

, DM CADmin

가 12. Testosterone

- 419 -

31)

CADmin

55.5)

24

30%

39 (

FMD

5.3±1.8%, CADmin

25.9±6.9 , DM

33.3±7.3 , CAD

2.4±2.1% CAD

8.

9. Testosterone

13

가

가 LDL HMG-CoA 가 가 17) . 1992 Celermajer 가 가 statin 38). Atorvastatin 1 가 36). Statin 가 가 NO LDL NOS (nitric oxide synthase) 가 statin NOS 39) enodthelin ⁴⁰⁾. Fibrate HDL 가 가 가 41) 13. Koh 1. Palmer RM, Ferrige AG, Moncada S: Nitric oxide quinapril release accounts for the biological activity of 가 quinapril endothelium-derived relaxing factor. Nature 327: 524-526, 1987 가 Ш 2. Ignarro LJ, Buga GM, Wood KS, Byrns RE, (oxidative inactivation) Chaudhuri G: Endothelium-derived relaxing factor produced and released from artery and simvastatin vein is nitric oxide. Proc Natl Acad Sci USA 가 84:9265-9269, 1987 3. Vallanec P, Collier J, Moncada S: Effects of 43) endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2:997-1000, 1989 4. Stamler JS, Loh E, Roddy MA, Currie KE,

Creager MA: Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy

- humans. Circulation 89:2035-2040, 1994
- Vanhoutte PM, Rubanyi GM, Miller VM, Houston DS: Modulation of vascular smooth muscle contraction by the endothelium. Ann Rev Physiol 48:307-320, 1986
- Kubes P, Suzuki M, Granger N: Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651-4655, 1991
- Radomski MW, Palmer RMJ, Moncada S: An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193-5197, 1990
- 8. Grag UC, Hassid A: Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultures rat vascular smooth muscle cells. J Clin Invest 83:1774-1777, 1989
- McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henty WR, Andrews JW, Hayes JR: Impaired endotheliumdependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35:771-776, 1992
- Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA: Impaired nitric oxide-mediated vasodilation in patients with non-insulindependent diabetes mellitus. J Am Coll Cardiol 27:567-574, 1996
- Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA: Impaired endotheliumdependent vasodilation in patients with insulin dependent diabetes mellitus. Ciculation 88:2510-2516, 1993
- Laurent S, Lacolley P, Brunel P, Laloux B, Pannier B, Safar M: Flow-dependent vasodilation of brachial artery in essential hypertension. Am J Physiol 258:1004-1011, 1990
- Katz, Biasucci L, Sabba c, Strom JA, Jondeau G, Galvao M, Solomon S, Nikolic SD, Forman

- R, LeJemtel TH: Impaired endothelium-mediated vasodilatation in the peripheral vasculature of patients with congestive heart failure. J Am Coll Cardiol 19:918-925, 1992
- 14. Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G: Impairment of endotheliumdependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Invest 93: 50-55, 1994
- 15. Tesfamariam B: Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 16:383-391, 1994
- Gryglewski RJ, Palmer RM, Moncada S: Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454-456, 1986
- Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE: Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111-1115, 1992
- Fish RD, Nabel EG, Selwyn AP, Ludmer PL, Mudge GH, Kirshenbaum JM, Scheon FJ, Alexander RW, Ganz P: Responses of coronary arteries of cardiac transplant patients to acetylcholine. J Clin Invest 81:21-31, 1988
- Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P: Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315:1046-1051, 1986
- 20. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R: Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 74:1399-1406, 1986
- 21. Farrar DJ, Bond MG, Riley WA, Sawyer JK: Anatomic correlates of aortic pulse wave

- velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys. Circulation 83:1754-1763, 1991
- 22. Nabel EL, Selwyn AP, Ganz P: Large coronary arteries in humans are responsive to changing blood flow: an endothelium dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol 16:349-356. 1990
- 23. , , , :
 - 가: 가 가. *8:71-77, 2000*
- Sorensen KE, Celermajer DS, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Thomas O, Deanfield JE: Non-invasive measurement of human endothelium dependent arterial responses: accuracy and reproducibility. Br Heart J 74:247-253, 1995
- 25. Koh KK, Kang MH, Jin DK, Lee SK, Ahn JY, Hwang HY, Yang SH, Kim DS, Ahn TH, Shin EK: Vascular effects of estrogen in type II diabetic postmenopausal women. J Am Coll Cardiol 38:1409-1415, 2001
- 26. , , : 가 가

. 24:37-45,

2000

. 31: 867-876, 2001

29. , , , , , , , , , , , , , , , .

, *E* . *28:1538-1551, 1999*

30. , , , , , , , ,

29:919-927, 1999

- 31. Husain S, Andrews NP, Mulcahy D: Aspirin improves endothelial dysfunction in atherosclerosis. Circulation 97:716-720, 1998
- 32. Webb CM, McNeill JG, Hayward CS: *Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation* 100:1690-1696, 1999
- 33. Rector TS, Bank AJ, Mullen KA: Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure. Circulation 93:2135-2141, 1996
- Boger RH, Bode-Boger SM, Brandes RP: Dietary
 L-arginine reduces the progression of athero-sclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation 96:1282-1290, 1997
- 35. Blum A, Hathaway L, Mincemoyer R: *Oral L-arginine in patients with coronary artery disease on medical management. Circulation* 101:2160-2164, 2000
- Mullen MJ, Wright D, Donald AE: Atorvastatin but not L-arginine improves endothelial function in type I diabetes mellitus: a double-blind study. J Am Coll Cardiol 36:410-416, 2000
- 37. DeSouza CA, Shapiro LF, Clevenger CM: Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 102:1351-1357, 2000
- 38. Vita JA, Yeung AC, Winniford M: Effect of cholesterol-lowering therapy on coronary endothelial vasomotor function in patients with coronary artery disease. Circulation 102:846-851, 2000
- 39. John, S, Schlaich, M, Langenfeld, M: *Increased bioavailability of nitric oxide after lipid-lowering*

- therapy in hypercholesterolemic patients. A randomized, placebo-controlled, double-blind study. Circulation 98:211-216, 1998
- Hernandez-Perera O, Perez-Sala D, Navarro-Antolin
 J: Effects of the 3-hydroxy-3-methylglutaryl-CoA
 reductase inhibitors, atorvastatin and simvastatin,
 on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular
 endothelial cells. J Clin Invest 101:2711-2719,
 1998
- 41. Evans M, Anderson RA, Graham J: *Ciprofibrate* therapy improves endothelial function and reduces postprandial lipemia and oxidative stress

- in type 2 diabetes mellitus. Circulation 101: 1773-1779, 2000
- 42. Koh KK, Bui MN, Hathaway L, Csako G, Wacl awiw MA, Panza JA, Cannon RO 3rd: *Mechanis m by which quinapril improves vascular function in coronary artery disease. Am J Cardiol 83:327 -31, 1999*
- Koh KK, Cardillo C, Bui MN, Hathaway L, Csako G, Waclawiw MA, Panza JA, Cannon RO 3rd: Vascular effects of estrogen and cholesterollowering therapies in hypercholesterolemic postmenopausal women. Circulation 99:354-360, 1999