메산지움 세포에서 Lipopolysaccharide애 의해 유도되는 Chemokine 유전자 발현

고신대학교 복음볌원 내과, 계명대학교 의과대학 면역학교실*
임 학•윤수정* - 박종욱*

(요 약)
본 연구에서는 Lipopolysacchride(LPS)에 의한 신장 손상기전으로서 LPS에 의해 신장에서 유도되는 chemokine을 규명하고, 이들의 역할 및 발현경로를 조사하였으며, chemokine의 발현 을 차단할 수 있는 약제를 조사하였다.

LPS를 마우스 복강에 투여한 후 신장을 수거하여 α-chemokine 유전자 발현을 조사한 결과 interferon gamma(IFN- γ) inducible protein 10 (IP-10) 및 monokine induced by IFN- $\boldsymbol{\gamma}$ (MIG)의 유전자 발현이 유도되었으며, MIG 및 IP-10의 발현을 최대로 유발하는 LPS의 용량 은 마우스 체중 g 당 $1 \mu \mathrm{~g}$ 으로 나타났다. LPS에 의한 chemokine 발현에 있어서 신장의 메산지 움 세포의 역할을 알아보기 위하여 메산지움 세포를 시험관내에서 배양한 뒤 LPS, IFN-r 및 tumor necrosis factor- α 로 자극하고 chemokine의 유전자를 발현을 조사한 결과 LPS 자극 에 의해 IP-10의 유전자 발현이 중가되었으며 IFN- γ 에 의해 IP-10 및 MIG의 유전자 발현이 중가되었다. LPS에 의해 메산지움 세포에서 발현된 chemokine은 마우스 비장세포의 chemotaxis를 유발할 수 있어 LPS에 의한 chemokine 발현 유도는 신장의 염중반옹올 진행시키는 한 요소가 된다고 생각된다. LPS에 의한 chemokine발현을 억제시키기 위하여 LPS룰 처치한 메산지움 세포에 cycloheximide, cyclosporin A, sodium salicylate(SS), wortmanin(WM), piperazin (PZ) 둥을 처치한 뒤 $\mathrm{IP}-10$ 유전자 발현을 조사한 졀과 SS, WM 및 PZ 에 의해 $\mathrm{IP}-10$ 의 발현이 억제됨을 관찰하였으며, SS 의 차단효과는 마우스 생체내 즉, LPS를 처치한 마 우스의 신장에서도 나타남을 관찰하였다. 이상의 결과로 보아 LPS에 의한 MIG 및 IP-10의 발 현은 신장염증반웅을 일으키는 중요한 요인이 될 수 있으며, 향후 chemokine 발현이 유발되는 기전과 항염중제 둥의 신장보호 효과에 대한 연구가 필요하다고 생각한다.

서 론

그랍음성 세균에 의한 septic shock의 주원인 물질 은 그랍음성 세균의 외막에 있는 lipopolysaccharide (LPS)이다 ${ }^{11}$. LPS는 여러 종류의 세포를 강하게 자극 하여 사이토카인을 분비시키며 ${ }^{2,3}$, 중가된 혈청 내 염 증 유발성 사이토카인은 LPS에 의한 신체손상을 매

쳑임저자: 박종욱 대구광역시 중구 동산동 194
계명대학표 의과대학 면역학교실
Tel:053)250-7796, Fax:
E-mail : j303nih@dsmc.or.kr

개한다-7. 신장의 경우 LPS는 신장의 혈행역학장에 를 유발하며, interleukin(LL)-1, IL-6, TNF- α 등의 사이토카인올 분비시키고 ${ }^{8-12)}$, IL-8, MCP-1 둥의 chemokine을 분비하여 면역세포의 화학주성을 유발 한다 ${ }^{13,14)}$. 또 LPS는 메산지움 세포에 많은 양의 nitric oxide 분비를 유발시키며, 메산지움 세포와 tubular epithelial 세포에 Fas 발현을 증가시킴으로서 직간접적으로 신장손상을 초래한다 ${ }^{15,166}$. 본 연구예서 는 LPS에 의한 신장손상 기전으로서 LPS가 신장에 서 유도하는 chemokine을 조사하였다.

LPS가 신장에 손상을 주는 것은 알려진 사실이며,

그 기전은 LPS의 직접작용과 LPS에 의해 활성화된 면역세포에 의한 간접손상율 들 수 있다. LPS가 세포 에 직접 작용하기 위해서는 LPS binding protein (LBP)와 CD 14 이 필요하다. LPS 는 LBP 와 결합한 뒤 면역세포 표면에 있는 CD 14 에 부착하여 이들을 활성 화시킨다. 그러나 CD 14 는 면역세포 외에도 존재하며 또 수용성 CD 14 이 혈청 내에 존재하기 때문에 면역 세포뿐만 아니라 비면역세포, 즉 조직상피세포나 실질 세포 등에도 작용할 수 있다. 최근에 신장에서도 LBP 와 CD14이 표현되고 있다고 보고됨에 따라 LPS는 신장세포에 직접 작용할 수 있을 것으로 생각된다 ${ }^{17-}$ 19). 또 LPS는 신장에 직접 영향을 끼칠 뿐만 아니라 면역세포를 활성화시키며 이들이 신장에 침착됨으로 서 신장손상이 초래될 수 있다. 사구체 신염 (glomerulonephritis)시 사구체 구조의 퐈괴와 기능의 소실에 는 탐식세포 둥의 염중세포가 중요한 역할을 한다. 탐 식세포는 주요 면역작동세포의 하나로서 collagenase 나 elastase 둥의 단백분해효소, interleukin(IL)-1, thromboxane A2, leukotrienes, platelet activating factor 및 oxygen radical 둥의 물질을 산생하여 사 구체세포를 중식시키고, 기저막을 손상시켜 여과기능 에 이상을 유발함으로서 proteinuria를 초래하며 혈관 수축에 의한 glomerular filtration 둥을 초래한다 ${ }^{8,}$ ${ }^{20-24)}$. 따라서 혈액 내 탐식세포의 활성화와 이들의 신 장내 침윤은 LPS에 의한 신손상의 원인이 될 수 있 다.

면역세포의 조직내 침윤을 유발하는 요소로는 chemokine과 세포부착물질을 들 수 있다. Chemokine은 chemotaxis를 유발하는 사이토카인으로서 아미노산서 열의 특징에 따라 -CXC - 구조롤 가지는 α-chemokine과 -CC- 구조를 가지는 β-chemokine으로 나 눌 수 있으며 α-chemokine은 다시 ELR-CXC-와 nonELR-CXC-chemokine으로 분류된다 ${ }^{25)}$. 조직에서 이러한 chemokine이 발현되면 T 세포 및 탐식세포 둥 각중 면역세포의 조직침윤이 초래되고 그 결과로 염중반웅이 유발되므로 chemokine의 발현은 조직염 중반웅을 나타내는 지표가 될 수 있다. 신장세포 중 LPS의 직접자극 또는 사이토카인에 의해 활성화되 어 chemokine을 발현할 수 있는 세포로는 우선 메 산지움 세포롤 들 수 있다. 메산지움 세포는 조직 탐 식세포이기 때문에 할성화되면 세포독성물질, nitric oxide, 사이토카인 둥을 분비하여 조직손상과 염중반

웅울 유발하는 역할을 한다. 또 메산지움 세포는 chemokine을 분비하여 면역세포를 불러모으고 이들율 활성화시킴으로서 염중반웅을 초래하는 중추적인 역 할을 한다고 생각한다 ${ }^{13,14)}$.

본 연구에서는 LPS에 의해 신장 및 메산지움 세포 에서 분비되는 chemokine을 조사하고, 발현된 chemokine의 역할 및 항염중제 둥이 LPS에 의한 chemokine유도를 차단할 수 있는지를 조사하였다.

대상 및 방법

1. LPS 및 cytokine 처치

LPS의 생체내 효과실험에서는 LPS를 마우스 체중 g 당 $0.01,0.1,1$ 및 $10 \mu \mathrm{~g}$ 을 마우스($\mathrm{n}=5$) 복강에 주 사하였다. LPS 주사 후 시간별로 우측 신장을 수거한 뒤 각 군별로 신장 절반을 pooling하여 $-70^{\circ} \mathrm{C}$ 에 낭 동보존하였다. 세포배양실험에서는 LPS를 $1 \mu \mathrm{~g} / \mathrm{ml}$, $\mathrm{IFN}-\gamma$ 률 $200 \mathrm{U} / \mathrm{ml}$, TNF $-\alpha$ 를 $50 \mathrm{ng} / \mathrm{ml}$ 농도로 사 용하였다.

2. 메산지움 세포 분리 및 배양

정상 ICR 마우스의 양측 신장올 제거하여 멸균한 phosphate buffered saline(PBS)로 2희 세척하였다. 신장을 가위로 작은 조각으로 만든 뒤 멸균된 mesh $(106 \mu \mathrm{~m})$ 에 두고 멸균붕으로 조직을 조심스럽게 눌러 분쇄하였다. 하부에 모인 조직 분쇄액을 $\operatorname{mesh}(75 \mu \mathrm{~m})$ 로 걸러 사구체와 tubule 구조들을 걸러 내었으며, mesh위에 모인 사구채 둥을 수거하여 20% fetal bovine serum이 첨가된 RPMI 1,640 배지(20% FBSRPMI)에 부유시킨 후 이들을 배양접시에 넣어 5% CO_{2} 배양기에서 $3-5$ 일간 배양하였다. 현미경으로 사 구체롤 관찰하여 사구체는 부착되고 tubule 구조는 부착되지 않은 것을 확인한 뒤 세포배양 접시를 부드 럽게 혼들어 상충을 제거하고 다시 20% FBS-RPMI 배지를 넣어 5일간 배양하였으며 배지룰 교체한 뒤 다시 5 일간 더 배양하였다. 배양접시에 부착된 세포를 trypsin을 처치하여 때어낸 뒤 원심 ($1,200 \mathrm{rpm}, 5$ 분)하 여 상충을 제거하고 세포 pellet을 D -valine $(50 \mathrm{mM}$, Sigma)이 함유된 $20 \% \mathrm{FBS}-\mathrm{RPMI}$ 배지에 부유시켜 $5 \% \mathrm{CO}_{2}$ 배양기에서 3 -5일간 배양하였으며 상기한 D-valine이 첨가된 배지로 세포롤 2 회 더 계대 배양 함으로서 배양세포에서 fibroblast를 제거하였다. 최종

Fig. 1. Isolation and culture of mesangial cell. Glomeruli were isolated by filtration through mesh (106 mm and 75 mm), and mesangial cell were purified and cultured from glomeruli in 20% FBS-RPMI media or 20% FBS-RPMI containing D-valine.

적으로 D -valine이 첨가된 배지롤 제거하고 20% FBS-RPMI를 넣어 계대 배양하면서 LPS자극 실헙 둥에 사용하였다(Fig. 1).

3. 역전사중함효소연쇄반옹

배양세포의 경우 세포를 PBS 3희 세척한 뒤 상충 액을 제거하고, 여기에 1.5 ml RNAzolB 용액을 넣어 cell scraper로 흔합하여 세포를 녹였으며, 신장조직의 경우 2 ml 의 RNAzolB률 첨가한 후 조직분쇄기를 이 용하여 조직을 분쇄하고 분쇄된 조직액으로부터 total RNA를 추출하였다. 세포 및 조직이 용해된 RNAzolB용액에 $1 / 10$ 량의 chloroform을 첨가하여 진탕 혼 합한 후 $12,000 \mathrm{rpm}$ 으로 15 분간 원심하여 단백질 충과 RNA롤 분리하였으며, 분리된 상충의 RNA용액을 조 심스러이 수거하여 1.5 ml 시험관에 옮겼다. RNA 용 액에 동량의 100% isopropanol을 첨가하여 흔합한 후 $-20^{\circ} \mathrm{C}$ 에 16 시간 이상 보관하여 RNA 를 침전시켰 다. RNA-isopropanol 흔합액을 $12,000 \mathrm{mpm}$ 으로 원심 하여 RNA pellet을 만든 뒤 상충을 제거하였으며, 여 기에 ice-cold 70% ethanol을 1 ml 첨가하여 RNA pellet올 세척한 뒤 원심하여 상층의 ethanol 용액율 완전히 제거하고 RNA pellet을 $\mathrm{DEPC}-\mathrm{DW}$ 에 녹인 후 spectrophotometer를 이용하여 RNA의 농도와 순 도률 측정하고 이률 역전사중합효소반웅(reverse tran-scriptase-polymerase chain reaction, RT-PCR)에

사용하였다.
Total RNA 용액을 $70^{\circ} \mathrm{C}$ 수조에 10 분간 두어 RNA를 denaturation시킨 뒤 ice에 보존하였다. 먼저 5X RT buffer $2 \mu \mathrm{l}, 10 \mathrm{mM}$ dATP $0.25 \mu \mathrm{l}, 10 \mathrm{mM}$ dGTP $0.25 \mu \mathrm{l}, 10 \mathrm{mM}$ dTTP $0.25 \mu \mathrm{l}, 10 \mathrm{mM}$ dCTP $0.25 \mu \mathrm{l}$, MMLV reverse transcriptase $(200 \mathrm{U} / \mu \mathrm{l})$ $0.25 \mu \mathrm{l}$, RNase inhibitor $(28 \mathrm{U} / \mu \mathrm{l}) 0.25 \mu \mathrm{l}, 50 \mu \mathrm{M}$ oligo dT primer 0.5μ l, DEPC-DW 4μ I量 PCR tube에 넣어 RT-mixture를 만들었다. 여기에 ice에 보존한 total RNA용액 $(1 \mu \mathrm{~g} / \mu \mathrm{l})$ 을 $2 \mu \mathrm{l}$ 첨가한 뒤 mineral oil을 1 방울 떨어뜨리고 실온에 10 분간 두었 다. 이 시험관을 PCR machine(Cetus 480, Perkin Elmer Co)에 넣어 $42^{\circ} \mathrm{C}$ 에서 60 분간 열처리하여 역전 사 반웅율 완료하였으며, 역전사반웅물을 DW로 1:1 회석한 뒤 PCR에 이용하였다. PCR은 먼저 10 X PCR buffer $3 \mu \mathrm{l}$, $25 \mathrm{mM} \mathrm{MgCl} 21.8 \mu \mathrm{l}, 10 \mathrm{mM}$ dATP $0.3 \mu \mathrm{l}, 10 \mathrm{mM}$ dGTP $0.3 \mu \mathrm{l}, 10 \mathrm{mM}$ dTTP $0.3 \mu \mathrm{l}, 10 \mathrm{mM}$ dCTP $0.3 \mu \mathrm{l}, 50 \mu \mathrm{M}$ sense 및 antisense primer $0.25 \mu \mathrm{l}$, Taq polymerase ($5 \mathrm{U} / \mu \mathrm{l}$, Promega Co.) $0.25 \mu \mathrm{l}$ 를 혼합하고 여기에 DW 를 넣어 최종 용액량이 25μ l되게 하여 PCR mixture를 만들 었다. PCR mixture를 PCR tube에 넣고 여기에 역전 사 반웅물을 $5 \mu \mathrm{l}$ 넣고 흔합한 뒤 mineral oil을 1 방 울 떨어뜨리고 PCR machine(Cetus 480, Perkin Elmer Co)에 넣어 다음의 조건으로 PCR 올 실시하였 다. 먼저 $94^{\circ} \mathrm{C}$ 에서 5 분간 가열한 후 $94^{\circ} \mathrm{C} 30$ 초, $57^{\circ} \mathrm{C}$ 45 초, $72^{\circ} \mathrm{C} 45$ 초를 1 cycle로 하여 $18-35$ cycle 반옹 시켜 DNA 를 중폭시켰으며, 최종적으로 $72^{\circ} \mathrm{C}$ 에서 5 분 간 처치하여 PCR 을 완료하였다. 1% agarose gel에 PCR 산물을 접종하고 전기영동한 뒤 UV transilluminater를 이용하여 증폭된 DNA band를 관찰하였 다. RT-PCR에 사용한 각 primer의 염기서열은 Table 1에 정리하였다.

4. Chemotaxis assay

정상 마우스의 spleen올 뗴어낸 뒤 PBS에 세포부 유액을 만들었다. 세포부유액을 실온에 5분 방치한 뒤 상충을 50 ml tube로 옮기고 여기에 ficoll-hypaque solution을 세포부유액 하부에 넣은 뒤 원심분리 ($2,500 \mathrm{rpm}, 30$ 분)하여 단핵구 충을 수거하였다. 단핵 구를 PBS로 3차례 세척한 뒤 serum free RPMI 1640 (sf-RPMI) 배지에 $1 \times 10^{6} \mathrm{cell} / \mathrm{ml}$ 농도로 부유시킨

후 chemotaxis assay에 사용하였다.
배양중인 메산지움 세포에 LPS를 $1 \mu \mathrm{~g} / \mathrm{ml}$ 되게 첨가한 후 6 시간 배양하였다. 배양상층을 제거한 뒤 serum free RPMI 1640(sf-RPMI) 배지로 2 번 배양 접시를 세척한 후 배양접시에 이 배지를 10 ml 첨가하 여 72시간 배양하였다. 배양상충을 수거하여 원심 후 상충을 여과 멸균한 돠 신선한 sf-RPMI 배지와 $1: 1$ 로 혼합하여 conditioned medium(CM)을 만들고 이 것을 chemotaxis assay에 사용하였다. 대조군은 LPS 를 처치하지 않은 메산지움 세포를 sf -RPMI에서 동 일한 시간 동안 배양한 것을 사용하였다. 구멍 직경이 $5 \mu \mathrm{~m}$ 인 Transwell의 상부 well에 sf-RPMI를 $200 \mu 1$ 첨가하여 10 분 둔 뒤 배지롤 모두 제거하였다. 하부 well에는 상기한 CM 또는 fresh media들을 $600 \mu \mathrm{l}$ 씩 넣고 상부 well에는 splenocyte롤 $100 \mu 1$ 넣은 뒤 $37^{\circ} \mathrm{C} \mathrm{CO}_{2}$ incubator에서 3 시간 30 분 방치하였다. 상 부 well을 제거한 후 하부 well로 이동한 단핵구의 수롤 hemocytometer를 이용하여 측정하였으며, 실험 군 당 3 wells에 이동한 세포수의 평균수롤 fresh media로 이동한 세포수로 나누어 \% migration을 구 하였다.

5. 면역억제제, 항염중제, 신호전담차단제의 LPS 작욤 차단효과

LPS의 작용 차단효과를 검사하기 위한 실험으로서 메산지움 세포를 배양한 후 $\operatorname{LPS}(1 \mu \mathrm{~g} / \mathrm{ml})$ 로 자극하 였으며 여기에 cyclohexamide(CHX, $2 \mu \mathrm{~g} / \mathrm{ml}$), cyclosporin A(CsA, $3 \mu \mathrm{~g} / \mathrm{ml}$) sodium salicylate(SS,

Table 1. Primer Sequence Used for RT-PCR

Name	Type	Sequence
G3PDH	S	GCCACCCAGAAGACTGTGGATGGC
	AS CATGTAGGCCATGAGGTCCACCAC	
MIG	S	GATCAAACCTGCCTAGATCC
	AS GGCTGTGTAGAACACAGAGT	
IP-10	S ACCATGAACCCAAGTGCTGCCGTC	
	AS	GCTTCACTCCAGTTAAGGAGCCCT
SDF-1a	S	CTCTTGCTGTCCAGCTCT
	AS	GGGCTGTTGTGCTTACTTGT
IL-12	S GACATGTGGAATGGCGTCTC	
	AS CCAACCAAGCAGAAGACAGC	
IL-18	S GAACAATGGGCTGCCATGTCAGAAG	
	AS CTAACTTTGATGTAAGTTAGTGAG	

*S, sense primer; $A S$, antisense primer

5 mM), wortmanin($\mathrm{WM}, 10 \mathrm{ng} / \mathrm{ml}$) 및 piperazine $(\mathrm{PZ}, 20 \mu \mathrm{M})$ 을 첨가하여 6 시간 배양하였다. 세포를 PBS 로 3희 세척한 후 세포를 RNAzolB 용액에 녹여 상기한 방법과 같이 $\mathrm{RT}-\mathrm{PCR}$ 을 실시하였다.

SS 가 마우스 신장에서 LPS의 chemokine 유도성 을 차단할 수 있는지를 알아보기 위하여, 먼저 마우스 $(\mathrm{n}=5)$ 복강에 $\operatorname{LPS}(1 \mu \mathrm{~g} / \mathrm{g}$ of body weight)를 주사 하였으며, 주사 직후 및 4 시간 후에 체중 g 당 $60 \mu \mathrm{~g}$ 의 SS 롤 경구투여 하였다.

결 과

1. LPS의 복강 내 투여가 마우스 신장의 chemokine 유전자 반현에 미치는 영향

마우스 g 당 LPS를 $1 \mu \mathrm{~g}$ 씩 복강 주사한 후 2 시간, 6 시간 및 24 시간 때 신장을 수거하여 RT-PCR법으 로 MIG, $\mathrm{PP}-10, \mathrm{SDF}-1 \alpha$ 의 유전자 발현을 측정하였 다(Fig. 2). LPS를 주사 후 2 시간 때는 IP-10이 중가 하였으며, 6 시간 때는 MIG 유전자 발현이 중가되었 으나, $\mathrm{SDF}-1 \alpha$ 의 유전자 발현은 나타나지 않았다. LPS를 마우스 복강에 다양한 농도로 주사한 후 4시 간 때 신장을 수거하여 MIG 및 IP-10의 유전자 발현 을 조사한 결과 마우스 체중 g 당 LPS를 $1 \mu \mathrm{~g}$ 주사 한 경우에 MIG 및 $\mathrm{PP}-10$ 의 발현이 가장 현저하였다 (Fig. 3).

Time(hrs) after LPS injection
Time(hrs) after LPS injection

Fig. 2. LPS-induced chemokine gene expression in mouse kidney. Mice $(n=5)$ were treated with $L P S(1 \mu \mathrm{~g} / \mathrm{ml})$ intraperitoneally and kidney was harvested at 2, 6 and 24hr after LPS injection for gene expression analysis by $R T-P C R$.

- 임 학 외 2 인: 메산지움 세포에서 Lipopolysaccharide에 의해 유도되는 Chemokine 유전자 발현 -

Fig. 3. LPS-induced chemokine gene expression in mouse kidney. Mice(n=5) were treated with LPS intraperitoneally and kidney was harvested 4hr after LPS injection for gene expression analysis by $R T-P C R$.

Fig. 4. Effect of LPS, IFN- $\gamma, T N F-a$ on chemokine gene expression of mesangial cells. Mesangial cells were treated with LPS (1 $\mu \mathrm{g} / \mathrm{ml}), I F N-\gamma(200 \mathrm{w} / \mathrm{ml}), T N F-\alpha(50 \mathrm{mg} /$ ml) for 6 or 24hr. Gene expression was evaluated by $R T-P C R$.

2. LPS, IFN- \boldsymbol{r} 및 TNF- a 가 메산지움 세포 의 chemokine 유전자 발현에 미치는 영향

마우스 메산지움 세포를 배양한 후 배양배지에 $\operatorname{LPS}(1 \mu \mathrm{~g} / \mathrm{ml}), \mathrm{IFN}-\gamma(200 \mathrm{U} / \mathrm{ml})$ 및 TNF- α ($50 \mathrm{ng} /$ ml)를 첨가하여 6시간 및 24 시간 배양한 후 세포를 수거하여 RT-PCR을 실시한 결과(Fig. 4), LPS롤 처 치한 경우 $\mathrm{PP}-10$ 의 발현이 매우 현저히 중가하였으며 MIG는 대조군에 비해 다소 중가하였으나 SDF-1 a 의 발현은 증가되지 않았다. $\mathrm{IFN}-\gamma$ 를 처치한 경우에 는 IP-10과 MIG가 둘(959) 다 매우 강하게 발현되 었으며, TNF를 처치한 경우에는 MIG와 IP-10의 발 현이 대조군에 비해 다소 중가하였으나 $\mathrm{IFN}^{-} \gamma$ 나

Fig. 5. Effect of culture medium ($C M$) of mesangial cells stimulated with LPS on the chemo taxis of mouse splenocyte. Culture supernatant from mesangial cell (Control-CM), mesangial cell stimulated with LPS (LPS$C M$), and medium control were used for splenocyte chemotaxis assay. \% increase of cell migration=cell no in control CM or LPS-CM/cell no in medium control.

Fig. 6. Effect of $C H X, C s A, S S, W M$ and $P Z$ on the LPS-induced IP-10 gene expression in mesangial cell and kidney. Mesangial cells stimulated with $L P S(1 \mu \mathrm{~g} / \mathrm{ml})$ were cultured in media containing CHX, SS, CAS, WM or PZ for 6hr and cells were harvested for $R T-P C R(A)$. Mice ($n=$ 5) injected with LPS $(1 \mu \mathrm{~g} / \mathrm{g}$ of body weight, ip) was treated with $S S(60 \mu \mathrm{~g} / \mathrm{g}$ of body weight) orally 0 and 4 hr after LPS injection Kidney was harvested 6hr after $L P S$ injection for $R T-P C R(B)$.

LPS를 처치한 경우보다는 미약하였다.

2. LPS로 자극한 메산지움 세포배양상챵액의 chemotaxis 유도효과

마우스 메산지움 세포에 $\operatorname{LPS}(1 \mu \mathrm{~g} / \mathrm{ml})$ 롤 첨가하여

6시간 배양한 후 세포를 세척하고 혈청이 없는 RPMI 배지를 넣어 72 시간 배양한 후 이 배지(CM)를 수거 하여 chemotaxis assay를 실시하였다. CM 내로 chemotaxis에 의해 이동한 세포수를 fresh media내로 이동한 세포수로 나누어 백분율을 구한 결과 LPS를 처치 않은 대조군(105\%)에 비해 LPS를 처치한 군 (165%)에서 마우스 비장세포의 이동이 더 많았다 (Fig. 5).

3. 면역억제제, 단백짐함성억제제 및 항염중재 듕이 LPS에 의한 chemokine 유전자 밥현에 미치는 영향

배양한 메산지움 세포에 $\operatorname{LPS}(1 \mu \mathrm{~g} / \mathrm{ml})$ 를 넣어 자 극한 후 $\mathrm{CHX}(2 \mu \mathrm{~g} / \mathrm{ml}), \mathrm{CsA}(3 \mu \mathrm{~g} / \mathrm{ml}), \mathrm{SS}(5 \mathrm{mM})$, $\mathrm{WM}(10 \mathrm{ng} / \mathrm{ml})$ 및 $\mathrm{PZ}(20 \mu \mathrm{M})$ 를 첨가하여 배양하였으 며, 6 시간 때에 세포를 수거하여 RT-PCR을 실시하였 다. 앞의 결과와 마찬가지로 LPS롤 처치한 군에서 IP-10 유전자 발현이 중가되었다. LPS로 자극한 군 중 CHX 및 CsA 를 처치한 군에서는 LPS에 의해 유 도된 IP-10 유전자 발현이 억제뫼지 않았으나, SS , WM 및 PZ 를 처치한 군에서는 $\mathrm{IP}-10$ 유전자 발현이 억제되었다(Fig. 6). SS 의 마우스 생체 내 효과를 알 아보기 위하여 마우스 복강에 LPS $(1 \mu \mathrm{~g} / \mathrm{g}$ of body weight)룔 주사한 후 $\mathrm{SS}(60 \mu \mathrm{~g} / \mathrm{g}$ of body weight)를 LPS 주사 직후 및 4시간 뒤에 경구투여하고 6시간 때 에 신장을 수거하여 $\mathrm{RT}-\mathrm{PCR}$ 을 실시하였다. 대조군에 비해 LPS률 처치한 군에서는 IP-10의 유전자 발현이 중가되었으나, LPS로 자극한 후 SS 를 경구 투여한 군 에서는 IP-10의 발현이 차단되었다(Fig. 6).

고 찰

Chemokine은 chemotaxis를 유발하는 사이토카인 으로서 조직에서 이러한 chemokine이 발현되면 T 세 포 및 탐식세포 둥 각종 면역세포의 조직침윤이 초래 되고 그 결과로 염중반웅이 유발되므로 chemokine의 발현은 조직염중반웅을 나타내는 지표가 될 수 있다. 본 연구에서는 LPS에 의한 신장 손상의 기전으로서 LPS에 의해 신장에서 유도되는 chemokine을 조사하 였다.

LPS에 의해 신장 및 메산지움 세포에서 발현 될 수 있는 사이토카인 및 chemokine으로는 MCP-1 ${ }^{14)}$,

IL $-6^{11)}, \mathrm{IL}-8^{13)}, \mathrm{TNF}-\alpha^{11,12)}, \mathrm{IL}-1 \beta^{10)}, \mathrm{IP}-10^{27)}$ 등 이 알려져 있다. 본 연구에서는 LPS에 의해 유도될 수 있는 alpha-chemokine을 조사한 결과 신장에서 MIG 및 IP-10이 증가함을 알 수 있었다. 신장세포중 메산지움 세포가 이 chemokine들의 source가 될 수 있다고 생각되어 먼저 메산지움 세포를 분리 배양하 였으며, 일차 배양된 세포를 LPS로 자극한 후 chemokine 발현성을 RT-PCR법으로 조사한 결과 IP-10 이 강하게 유도되며 MIG는 IP-10보다는 발현 강도가 약하나 대조군보다는 발현이 중가되어 있음을 관찰하 였다. MIG와 IP-10은 주로 탐식세포에서 발현되는 chemokine으로서 탐식세포를 IFN- γ 로 자극할 때 이들의 발현이 유도되는 것으로 알려지고 있다. MIG 와 IP-10은 T 세포 chemotaxis, neovascularization 의 억제 및 마우스 tumor의 성장올 억제시키는 chemokine으로 알려져 있다 ${ }^{28-32)}$.

Chemokine을 산생하는 신장세포로는 우선 메산지 움 세포를 들 수가 있다. 메산지움 세포는 조직 탐식 세포로서 LPS 자극에 의해 $\mathrm{IP}-10^{27)}, \mathrm{MCP}-1^{14)}$, 및 $\mathrm{IL}-8^{13)}$ 등을 분비한다고 보고되고 있다. 본 실험의 결 과에서는 LPS 자극에 의해 신장에서는 MIG와 IP-10 의 발현이 강하게 나타났으나 메산지움 세포에서는 $\mathrm{IP}-10$ 이 강하게 유도되었다. 그러나 IFN- γ 로 메산 지움 세포를 자극한 경우에 IP-10은 물론 MIG도 동 시에 강하게 발현이 되었으므로 메산지움 세포가 MIG를 발현할 수 있는 능력은 가지고 있음을 알 수 있다. LPS 가 신장에 작용하여 MIG를 강하게 발현시 킨 이유로는 첫째 신장에 메산지움 세포 이외에 LPS 에 반웅하여 MIG를 산생하는 세포가 있을 수가 있으 며 둘째는 LPS에 의해 유도되는 cytokine-chemokine cascade 즉 LPS처치에 의해 유발된 IFN- γ 에 의해 2차적으로 MIG 및 IP-10이 발현되었을 가능성 이 있다고 생각한다.

LPS로 자극한 메산지움 세포의 배양상충액을 수거 하여 chemotaxis assay를 실시한 바 대조군에 비해 LPS롤 처치한 군에서 이동세포수가 많음을 알 수 있 었다. 배양 상충액에는 MIG와 IP-10 이외에도 다른 chemokine도 들어있을 수가 있으며, LPS 처치에 의 해 마우스의 신장 및 메산지움 세포에서 분비되는 MIG와 IP-10 둥의 chemokine들은 T 세포 둥의 chemotaxis를 유발시켜 엽중반웅을 촉진시키는 역할을

한다고 생각된다.
LPS는 상기한 바와 같이 직접작용 또는 chemokine을 발현시켜 신장에 다양한 영향을 미칠 것으로 생각된다. 본 연구에서는 LPS 의 chemokine 유도성을 차단하는 방법을 알아보기 위하여 단백질합성차단제 인 CHX , 면역억제제인 CsA , 항염중제인 SS 및 신호 전달억제제인 WM 과 PZ 롤 LPS 로 자극 받은 메산지 움 세포에 처치하고 IP-10 유전자 발현성을 분석하였 다. CHX 및 CsA 는 LPS에 의한 IP-10유전자 발현 을 차단할 수 없었으나, SS, WM 및 PZ 는 $\mathrm{IP}-10$ 유 전자 발현을 차단하였으며, SS 는 LPS 롤 주사한 마우 스 신장에서도 LPS의 작용올 차단할 수 있었다. LPS 로 자극 받은 탐식세포에서 IL-1, IL-6, granulocyte/ macrophage colony stimulating factor, TNF- α, MCP-1 및 nitric oxide synthase 산생이 중가되는 것은 nuclear factor $-\kappa \mathrm{B}(\mathrm{NF}-\kappa \mathrm{B})$ 가 활성화되어 상 기한 유전자들의 전사를 촉진시키기 때문으로 보고되 고 있으며, SS 는 항 염증작용과 더불어 $\mathrm{NF}-\kappa \mathrm{B}$ 의 활성화를 차단할 수 있는 것으로 보고되고 있다 ${ }^{33,34}$, 따라서 본 실험에서 SS가 LPS처치에 의한 IP-10의 발현올 차단한 현상도 이러한 SS 의 $\mathrm{NF}-\kappa \mathrm{B}$ 활성화 차단작용 때문인 것으로 추정된다.

이상의 결과를 종합할 때 LPS는 신장에 MIG 및 $\mathrm{IP}-10$ 의 발현을 유발시키며 이러한 chemokine의 발 현은 면역세포의 소집을 초래하여 신장염중반웅을 일 으키는 중요한 요인이 퇼 수 있다고 생각한다. 향후 LPS의 cytokine-chemokine cascade유발성과 LPS에 의한 신장손상에 있어서 항염중제 및 면역억제제 둥 의 신장보호효과에 대한 상세한 연구가 필요하다고 생각한다.

= Abstract $=$

LPS-induced Chemokine Gene Expression in Mesangial Cell

Hark Rim, M.D., Soo-Jung Yoon, M.D.* and Jong-Wook Park, M.D.

Department of Internal Medicine, Kosin University Gospel Hospital, Department of Immunology*, School of Medicine, Keimyung University

This study was designed to investigate the molecular mechanism of chemokine induction by lipopoly-
saccharide(LPS) of E. coli. Chemokine gene expression was evaluated by the reverse transcriptasepolymerase chain reaction(RT-PCR) assay using RNAs isolated either from kidneys of LPS-injected mice or from the mesangial cells stimulated with LPS, IFN- γ or TNF- α. LPS was shown to induce interferon gamma(IFN- γ) inducible protein 10 (IP-10) and monokine induced by interferon gamma (MIG) in kidney. IP-10 gene expression was induced by LPS and IFN- $\boldsymbol{\gamma}$, but MIG gene expression was induced by IFN- γ in mesangial cell. Chemokines induced by LPS increased splenocyte migration. Sodium salicylate, wortmanin and piperazine blocked LPS mediated chemokine induction suggesting the activation of nuclear factor $-\kappa$ B pathway.

It is concluded from this study that mesangial cells are the target of LPS in the renal failure resulting from the systemic infections. LPS induces chemokines directly and/or indirectly in the mesangial cells, and these chemokines may associated with renal inflammation.

Key Words: Mesangial cells, Lipopolysaccharide, Chemokine, Cytokine

참 고 문 헌

1) Glauser MP, Zanetti G, Baumgartner J-D, Cohen J : Septic shock: Pathogenesis. Lancet 338:732-36, 1991
2) Ohmori Y, Hamilton TA:A macrophage LPSinducible early gene encodes the murine homologue of IP-10. Biochem Biophys Res Commun 168:1261-1267, 1990
3) Tannenbaum CS, Koerner TJ, Jansen MM, Hamilton TA: Characterization of lipopolysac-charide-induced macrophage gene expression. J immunol 140:3640-3645, 1988
4) Kobayasi M, Fitz L, Ryan M, Hewixk RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, and Trinchieri G :Identification and purification of natural killer cell stimulatory factor(NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170:827-845, 1989
5) Heremans H, Van Damme J, Dillen C, Dijkmans R , and Billiau A: Interferon r, a mediator of lethal lipopolysaccharide-induced shwartzman-like shock reactions in mice. J Exp Med 171:18531869, 1990
6) Yoshimoto T, Nakanishi K, Hirose, Hiroishi K, Okamura H, Takemoto Y, Kanamaru A, Hada T,

Tamura T, Kakishita E, and Higashino K:High serum IL-6 level reflects susceptible status of the host to endotoxin and IL-1/tumor necrosis factor. I lmmunol 148:3596-3603, 1992
7) Dinarello CA, Gelfand JA, and Wolff SM : Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. JAMA 269:1829-1835, 1993
8) Lovett DH, Bursten SL, Gemsa D, Bessler W, Resch K, Ryan JL: Activation of glomerular mesangial cells by gram-negative bacterial cell wall components. Am J Pathol 133:472-484, 1988
9) Bougeois N, Reuse C, Boeynaems JM, Staroukine M, and Vanherweghem JL: Effects of endotoxin on hemodynamics of isolated dog kindey. Adv Exp Med Biol 212:81-85, 1987
10) Xia Y, Feng L, Yoshimura T, Wilson $C B$: LPS-induced MCP-1, IL-1 β, and TNF- α mRNA expression in isolated erythrocyte-perfused rat kidney. Am J Physiol 264:774-780, 1993
11) Pirotzky E, delattre RM, Hellegouarch A, Lonchampt MO, Aarden L, Braquet P, Galanaud P: Interleukin-6 production by tumor necrosis factor and lipopolysaccharide-stimulated rat renal cells. Clin lmmunol lmmunopathl 56:271-279, 1990
12) Baud L, Oudinet JP, Bens M, Noe L, Peraldi MN, Rondeau E, Etienne J, Ardaillou R: Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide. Kidney lnt 35:1111-1118, 1989
13) Kusner DJ, Luebbers EL, Nowinski RJ, Konieczkowski M, King CH, Sedor JR:Cytokine- and LPS-induced synthesis of interleukin-8 from human mesangial cells. Kidney Int 39:1240-1248, 1991
14) Lee SK, Park JY, Chung SJ, Yang WS, Kim SB, Park SK, Park JS:Chemokines, osteopontin, ICAM-1 gene expression in cultured rat mesangial cells. J Korean Med Sci 13:165-170, 1998
15) Shultz PJ, Tayeh MA, Marletta MA, Raij L: Synthesis and action of nitric oxide in rat glomerular mesangial cells. Am J Physiol 261 :600606, 1991
16) Ortiz-Arduan A, Danoff TM, Kalluri R, Gon-zalez-Cuadrado S, Karp SL, Elkon K, Egido J, Neilson EG: Regulation of Fas and Fas ligand expression in cultured murine renal cells and in the kidney during endotoxemia. Am J Physiol 271:1193-1201, 1996
17) Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a Receptor for Complexes of Lipopolysaccharide(LPS) and LPS Binding Protein. Science 249:1431-1433, 1990
18) Mathison J, Wolfson E, Steinemann S, Tobias P, Ulevitch R : Lipopolysaccharide(LPS) recognition in macrophages. J Clin Invest 92:2053-2059, 1993
19) Wang SC, Klein RD, Wahl WL, Alarcon WH, Garg RJ, Remick DG, Su GL:Tissue coexpression of LBP and CD14 mRNA in a mouse model of sepsis. J Surg Res 76:67-73, 1998
20) Shah SV, Baricos WH, Basci A: Degredation of human glomerular basement membrane by stimulated neutrophils: Activation of a metalloproteinase/s by reactive oxygen metabolites. J Clin Invest 79:25-31, 1987
21) Nathan CF:Secretory products of macrophages. J Clin Invest 79:319-326, 1987
22) Couser WG: Mediation of immune glomerular injury. J Am Soc Nephrol 1:13-29, 1990
23) Schlondorff D, Mori T :Contributions of mesangial cells to glomerular immune functions. Klin Wochenschrift 68:1138-1144, 1990
24) Schreiner GF: The role of macrophage in glomerular injury. Semin Nephrol 11:268-275, 1991
25) Yaub DD, Oppenheim JJ : Chemokines, inflammation and the immune system. Therapeutic Immunology 1:229-246, 1994
26) Iwano M, Dohi K, Hirata E, Horii Y, Shiiki H, Ishikawa H : Induction of interleukin 6 synthesis in mouse glomeruli and cultured mesangial cells. Nephron 62:58-65, 1992
27) Gomez-Chiarri M, Hamilton TA, Egido J, Emancipator SN : Expression of $1 \mathrm{P}-10$, a Lipopoly-saccharide-and Interferon- γ-Inducible Protein, in Murine Mesangial Cells in Culture. Am J Pathol 142:433-439, 1993
28) Farber JM : Mig and IP-10 CXC chemokines that target lymphocytes. J Leukocyte Biol 61:246257, 1997
29) Liao F, Rabin RL, Yannelli JR, Koniaris LG, Vanguri P, Farber JM Human, Mig chemokine: Biochemical and functional characterization. J Exp Med 182:1301-1314, 1995
30) Taub DD, Lloyd AR, Conion K, Wang JM, Ortaldo JR, Harada A, Matsushima K, Kelvin DJ, Oppenheim JJ:Recombinant human inter-feron-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J

Exp Med 177:1809-1814, 1993
31) Angiolillo AL, Sgadari C, Taub DD, Liao F, farber JM, Maheshwari S, Kleinman HK, Reaman GH, Tosato G:Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155-162, 1995
32) Arenberg DA, Kunkel SC, Palverini PJ, Morris SB, Bardick MD, Glass MC, Taub DT, Iannettoni MD, Whyte RI, Strieter RM:Interferon-γ-inducible protein $10(\mathrm{IP}-10)$ is an angiostatic
factor that inhibits human non-small cell lung cancer(NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 184:981-992, 1996
33) Baeuerle PA, Henkel T:Function and activation of $\mathrm{NF}-\kappa \mathrm{B}$ in the immune system. Annu Rev Immunol 12:141-179, 1994
34) Grilli M, Pizzi M, Memo M, Spano PF : Neuroprotection of aspirine and sodium salicylate through blockade of NF- κ B activation. Science 274:1383-1385, 1996

