각막부종이 각막형태에 미치는 영향

남상길 - 김근태 - 김기산

$=$ 요 약 $=$

각막부종이 각막의 형태에 어떠한 변화률 야기시키는지를 알아보기 위하여 전에 한번도 콘택트렌 즈를 착용한 적이 없는 정상인 30 명 60 안을 대상으로 산소전달성이 매우 낮은 콘택트렌즈 $(\mathrm{Dk} / \mathrm{L}$ 4.5×10^{9}, 후면각막곡률반경 8.6 , 국제콘택트렌즈 회사)를 2 시간동안 착용시켜 각막부종을 유발시 킨 후 각막의 두께, 굴절력, 각막의 만곡도 및 각막형태의 변화를 각각 측정하였다.

각막두께의 변화는 $542.90 \pm 22.89 \mu \mathrm{~m}$ 에서 $586.50 \pm 23.19 \mu \mathrm{~m}$ 로 평균 $43.60 \pm 7.87 \mu \mathrm{~m}$ 중가하였다 $(\mathrm{p}=0.0000)$. 굴절력의 변화률 보면 수직경선에서는 착용전 -4.09 D 에서 착용후 -4.19 D 로 -0.1 D 중 가하였으며 $(\mathrm{p}=0.0002)$, 수평경선에서는 -3.45 D 에서 -3.34 D 로 약간 감소하였다 $(\mathrm{p}=0.0000)$. 각막만 곡도 및 각막형태의 $\operatorname{Sim} \mathrm{K}$ 의 변화역시 수직경선에서는 그 도수가 증가하였그 수평경선에서는 감소 하여 $(\mathrm{p}=0.0000)$ 직난시가 증가하는 양상을 보였다. 이러한 결과로 불때 콘택트렌즈에 의해 유발된 각막부종은 각막의 형태에 어느정도 영향을 미치는것으로 보이지만 임상적으로 의미있는 변화를 일 으키지 않는것으로 생각된다(한안지 $37: 1590 \sim 1594,1996$).

$$
=\text { Abstract }=
$$

The Effect of Corneal Edema on Corneal Topography

Sang Kil Nam, M. D., Keun Tae Kim, M. D, Ki-San Kim, M.D.

To evaluate the changes in corneal topography following contact lens-induced corneal edema, sixty eyes of 30 patients that had never worn contact lenses were examined. A contact lens with very low oxygen transmissibility was placed over each cornea to induce corneal edema. The changes in corneal thickness, refraction, keratometry and topography were measured before and after

[^0]
Abstract

subjects had been wearing hydrogel contact lens for 2 hours. The mean change in corneal thickness was $43.60 \pm 7.87 \mu \mathrm{~m}$ from $542.90 \pm 22.89 \mathrm{\mu m}$ before contact lens wear to $586.50 \pm 23.19 \mathrm{um}$ after contact lens wear ($\mathrm{p}=0.0000$). Refracive change in vertical meridian was -0.1 D increasing from -4.09 D to -4.19 D after contact lens wearing ($\mathrm{p}=0.0002$) , and there also was a small change in refractive errors in horizontal meridian decreasing from -3.45 D to $-3.34 \mathrm{D}(\mathrm{p}=0.0000)$. There was a tendency toward with the astigmatism, because corneal curvature and Sim K value also increased in vertical meridian and decreased in horizontal meridian. These results suggest that contact lens-induced corneal edema may influence the corneal configuration in some degree, however, these changes does not seem to be clinically significant (J Korean Ophthalmol 37:1590~1594, 1996).

Key Words : Contact lens, Corneal edema, Corneal topography.

콘택트렌즈(이하 렌즈)에 의한 각막의 만곡도나 굴절이상의 변화는 연성 렌즈에서는 다른 렌즈에서 보다 그 빈도나 정도가 훨씬 낮고 적다 ${ }^{1-22}$. 생길 수 있는 변화로는 작막부종, 각막난시, 부정난시, 심하 면 유사원추 각막증을 들수있다 ${ }^{3}$. 최근에 렌즈사용 자의 증가와 더불어 장기간 착용하는 사람들이 많아 지고 있으며 이러한 경우 각막 부종이 유발되고, 그 에 따라 굴절이상과 각막의 만곡도의 변화, 각막형 태의 변화가 올수있다. 이런 경우 혼히 볼수있는 각 막형태검사 소견은 각막 중심부 부정난시, 방사상대 칭의 소실, 각막 중심부에서 주변부로 가면서 점진 적으로 편평해지는 정상소견의 소실등이 보고되고 있으며, 원인으로는 저산소증, 콘택트렌즈 디자인, 각막 경성 등을 생각할수 있다 ${ }^{4}$. 최근 엑시머레이저 근시교정수술을 받으려는 많은 환자들이 렌즈를 착 용하고있어, 수술전 검사시 렌즈에의한 굴절력 또는 각막만곡도의 변화를 고려해야 한다.
따라서 본 연구에서는 산소전달성이 매우 낮은 렌 즈를 착용시켜 각막부종을 유발시킨 후 굴절이상, 각막만곡도 및 형세도에 어떠한 변화가 있는지 알아 보고자 하였다.

대상 및 방법

세극둥 검사상 각막에 질병이 없음이 확인되고, 전에 한번도 렌즈를 착용한 적이 없는 정상인 30 명 60 안을 대상으로 하였다. 평균 나이는 25.13 ± 2.02 세 였으며, 성별로는 남자 22 명 여자 8 명이였다. 대

상군은 잠에서 깬후 $5 \sim 6$ 시간정도 눈을 뜨고 활동한 후에 각막중심두께(pachymeter), 굴절점사(manifest refraction), 각막곡률계(keratometer), 각 막형태검사 (corneal topography) 를 시행하였다. 그 다음 렌즈를 각막에 착용시켜 2 시간동안 눈을 감 은 상태로 있다가 2 시간이 지난후에 렌즈를 제거한 직후 다시 굴절검사, 각막중심두께, 각막곡률계, 각 막형태검사를 다시 측정하여 각막부종이 있기 전후 에 어떠한 변화가 있었는지 살펴보았다. 상기 검사 는 모두 한 사람에 의해서 이루어졌다. 실험에 사용 된 렌즈는 특수하게 고안된 hydrogel 콘택트렌즈 (국제콘택트렌즈 회사) 로서 그 특징은 oxygen permeability (Dk) 가 $9 \times 10-11\left(\mathrm{~cm} \times m l \times \mathrm{O}_{2}\right) /(\mathrm{sec}$ $\times m l \times \mathrm{mmHg}$), 두께가 $400 \mu \mathrm{~m}$, oxygen transmissibility $(\mathrm{Dk} / \mathrm{L})$ 가 $4.5 \times 10-9 /\left(\mathrm{cm} \times m l \times \mathrm{O}_{2}\right) /(\mathrm{sec} \times$ $m l \times \mathrm{mmHg})$ 로서 후면각막곡률반경은 8.6 으로 하여 착용감이 줗고 최소한의 움직임으로 자각적 증상이 최소화되도록 고안되었다. 따라서 이 렌즈롤 착용하 고 눈을 감은 상태에서는 각막 표면의 산소 분압은 0 mmHg 가 되어 각막의 부종을 일으키기에 충분한 저 산소증을 유발시킬수 있게 된다 ${ }^{56}$. 굴절검사는 타각 적 굴절검사로 시행했으며, 각막만곡도는 Bausch \& Lomb사의 작막곡률계률 가지고 측정하였고, 각 막 두께의 변화는 Echopach사의 각막두께측정기를 이용하여 각막의 중심부룰 3희 측정하여 평균값을 구하였다. 각막형태검사는 Corneal Topography System (PAR Vision Systems Corporation)을 이용하였다.

결 과

렌즈를 착용하기전의 평균각막두께는 $542.90 \pm$ $22.88 \mu \mathrm{~m}$ 였으며, 각막부종을 일으키기 위해 특수고 안된 hydrogel 콘택트렌즈를 착용한뒤 두시간이 지 난 뒤에 측정한 평균작막두께는 $586.50 \pm 23.19 \mu \mathrm{~m}$ 으 로서 평균 $43.60 \pm 7.87 \mathrm{um}$ 의 각막두께의 증가가 있었 으며, 이는 퉁계학적으로 의의가 있었다 $(\mathrm{p}=0.0000)$

Table 1. Changes in corneal thickness after developing corneal edema

	Pre-CL	POst-CL
thickness (mm)	$542.90(22.89)$	$586.50(23.19)$
difference	$+43.60(7.87)$	
p value	0.0000	

$\mathrm{N}=60$ eyes of 30 patients
() : standard deviation
CL : contact lens
Table 2. Changes in manifest refraction after developing corneal edema

Axis	vertical		horizontal	
	Pre-CL	Post-CL	Pre-CL	Post-CL
diopter	$-4.09(2.19)$	$-4.19(2.16)$	$-3.45(2.00)$	$-3.34(2.01)$
difference	$0.026(0.202)$	$-0.020(0.156)$		
p value	0.0003	0.0000		

$\mathrm{N}=60$ eyes of 30 patients
(): standard deviation
CL : contact lens

Table 3. Changes in Keratometry after developing corneal edema

Axis	vertical			
	Pre-CL	Post-CL	Pre-CL	Post-CL
diopter	$42.32(1.54)$	$42.42(1.52)$	$41.45(1.65)$	$41.35(1.64)$
difference	$0.026(0.202)$	$-0.018(0.141)$		
p value	0.00018	0.0000		

$\mathrm{N}=60$ eyes of 30 patients
() : standard deviation
CL : contact lens
(Table 1). 이렇게 각막두께가 증가된 경우에 각막 만곡도, 굴절력 및 각막형태도에는 다음과 같은 변화 가 생졌다. 먼저 굴절력의 변화를 보면 수직경선의 굴 절력은 착용전에 $-4.09 \pm 2.19 \mathrm{D}$ 에서 착용뒤 두시간이 지난뒤에는 $-4.19 \pm 2.16 \mathrm{D}$ 로 굴절력이 증가하였으며 이는 통계학적으로 의의가 있었다 $(\mathrm{p}=0.0003)$. 반면에 수평경선의 굴절력을 보면 착용전에 $-3.45 \pm 2.0 \mathrm{D}$ 에 서 착용뒤 2 시간이 지난뒤에는 $-3.34 \pm 2.01 \mathrm{D}$ 로 굴절 력의 감소를 보였으며 역시 동계학적으로 의의가 있 었다(p<0.001) (Table 2).
각막곡률촉정치의 변화를 보면 수직경선의 각막곡 률측정치는 렌즈 착용전에 $42.32 \pm 1.54 \mathrm{D}$ 에서 착용 2 시간뒤에는 $42.42 \pm 1.52 \mathrm{D}$ 로 0.1 D 중가하였으며 ($\mathrm{p}=0.0018$) 수평경선의 변화를 보면 렌즈 착용전에 는 $41.45 \pm 1.65 \mathrm{D}$ 에서 렌즈 착용 2 시간뒤에는 41.35 $\pm 1.64 \mathrm{D}$ 로 0.10 D 감소되었으며 $(\mathrm{p}=0.0000)$ (Table 3), 이는 굴절력의 변화와 거의 일치하는 소 견을 보였다.

각막형태점사에서 $\operatorname{Sim} \mathrm{K}$ 값의 변화를 살펴보면 수

 직경선의 $\operatorname{Sim} \mathrm{K}$ 값은 렌즈 착용전에 43.80 $\pm 1.65 \mathrm{D}$ 에서 렌즈 착용 2 시간뒤에는 44.00 $\pm 1.90 \mathrm{D}$ 로 약간 증가되었고 $(\mathrm{p}=0.0002)$, 수 평경선경사의 $\operatorname{Sim} \mathrm{K}$ 값은 렌즈 착용전에 $42.06 \pm 1.72 \mathrm{D}$ 에서 렌즈 착용 2 시간뒤에는 $41.90 \pm 1.73 \mathrm{D}$ 로 약간 감 소 되 었 다 ($\mathrm{p}=0.0000$) (Table 4) (Fig. 1).난시도의 변화를 보면 렌즈착용전에는 $1.73 \pm 0.73 \mathrm{D}$ 에서 렌즈착용 2 시간뒤에는 $2.09 \pm 0.81 \mathrm{D}$ 로 난시도의 증가가 생겼으 며 $(\mathrm{p}=0.0000)$, 난시축의 변화를 보면 렌즈 착용전에는 $85.46 \pm 8.35^{\circ}$ 에서 렌즈착용 2 시간뒤에는 $87.15 \pm 10.30^{\circ}$ 로 약간의 변화 가 있었으나 통계학적인 의의는 없었다 ($\mathrm{p}=0.268$).

고 찰

일반적으로 hydrogel 콘택트렌즈착용과 관 련되는 가장 큰 장점은 각막의 만곡도에 대 한 영향이 거의 없다는데 있다 ${ }^{1-2)}$. 그러나 최근의 보고에 의하면, hydrogel 콘택트렌

즈 착용군에 있어서도 의미있는 각막의 만곡도 및 굴절력변화가 있다고 한다. 즉 Grosvenor ${ }^{7}$ 는 hydrogel 콘택트렌즈 착용군에서 불수 있는 전형적 인 변화로는 처음에는 한쪽 또는 양쪽 경선에서 약 0.25 D 정도 편평해지다가 약 착용후 약 6 주정도부터 경사가 급해지면서 이상태가 계속 $6 \sim 8$ 주정도 더 지 속되다가 본래의 만곡도로 되돌아가거나 혹은 그대 로 유지된다고 보고하였다. 이러한 변화의 기전은

Table 4. Changes in Topographt after developing corneal edema

Axis	vertical		horizontal	
	Pre-CL	Post-CL	Pre-CL	Post-CL
diopter	$43.80(1.65)$	$44.00(1.70)$	$42.06(1.72)$	$41.90(1.73)$
difference	$0.043(0.336)$	$-0.029(0.228)$		
p value	0.0002	0.0000		

$\mathrm{N}=60$ eyes of 30 patients
() : standard deviation
CL : contact lens

명확하지 않지만, Burnet Hodd ${ }^{8}$ 둥에 의하면 그 러한 변화는 국소적인 각막부종때문이라고 하였다. 이러한 개념은 렌즈 착용자에게서 각막두께의 증가 를 보여주는 각종 연구에서 간접적으로 지지되어지 고 있다 ${ }^{9-11)}$. 이러한 각막부중은 각막상피세포의 저 산소중에 의해서 야기되며 충분한 산소 공급이 정상 적인 각막 기능을 유지하기 위해서 필요하다. 그러 나 렌즈를 장기간 착용하게 되면 각막에 필요한 산 소공급이 감소하게 되고 각막 상피에 저장 된 glycogen이 결핍된다. 그 결과로서 정 상적인 각막대사에 장해가 오고 각막부좀이 생김으로써 각막 만곡도나 굴절력에 변화가 오게된다 ${ }^{(2)}$. Grinstein과 Mandell ${ }^{13}$ 의 최근 보고에 의하면, 연성 렌즈 착용군은 흔히 각막 전지역을 침범하는 광범위한 부 중을 야기시킨다. 이러한 각막표면 전지역 의 부종으로 인해 각막만곡도는 편평해지 며, 뒤이어서는 각막만곡도의 경사가 약간 급해지는데 이의 원인은 아마도 렌즈에 대

Fig. 1. Corneal topographic maps of three different eyes after developing corneal edema after wearing specially manufactured hydrogel contact lens for 2 hours. Note that there is a relative flattening of horizontal meridian and relative steepening of vertial meridian and slight change of cylindrical axis in all three maps Lower left map is a difference map showing the changes of corneal curvature before and after developing corneal edema.

한 물리적인 힘에 의한것으로 여겨진다. 이렇게 해 서 유발된 각막 부중과 각막 만곡도 사이의 상관관 계에 대해서는 여러 연구가 있으나, 저자에 따라 견 해가 약간씩 틀린젓 같다.
Bailey 와 Caraey ${ }^{14}$ 둥에 의하면, 각막 두께의 중가와 만곡도사이에는 상관관계가 없다고 보고 하 고 있으며, Mandell 와 polse ${ }^{(5)}$ 등도 각막만곡도와 각막 부종사이에는 저명한 상관관계률 발견하지 못 했었다고 하였다. 그러나 El Hage 와 Beaulne ${ }^{(6)}$ 의 연구에 의하면 각막두께 증가와 각막 만곡도사이 에는 적지만 어느점도 상관관계가 있다고하였다. 본 연구의 경우를 보면, 각막 부중에 따른 굴절력이나 각막 만곡도 변화는 수직경선의 굴절력이나 만곡도 는 더 중가되었고, 수평경선의 굴절력이나 만곡도는 더 감소되었다. 각막 형태검사상에서도 이와 비숫한 결과를 볼수 있었다. 렌즈 착용 전후에 대부분의 환 자에서는 큰 변화가 없든지, 또는 각막부중에 의해 수평경선이 편평해지고, 수직경선이 급해지는 것을 알수 있으며, 소수에서는 난시축의 큰 변화를 볼 수 있었으나 전체적으로는 축의 변화는 통계학적으로 의의가 없었다. 본 연구의 결과로 각막부종에 의해 서 각막의 형태 즉 만곡도의 변화를 관찰할 수 있었 지만 임상적으로 의미가 있기엔 적은 변화라고 생각 되며 일반적으로 사융되고 있는 연성콘택트렌즈의 장기착용자에 있어서도 각막부종이 유발된 경우에 있어서는 적은 변화이지만 각막형태의 변화가 생길 수 있다고 생작되나 각막부종이외의 원인으로 인한 각막 형태의 변화에 대해서는 앞으로 연구해야 할 것이다.

REFERENCES

1) Knoll, Henry A, Bernald Harrington, and John R, Williams III : Two years experience with hydrophilic contact lenses, Am J Optom and Arch Am Acad Optom 47(12):10001006, 1970.
2) Poster, Maurice G: Some considerations and basic fitting of the Soflens, in soft contact lenses, edited by Antonio R Gas-set and Herbert E. Kaufman., St. Louis, C. V. Mosby Co., pp, 79-82, 1972.
3) Mobilia EF, Kenyon KR : Contact lensinduced corneal warpage, Int Ophthal Clinic 26:43-53, 1986.
4) Wilson SE, Lin DTC, Klyce SD, et al : Topographic changes in contact lens- induced corneal warpage, Ophalmology, 97 (6) :734-744, 1990.
5) O' Nead MR, Polse KA, Starver MD : Corneal response to rigid and hydrogel during eye closure, Invest Ophthalmol Vis Sci 25:837-842, 1984.
6) 남문진, 김기산 : 각막수화조절 기능의 연령에 따른 차이. 한안지 $31: 30-36,1990$.
7) Grosvenor T : Changes in corneal curvature and subjective refraction of soft contact lens wearers. Am J Optom and Physio Optics, $52(6): 405-413,1975$.
8) Burnett Hodd FA: Changes in corneal shapes induced by use of Alignment Fitted corneal lenses, Contacto 9:18-25(june) 1965.
9) Smelser GK, and Ozanics V : Structural changes in corneas of guniea pigs after wearing contact lenses. Arch Ophthal 49:335-340 (march) 1952.
10) Kinsey VE : An Explanation of the corneal haze and halos produced by contact lenses, Amer J Ophthal 35:691-695 (May) 1952.
11) Miller D and Exford J : Effects of corneal contact lenses on corneal thickness : A case Study, The contact lens 1:5 (July) 1967.
12) Thoft RA, Friend J : Biochemical aspect of contact lens wear, Am J Ophthalmol 80:139, 1975.
13) Mandell, Robert : New thoughts on gel lenses, Internat Contact lens Clinic, 1(1): 32-35, 1974.
14) Bailey IL and Carney LG: The interrelationshp of corneal thickness and shape changes, J Amer Optom Assoc 43(6):669-672, 1972.
15) Mandell RB and Polse KA. : Corneal thickness changes accompanying central corneal clouding, Am J Optom and Arch of AAO 48 (2) : 129-132, 1971.
16) El Hage SG and Beaulne CC : Relationship between changes in corneal configuration and thickness, Am J Optom and Physiol Optics, 52(12) :823-833, 1975.

[^0]: 〈접수일 : 1996년 5월 29일, 심사통과일 : 1996년 9월 26 일〉
 계명대학교 의과대학 안과학교실
 Department of Opthalmology, College of Medicine, Keimyung University, Taegu, Korea
 본 논문의 일부는 1995 년 제 75 차 대한 안과학희 추계학술대희에서 구연 발표되었음.

