Wilms Tumor-Clinicopathologic Variation and Prognosis

Chool Hee Park, M.D., Kwang Sae Kim, M.D. and Sung Choon Lee, M.D., F.A.C.S.
Department of Urology, Keimyang University School of Medicine, Taegu, Korea

Kun Young Kwon*, M.D.
Department of Pathology*, Keimyang University School of Medicine, Taegu, Korea

A histologic classification based on tumor differentiation, degree of tubular formation and favorable histology versus unfavorable histology was applied in a retrospective study of 21 patients with Wilms tumor to determine if it might provide an index to prognosis from 1977 through 1987.

A comparison of the histologic findings with survival through statistical analysis was undertaken and it was found that the histologic classification was significantly correlated with survival.

The results were as follows:
1. Low grade tumors (grade I) with predominance of differentiated tubules & glomeruli were associated with better survival rate than high grade tumors (grade III) composed mainly of undifferentiated spindle elements: 2-year survival rate was 100% for grade I with 11% for grade III (p<0.01).
2. Survival rate was lower for the low degree of tubular formation than for the high degree of tubular formation: 2-year survival rate were 14%, 50%, 75%, 100% for group 0, +, ++, and +++ respectively (p<0.05).
3. 11 patients with the focal or diffuse anaplasia and sarcomatous stroma (unfavorable histology) had poor prognosis, giving 36% of 2-year survival rate but 10 patients with favorable histology had 70% of 2-year survival rate (p<0.05).

서 론

Wilms 종양은 소아에서 발생하는 비뇨기계 악성종양 중 가장 흔한 종양이다. 이 종양에 대한 체계적인 연구와 화학요법의 발달로 생존율이 1920년대의 20% 미만에서 1980년대에는 85% 이상으로 급증할 만한 향상을 가져왔으나, 최근의 목표는 low risk 환자군에 대해서는 화학요법에 노출되는 양을 줄이고 반면에 high risk 환자군에 대해서는 더 적극적인 화학요법 protocol을 적용하는 데 있다1). 그러므로 치료 실패할 high risk 군의 환자를 좀 더 확실하게 파악하는 것이 중요함이 분명하며 이는 여러 가지 예후인자 중에서 병리조직학적 분화도와 병기가 치료와 예후에 주요한 요소가 되어왔다.

저자들은 제4차 미국 전국 Wilms 종양 연구위원회 (National Wilms Tumor Study Group, 이하 NWTS로 약칭) protocol2)의 최신 병리조직학적 분류법 및
병기별 화학요법을 제정리한 단계로 생각되었으며,
결제되는 여러 특성들을 조사 하락한 필요가 있어 최
근 만 10년간 조직학적으로 진단된 Wilms 종양 21예
에 대하여 후향성 추적조사를 통하여 임상적 관찰과
아울러 생존율을 조사하여 조직학적 소견이 예후에
미치는 상관관계를 분석함으로써 임상판단, 치료순위
및 결과의 평가에 대하여 새로운 지표를 얻고자 하였
다.

대상 및 방법

1977년 3월부터 1987년 2월까지 만 10년간 제명의
대 비뇨기과에서 Wilms 종양으로 진단받고 숭후 조
직학적으로 확인된 22예중 2년 이상 추적가능했던 21
예를 대상으로 임상병력지와 적출심의 병리보고서 및
조직슬라이드를 재검토하였다. 추적할 수 없었던 예
에 대해서는 잔화, 사신 및 신원조사를 통하여 내원
체검사를 하여 생존여부와 건강상태를 확인하였다.

1) 연령 및 성별분포

연령분포는 1개월에서 11세까지로, 2.3세가 7예(33
%)로 가장 많았으며 평균연령은 4.3세었다. 성별비
는 남자13예, 여자 8예로 1.6:1이었으며, 발생부위는

우측이 11예, 좌측 10예에도 동일치는 없었다.

2) 임상증상 및 병기

복부종물이 최지되는 경우가 18예(86%)로 가장 많
있고 7예(33%)에서 육안적 혈뇨가 나타났다. 그러나
종양과 동반된 신기능 기능은 발견되지 않았다.

임상병기는 NWTS-3의 분류에 따랐고 초기시 병
기별 분포는 stage I 2예, stage II 7예, stage III
4예, stage IV 8예였다.

3) 처 리

전체에서 근치적 신장출술을 실시하였고 이 중 각각
에 보조요법(복합화학요법, 방사선요법)을 단독 또는
병행하여 사용하였다. 숭후 화학요법을 시행한 경
우가 15예(71%), 방사선요법 및 화학요법을 병행한
경우가 4예(19%)였고, 수술 후 치료를 받지 않은 경
우가 2예(10%)였다. 숭후 보조요법에 따른 치료결과
차이는 고려하지 않기로 하였다.

4) 병리조직학적 분류 및 통계

종양의 분화정도는 Kheir등의 분류법에 의하여
종양을 미분화된 간절조직과 잘 분화된 실질조직 정
분의 비율에 따라서 grade I, II, III로 분류하였으며
(Table 1), 신세뇨관의 형성정도는 Lawler등의

<table>
<thead>
<tr>
<th>Table 1. Histologic grading system by Kheir et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I (well differentiated)</td>
</tr>
<tr>
<td>The parenchyma is composed of well formed tubules and glomeruli and constitutes 50% or more of the tumor.</td>
</tr>
<tr>
<td>The stroma is mainly myxomatous with few spindle cells.</td>
</tr>
<tr>
<td>Grade II (moderately differentiated)</td>
</tr>
<tr>
<td>Less than 50% of the tumor is composed of parenchymatous elements, consisting of poorly formed tubules and abortive glomeruli.</td>
</tr>
<tr>
<td>The stroma is composed of myxomatous and spindle cells.</td>
</tr>
<tr>
<td>Grade III (poorly differentiated)</td>
</tr>
<tr>
<td>The tumor is composed of spindle cells with little evidence of parenchymatous differentiation. Abortive glomeruli and tubules are absent or extremely rare.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Histologic tubule classification by Lawler et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 0 : No definite tubules can be seen.</td>
</tr>
<tr>
<td>Group + : There are definite tubules present but these are scanty (less than 1 tubule per four or five medium power fields).</td>
</tr>
<tr>
<td>Group++ : Several tubules are present but there are many areas without any tubule formation.</td>
</tr>
<tr>
<td>Group+++ : There is a very large number of tubules and almost all the tumor cells present are involved in the formation of tubules. Often, the tubules in this group are more than one cell deep.</td>
</tr>
</tbody>
</table>
group의 group**로까지 분류한 방법에 따라서 분류하였다(Table 2). 그리고 Beckwith와 Palmer의 분류에 따라 FH (favorable histology)와 UH (unfavorable histology)로 구분하고 UH중 anaplasia 정도는 고매율시에서 10%이상 발견되며 diffuse, 10%이하이면 focal로 처리하였고 욕초형태 (sarcomatous pattern)은 흉포근육종양변형(rhabdomyosarcomatous pattern)와 척추세포형 (clear cell pattern)으로 구분하였다.

이상의 각 분류법에 의한 생존율과 통계학적 유의성을 구하고 임상병기와 비교하여 예후판단을 시도하였다.

결과

전체 21예에 대한 조직학적 분류 및 임상병기 그리고 예후와의 상관관계는 Table 3과 같으며 총환자수에 대한 2년 생존율은 52%이었다.

임상병기에 따른 2년 생존율은 stage I 100%, stage II 86%, stage III 0%, stage IV 38%로써 통계학적 유의성이 있었다 (p<0.05).

Table 4. Relation between stage and grade

<table>
<thead>
<tr>
<th>Stage</th>
<th>Grade</th>
<th>Total No. Pts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>I, II</td>
<td>7</td>
</tr>
<tr>
<td>III</td>
<td>0, I</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>3, I</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

*p<0.05

Table 3. Clinical data

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Clinical Stage</th>
<th>Age-Sex</th>
<th>Differentiation (Grade)</th>
<th>Tubule Formation (Group)</th>
<th>Anaplasia</th>
<th>Sarcomatoid area</th>
<th>Treatment</th>
<th>Follow-Up 2 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>8Y-F</td>
<td>I</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>S+C</td>
<td>R F S**</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>1Y-M</td>
<td>II</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>S+C</td>
<td>R F S</td>
</tr>
<tr>
<td>3</td>
<td>II</td>
<td>2Y-M</td>
<td>I</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>S+C</td>
<td>Survived (lung meta)</td>
</tr>
<tr>
<td>4</td>
<td>III</td>
<td>5Y-M</td>
<td>II</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>S+C</td>
<td>R F S</td>
</tr>
<tr>
<td>5</td>
<td>III</td>
<td>2Y-M</td>
<td>II</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>S+C</td>
<td>Died</td>
</tr>
<tr>
<td>6</td>
<td>III</td>
<td>1Y-M</td>
<td>II</td>
<td>++</td>
<td>-</td>
<td>Rhabdoid</td>
<td>S+C</td>
<td>Survived (lung meta)</td>
</tr>
<tr>
<td>7</td>
<td>III</td>
<td>7Y-M</td>
<td>II</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>S+C</td>
<td>R F S</td>
</tr>
<tr>
<td>8</td>
<td>III</td>
<td>8Y-F</td>
<td>II</td>
<td>0</td>
<td>diffuse</td>
<td>-</td>
<td>S+C</td>
<td>R F S</td>
</tr>
<tr>
<td>9</td>
<td>III</td>
<td>6Y-M</td>
<td>III</td>
<td>++</td>
<td>focal</td>
<td>-</td>
<td>S+C</td>
<td>R F S</td>
</tr>
<tr>
<td>10</td>
<td>III</td>
<td>1M-F</td>
<td>III</td>
<td>0</td>
<td>diffuse</td>
<td>Rhabdoid</td>
<td>S only</td>
<td>Died</td>
</tr>
<tr>
<td>11</td>
<td>III</td>
<td>5Y-M</td>
<td>III</td>
<td>0</td>
<td>focal</td>
<td>Clear cell</td>
<td>S+C+X.R.*</td>
<td>Died</td>
</tr>
<tr>
<td>12</td>
<td>III</td>
<td>3Y-F</td>
<td>III</td>
<td>0</td>
<td>focal</td>
<td>-</td>
<td>S+C+X.R.</td>
<td>Died</td>
</tr>
<tr>
<td>13</td>
<td>III</td>
<td>6Y-M</td>
<td>III</td>
<td>+</td>
<td>diffuse</td>
<td>-</td>
<td>S+C</td>
<td>Died</td>
</tr>
<tr>
<td>14</td>
<td>IV</td>
<td>2Y-M</td>
<td>I</td>
<td>++</td>
<td>focal</td>
<td>-</td>
<td>S+C</td>
<td>Survived (lung meta)</td>
</tr>
<tr>
<td>15</td>
<td>IV</td>
<td>4Y-F</td>
<td>I</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>S+C+X.R.</td>
<td>Survived (lung meta)</td>
</tr>
<tr>
<td>16</td>
<td>III</td>
<td>3Y-F</td>
<td>I</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>S+C</td>
<td>Survived (lung meta)</td>
</tr>
<tr>
<td>17</td>
<td>III</td>
<td>4Y-F</td>
<td>II</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>S+C</td>
<td>Died</td>
</tr>
<tr>
<td>18</td>
<td>III</td>
<td>2Y-M</td>
<td>II</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>S+C+X.R.</td>
<td>Died</td>
</tr>
<tr>
<td>19</td>
<td>III</td>
<td>8Y-M</td>
<td>III</td>
<td>0</td>
<td>diffuse</td>
<td>Clear cell</td>
<td>S+C</td>
<td>Died</td>
</tr>
<tr>
<td>20</td>
<td>III</td>
<td>11Y-F</td>
<td>III</td>
<td>0</td>
<td>diffuse</td>
<td>Rhabdoid</td>
<td>S only</td>
<td>Died</td>
</tr>
<tr>
<td>21</td>
<td>III</td>
<td>2Y-M</td>
<td>III</td>
<td>++</td>
<td>diffuse</td>
<td>-</td>
<td>S+C</td>
<td>Died</td>
</tr>
</tbody>
</table>

** R F S : Relapse free survival
* S+C+X.R. : Surgery+Chemotherapy+Radiation
분화정도에 따른 grade별 환자수는 각각 grade I 5예, grade II 7예, grade III 9예였으며 (Fig. 1~3), 2년 생존율이 각각 100%, 71%, 11%로써 통계학적 유의성이 높았다 (p<0.01). Fig. 10이 표시하듯이 grade와 stage가 증가함에 따라 생존율이 감소됨을 알 수 있었으며 이들 상호간에 통계학적 유의성이 있었다 (p<0.05) (Table 4).
신생뇨관의 형성정도에 따른 group별 환자수는

Fig. 1. Grade I, Well differentiated Wilms tumor with well formed tubules (H&E, x100).

Fig. 2. Grade II, Moderately differentiated Wilms tumor with moderately formed tubules and abortive glomeruli (H&E, x100).
Fig. 3. Grade III, Poorly differentiated Wilms tumor. Large sheets of spindle cells with no evidence of tubule formation or parenchymatous differentiation (H&E, x100).

Fig. 4. Wilms tumor in Group 0. No definite tubule is seen (H&E, x100).

groupⅡ 7예, groupⅠ 4예, groupⅡⅠ 7예, groupⅢ 3 예였으며(Fig. 4~6), 2년 생존율은 각각 14%, 50%, 71%, 100%로서 통계학적 유의성이 있었다(p<0.05). 그러나 group와 stage와의 연관성에서는 증례수 가 적어서 통계학적 유의성을 찾지 못했다(p>0.05).

anaplasia는 10예(diffuse 6예, focal 4예)에서 관찰 되었는데 이중 4예에는 sarcomatous pattern을 동반하 여 이를 제외하면 anaplasin는 실제 6예였다(Fig. 7).
Fig. 5. A Wilms tumor in Group +. A few tubules are noted in the parenchymatous tumor (H&E, x100).

Fig. 6. A Wilms tumor in Group +++. Numerous well differentiated tubules are seen (H&E, x100).

또한 rhabdoid tumor가 3예에서, clear cell sarcoma가 2예에서 관찰되었다(Fig. 8, 9). 따라서 Beckwith와 Palmer의 FH와 UH에 따른 2년 생존율은 각각 70%, 36%로써 통계학적 유의한 차이가 있었다 (p<0.05).

고

Wilms 종양은 1899년 Wilms이 보고한 이래 신실질의 미숙세포로부터 발생하는 그 성상이 극히 약
Fig. 7. Anaplastic cells predominantly within a blastemal areas. Several atypical mitotic figures are seen (H&E, x400).

Fig. 8. Rhabdomyosarcomatoid areas. Well defined cross striation is seen in the cytoplasm of skeletal muscle cells (H&E, x100).

성인 혼합종양으로 신장의 발병과정중 matanephric blastema에서 기원하며 신세균과 사구체로 분화하는데 필요한 정상적인 자극의 결핍시 이 결합이 발생하는 것으로 알려져 있다. Belasco등은 Wilms 환자인 원인자를 재검토하여 유전적 특성이 주요한 역할을 하는 것이 아니며 불과 1~2%만이 가족 성이 있다고 하였다. 동반하는 기형으로써 NWTS의 보고에 의하면 전체 환자 547명중 무궁세증, 전축비
Fig. 9. A Wilms tumor with clear cell change. Round to polygonal tumor cells with water clear cytoplasm are noted (H&E, x100).

Fig. 10. Rate of two year survival. Survival decreases with increasing grade and increasing stage.

내증, 비노생식기계 기형이 각각 1.1%, 2.9%, 4.4%의 빈도로 발견되었다고 한다. 최근 Mesrobian 등은 Wilms 종양 2,916명 중 13명 (0.4%)이 마세혈관선에서 발생하였음을 보고하였으며, 마세혈관선 환자에서 양측적 검사를 기본적으로 시행하여 11p 13 염색체 이상이 발견되면 Wilms 종양의 발생 가능성이 높다고 하여 무호증을 동반하는 Wilms 종양시 염색체의 돌연변이를 보고한 것과 함께 유전적 인자를 강력히 시사하였다. 저자들의 경우 1예에서도 선천성 기형을 발견할 수 없었다.

1969년에는 현재까지 NWTS에 의해 표준화된 기준에 따라 일상병기록 나누었으며, 계획된 치료방법 중 복합화학요법 및 방사선치료를 중심으로 생존율과 예후관찰 요소 등에 대한 연구결과가 보고되어 Wilms 종양의 치료에 많은 발전과 아울러 조직학적 성상에 따른 새로운 분류와 치료방법을 제시하고 있
다1-3,6,14-17). 최근의 향상된 치료법에 의하여 Wilms 종양의 natural history가 변화되어 전단시 엄격한 구분으로써 예후인자를 말하는 것이 더욱 어렵게 되었지만 Breslow 등18에 의하면 전이 및 채혈에 중요한 요소는 조직학적 소견(FH 혹은 UH), 임파선의 전이 유무, 종양의 크기 및 휴식성 전이유무등이며 그외 환자의 나이, 신체현병점, 슬증중립수출 및 직결적 복강침투가 예후에 영향을 미친다18,9,20고 한다. 이중에서 특히 조직학적 소견과 예후와의 관계에 대하여 많은 보고들이 있으며 NWTS-427가 강조한 바와 같이 조직학적 연구가 치료와 예후를 결정하는 중요한 요소 중 하나이며 이는 UH가 Wilms 종양의 불과 12%를 차지하지만 슬후 정지적으로 치료함에도 불구하고 대부분에서 심각하고 있을음을 보도와 알 수 있다.9, 그러므로 low risk 환자(stage I-II/FH)와 high risk 환자 (any stage UH except I/anaplasia와 stage IV/FH)를 확실히 구분하는 것이 예후진단에 중요하다고 할 수 있다. 최근에는 flow cytometry로 해산 DNA 형태를 분석함으로써 여러 종양형태에 따른 양을 예측하여 예후결정에 장차 기대되는 방법으로서 연구되고 있다20.

Hardwick와 Stewons21가 조직학적 소견과 예후와의 관계를 처음 기술하여 통계학적으로 유의한 결과를 얻었다는 점, 잘 형성된 신세뇨관과 신세구체가 보이고 문화도가 좋은 종양이 미분화된 방추성 세포가 주된 종양보다 예후가 좋다고 보고하였다.

Lawler 등22,23가 다섯가지 조직학적 구조(신세뇨관, 신세구체, 정형근이나 척근근, 세포로, larger cell)에 근거한 group9, 10으로 분류한 분류를 시도하였는데 이중 신세뇨관의 형성소견이 예후에 밀접한 관계를 미치며 임상적 소견으로도 형성소견이 있으며 의의가 있다고 하였으나 그 외 4가지 구조는 예후를 예측하는 데 유의성이 없고 보고하였다. 저자들의 경우, 신세뇨관의 형성소견에 따른 group만 분류한 결과 통계학적 유의성을 얻었다.

Kheir 등4)는 Table 1과 같은 분류방법으로 26명의 증례에 대해 치료후 2년내에 재발이나 전이가 발생하지 않는 비율을 조사한 결과 grade I은 100%, grade II는 78%, grade III는 30%서 증양의 분화 정도에 따른 성적이 있었다. 저자의 경우도 각각 100%, 71%, 11%로 Kheir 등4)와 유사한 결과를 나타내어 통계학적 유의성을 보였다. 공통적으로 임상병기 stage III에 전이에서 조직소견상 stage III 및 UH 양상으로 2년내 모두 사망하였으나(생존율: 0%), stage IV 8예중 3예에서는 grade I로 모두 2년 생존율을 보이며(생존율: 38%) 흥미로운 결과를 얻었다. 이는 Breslow 등18이 최근 NWTS-3의 결과에서 보고한 바와 같이 stage IV에서 생존율은 치료전 원격이 부위에 따른 차이는 없고, 다만 조직학적 소견에 영향을 받으며 현재는 생존율이 stage III와 비교함만하더라도 차이가 있다고 본다. 단, 치료후 경쟁 혹은 치료 후의 원격진이는 특히 예후에 불문한하다고 하였다. 한편 Kheir 등4)는 조직학적 분화도가 높음수록 임상병기에 도 높다고 하였고 저자들의 경우도 분화도와 임상병기와의 연관성에서 통계학적 유의성이 있었다.

Breslow 등18이 1978년 1차 NWTS 결과에서 427예의 Wilms 종양을 FH와 UH의 두 가지로 분류하고 UH는 anaplasia나 sarcomatous pattern으로 구성된 종양으로 사망율이 57.1%였으나 FH는 사망율이 6.9%로 상당한 차이를 보고하였다. 그 이후 NWTS는 치료 protocol을 정하는데 임상병기와 FH/UH로 구분한 조직학적 성장에 기본을 두고있다20.

NWTS-3 결과에서 UH주로 rhabdoid tumor는 평균 화약년령이 13개월로 어리지만 사망율 90%의 가장 치명적인 종양으로 1,2,3차 NWTS 결과에서 아무런 진전이 없었지만, 연조직, 신경조직 동 조직의 부위에서도 발생한다고 하여 Wilms 종양에서.core 복시성 근육성과 NWTS-4 protocol에도 포함시키지 않았다14,23. 그러나 clear cell sarcoma는 사망율 50%와 34%로 UH와 Wilms 종양과는 또다른 성격이며 정의는 하지만 NWTS-3에서 adriamycin 청아로 많은 진전을 보이 사망율이 20%이하로 낮추어 그 결과가 특정 치료적인 성과한에서 계속 NWTS-4 protocol에 포함시키고 있다14,23. 그러므로 현재는 FH/UE로 나누는 조직소견은 anaplasia(diffuse/focal)만 남겨졌는데 특히 stage 1 anaplasia는 FH와 같은 병기에 따라 치료함으로써 조직진단에서 anaplasia 유무는 없는 것이 stage 1인 경우는 예후결정에 의의가 없게 되었다. 이 결과 다큐하는 것은 anaplasia가 보통 조기에 흔히의 원격진이를 잘 잡으려면 없다는 것을 의미한다고 한다.

저자의 경우 전체 UH는 11예(52%)로서 Beck-
with14가 보고한 12%보다 월등히 높은 비도를 차지하였고 2년 생존율은 36%로 FH의 70%와 비교되기며 통계학적 유의성을 보였다. 이상의 소견을 종합하여 보면 신세뇨관의 형성이 많을수록 분화가 잘 된 종양으로 예후가 좋으며 반대로 신세뇨관의 형성이 적을수록 분화가 좋지 않은 종양으로 예후가 나빠져 동시에 anaplasia와 sarcomatous pattern이 같이 나타났다.

결 본

1977년 3월부터 1987년 2월까지 만 10년간 계명의 대비뇨기과에 입원하여 Wilms 종양으로 송출 병리 조직학적으로 확인된 22예중 2년이상 추적가능했던 21예를 대상으로 생존율을 조사하여 조직학적 소견이 예후에 미치는 상관관계를 분석하여 다음과 같은 결과를 얻었다.

1) 임상배기에 따른 2년 생존율은 stage I 100%, stage II 86%, stage III 0%, stage IV 38%로써 범위에 따른 생존율과의 관계는 통계학적 유의성이 있었다 (p<0.05). 그리고 전체 21예에 대한 2년 생존율은 52%였다.

2) 종양의 분화도와 예후(2년 생존율)와의 관계는 grade I:100%, grade II:71%, grade III: 11%로써 통계학적 유의성이 있었다 (p<0.01).

3) 신세뇨관의 형성 정도와 생존율과의 관계는 group*:14%, group*:50%, group**:71%, group***: 100%로써 통계학적 유의성이 있었다 (p<0.05).

4) anaplasia는 10예에서도 관찰되었는데 이중 4예는 sarcomatous pattern을 동반하여 이를 제외하면 실제 6예였다. 또한 rhabdoid tumor가 3예, clear cell sarcoma가 2예에 관찰되었다. 따라서 FH와 UH에 따른 2년 생존율은 각각 70%, 36%로서 통상보다 통계학적으로 유의한 차이가 있었다 (p<0.05).

5) 이상에서 조직소견상 신세뇨관의 형성이 많을수록 분화도가 좋고 예후(생존율)가 좋으며, 신세뇨관 형성이 적을수록 종양의 분화도가 낮고, anaplasia가 심하게 나타나며 sarcomatous pattern도 동반되어 예후가 불량하였다.

REFERENCES

J Urol 140:231, 1988
2) National Wilms Tumor Study-4 Therapeutic Trial Protocol. July 7, 1986
16) Tezuneyoshi M, Dairaryu H, Hashimoto H, Enjoji M: Malignant soft tissue neoplasms with the histologic features of renal rhabdoid tumors: an ultrastructural and immunohistochemical study. Hum Pathol 16:

