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[6]. Haddad syndrome is extremely rare, with under 100 cases 
reported in the literature [9].

In 2003, molecular genetic approaches showed that CCHS 
results from mutation of the homeobox protein 2b (PHOX2B) gene 
[10]. Many patients with CCHS have a heterozygous mutation 
consisting of 5 to 9 alanine expansions within a 20-residue 
polyalanine tract. CCHS genotypes, comprising various mutations 
in the PHOX2B gene, are associated with different degrees and 
mechanisms of cellular dysfunction, which have implications 
for the severity of CCHS [8,11-13]. The genotypephenotype 
association has been investigated, and the PHOX2B genotype 
is now a useful genetic marker for the assessment of CCHS [14]. 
Children with CCHS now survive into adulthood, and the clinical 
value of the PHOX2B mutation in CCHS continues to be evaluated 
by following these patients.
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Introduction

Congenital central hypoventilation syndrome (CCHS), 
first reported in 1970 by Mellins et al. [1], is characterized by 
sleepassociated respiratory insufficiency and markedly impaired 
ventilatory responses to hypercarbia and hypoxemia. The 
syndrome is also known as Ondine’s curse (online mendelian 
inheritance in man [OMIM] 209880). Similar cases have 
been reported by many investigators [2-5]. CCHS has been 
associated with several disorders, including neuroblastoma, 
ganglioneuroma, and, most frequently, Hirschsprung dis­

ease (HSCR) because of broader structural and functional 
impairments of the autonomic nervous system [6-8]. HSCR 
(congenital megacolon; OMIM 142623) occurs in 16% of CCHS 
patients. The combination is referred to as Haddad syndrome 
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Congenital central hypoventilation syndrome (CCHS) is a disorder of the autonomic nervous system characterized by a 
decreased response to hypercarbia. CCHS is frequently associated with congenital megacolon; the combination is called 
Haddad syndrome. CCHS is associated with dysfunction in respiratory features of the autonomic nervous system and with 
other disorders, including facial deformities, cardiovascular symptoms, and tumors. Patients with CCHS frequently have a 
mutation in the homeobox protein 2b (PHOX2B) gene. Most mutations involve heterozygous expansion of alanine repeats 
(GCN). Interestingly, a higher polyalanine repeat number is associated with a more severe clinical phenotype. To clarify the 
role of PHOX2B in disease pathogenesis, we introduce and review the clinical and molecular features of CCHS and Haddad 
syndrome.
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In Korea, Ahn et al. [15] reported the first case of CCHS in 
1993. Several additional cases have been reported to date 
[11,16-19]. With early diagnosis and immediate intervention, 
the prognosis of CCHS patients has improved in the last decade.
However, further research is needed to help Korean patients 
and their families. To this end, we review the clinical and genetic 
characteristics of CCHS and Haddad syndrome. We also discuss 
the clinical and genetic importance of research with a larger 
number of cases and long-term follow-up in Korea.

Clinical Features

The first study by Mellins et al. [1] and subsequent reports 
focused primarily on CCHS as a disorder of ventilatory control 
in which the automatic control of breathing is absent or 
impaired.The International Classification of Sleep Disorders 
proposed diagnostic criteria for CCHS, which include the 
following: (1) the patient exhibits shallow breathing or cyanosis 
and apnea in the perinatal period; (2) hypoventilation is 
worse during sleep than in wakefulness; (3) the ventilatory 
response to hypoxia and hypercapnia is absent or diminished; 
(4) polysomnographic monitoring during sleep demonstrates 
hypercapnia and hypoxia, predominantly without apnea; (5) no 
primary lung disease or ventilatory muscle dysfunction showing 
hypoventilation; and (6) no sleep disorder, such as infant sleep 
apnea. The minimal set of criteria to be met for diagnosis is (1), 
(2), (5), and (6).

CCHS has been reported in association with several other 
disorders. Haddad et al. [6] described a combination of CCHS 
and HSCR, named Haddad syndrome. Patients with Haddad 
syndrome had reduced esophageal motility and control of heart 
rate. The incidence of HSCR in CCHS cases varies between 16% 
and 50%, and the incidence of CCHS is 1.5% among HSCR 
cases [10,20-22]. A CCHS patient with distinctive facial features 
(antimongoloid slanting eyes, triangular mouth, small nose, and 
low-set, posteriorly rotated ears) was reported by Minutillo et al. 
[23]. A study of numerous cases with long-term comprehensive 
follow-up showed that CCHS patients manifested a spectrum 
of clinical symptoms that reflect dysfunction of the autonomic 
nervous system, such as severe constipation, difficulty feeding, 
decreased perception of discomfort, pupillary abnormalities, 
decreased perception of anxiety, profuse sweating, and 
decreased basal body temperature [24]. A high percentage of 
CCHS patients had cardiovascular symptoms (decreased heart 
rate variability, vasovagal syncope, cardiac dysrhythmias) and 

ophthalmologic abnormalities (sluggish or unreactive pupils, 
abnormal tearing, strabismus, anisocoria, miosis) [24]. Tumors 
of  autonomic neural crest derivatives, such as neuroblastoma, 
ganglioneuroblastoma, and ganglioneuroma, were also found 
in approximately 5-10% of CCHS cases, which represents a 
500-fold increased risk for such tumors in patients with CCHS, 
when compared with a rate of 1 in 10,000 among the general 
population [8,25]. These tumors typically present before 2 years 
of age in multiple locations including adrenal glands, chest, 
spinal cord, or mediastinum.

Cases of late-onset CCHS with pulmonary hypertension 
or clinically significant, persistent alveolar hypoventilation 
following an acute respiratory illness have been described [26-
30]. However, the patients had subclinical or unrecognized 
diseases when they were children. Therefore, molecular genetic 
tests should be performed promptly when there is suspicion of 
late-onset CCHS. The number of reported cases may increase as 
recognition of the disease grows. A worldwide epidemiological 
survey estimates there are 500 living patients with CCHS [31].

Molecular Genetics

The human PHOX2B gene (OMIM 603851) maps to chro­

mosome 4p12 and encodes a highly conserved, 314-aminoacid 
homeobox transcription factor with polyalanine repeats of 9 
and 20 residues. PHOX2B regulates the development of the 
autonomic nervous system and the determination of autonomic 
neural crest derivatives. Given these roles of PHOX2B, Amiel 
et al. [10] investigated PHOX2B as a candidate gene in CCHS. 
De novo mutations of the PHOX2B gene were found in 62% 
(18/29) of CCHS patients. The most common PHOX2B mutation 
in CCHS is a heterozygous expansion of alanine repeats (GCN). 
In individuals with CCHS, 1 of the 2 alleles contains too many 
repeats (between 25 and 33), whereas the other allele has 20 
repeats (the normal number) (Fig. 1).

Weese-Mayer et al. [32] found alanine expansions in 65 of 67 
CCHS patients, and further study identified PHOX2B mutations, 
not involving alanine expansion, in the 2 remaining CCHS cases. 
Thus, all patients had a PHOX2B mutation, indicating that 
PHOX2B is the disease-defining gene for CCHS. Interestingly, the  
results suggested an association between repeat length and the 
severity of the CCHS phenotype. Matera et al. [33] investigated 
the PHOX2B mutation in 27 CCHS patients, including 3 with 
associated HSCR and 3 with late-onset CCHS. They also showed 
that phenotype severity increased with increasing polyalanine 
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expansion size. Increased repeat length was associated with 
severe respiratory symptoms, a long R-R interval in Holter 
monitoring, and facial phenotypes [34,35]. Results by Trochet et 
al. [8] strongly supported this genotypephenotype interaction. 
Short alanine expansions (+5 to +7) were found in patients with 
isolated CCHS, but were rare in patients with Haddad syndrome 
(CCHS+HSCR). Haddad syndrome patients with tumors tended 
to have longer alanine expansions (>+8). Interestingly, CCHS 
patients with malignant tumors of the sympathetic nervous 
system carried either a missense mutation or a heterozygous 
frameshift mutation in the PHOX2B gene. Review of these 
results demonstrated that HSCR and neural crest tumors 
were more frequently associated with missense or frameshift 
mutations of PHOX2B than with the polyalanine expansion. This 
led to the conclusion that missense or frameshift mutations 
produce more severe dysfunction in PHOX2B [8,32-35]. How­

ever, the relationship was not strict, and further study of addi
tional cases is needed to confirm the hypothesis.

In HSCR, mutations in RET and in the endothelin signaling 
pathway, including the endothelin B receptor gene (EDNRB) 
and the endothelin 3 gene (EDN3), have been reported [36-39]. 
Because CCHS and HSCR share a common molecular pathology, 
mutations in RET, EDNRB, and EDN3 were investigated in CCHS 
and Haddad syndrome. Bolk et al. [40] found mutation of 
EDN3 in CCHS and Haddad syndrome. However, further study 
identified no EDNRB or EDN3 mutations [41]. Subsequently, 
mutations in the rearranged during transfection (RET)–glial 
cellderived neurotrophic factor (GDNF) pathway were reported 
in 14% (1/7) of CCHS and 14% (1/7) of Haddad syndrome 
patients by Amiel et al. [41]. Although these mutations were 

present in a minority of patients, their occurrence suggests that 
interactive polygenic inheritance (at least 3 genes belonging to 
distinct signaling pathways) is involved in CCHS.

Mutation of brain-derived neurotrophic factor (BDNF) was 
studied in 14 CCHS patients and 5 Haddad syndrome patients. 
BDNF mutation was identified in a CCHS patient whose father 
did not have CCHS but presented with postural hypotension and 
vasovagal syncope [32]. As newborns, Mash-1+/-heterozygous 
mice exhibit impaired ventilator responses to hypercarbia. The 
human ortholog of Mash-1 (HASH-1) has been investigated 
as a candidate gene for CCHS [42]. Mutation in HASH-1 was 
found in 2 patients with CCHS (10.5%, 2/19) and 1 patient with 
Haddad syndrome (9.1%, 1/11) [43].

Sasaki et al. [22] studied RET, GDNF, GFRA1, PHOX2A, PHOX2B, 
HASH-1, EDN1, EDN3, EDNRB, and BDNF  in 7 patients with 
CCHS and 3 patients with Haddad syndrome. They found no 
mutations in the EDN3-EDNRB signaling pathway or in the 
BDNF  gene. However, mutations in RET, GFRA1, PHOX2A, 
and HASH-1 were found, supporting the possibility of their 
involvement in the pathogenesis of CCHS. To clarify the patho­

genesis of CCHS and Haddad syndrome, further analysis of 
additional cases and candidate genes is required.

Conclusion

In a relatively short period of time, molecular genetic studies 
have defined the clinical characteristics of CCHS for diagnosis 

Fig. 1. Heterozygous mutation of the PHOX2B gene in the congenital 
central hypoventilation syndrome. Mutated alleleshave a greater 
number of alanine repeats (GCN) than the normal allele.

Fig. 2. PHOX2B mutation and the congenital central hypoventilation 
syndrome (CCHS) severity. On the x-axis, plus signs (+) indicate the 
number of supernumerary alanine expansions. Higher expansion 
number and missense mutations (MS) or frameshift mutations (FS) 
mutation induce more severe symptoms in Hirschsprung disease 
(HSCR) patients, including tumors (neuroblastomas). However, the 
association between these severe symptoms and other genes in the 
circle is still unknown.

PHOX2B mutation
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and treatment. As a result, the prognosis and quality of life 
of CCHS patients have improved. Patients now survive into 
adulthood, and their offspring represent a new generation of 
CCHS patients. Analysis of PHOX2B mutations may predict 
disease phenotype and prognosis. However, its association with 
other mutations is still unknown (Fig. 2). In Korea, there are few 
reports describing CCHS and Haddad syndrome [11,17-19]. 
Further data on patients with CCHS and Haddad syndrome in 
Korea should be gathered.
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