서 루
 자궁경부암종은 우리나라 여성에서 가장 혼란한 암으로서, 다른 부위에서의 암종과 마찬가지로 다양한 확화 과정을 통해 발생한다고 생각되고 있으나 정확한 기전을 알기 위해서는 더 많은 연구가 필요한 실정이다.

저자: Hyeon Chang Joo, Kwan Kyu Park, Sang Soo Lee, Eun Soo Chang, Tae Sung Lee, Soon Do Cha, and Young Jae Lee

Départements of Pathology, Obstetrics and Gynecology, Institute for Medical Science, Keimyung University School of Medicine, Taegu 700-712, Korea

In order to understand the possible involvement of bcl-2 and p53 proteins in the tumorigenesis of the cervical cancer and precancerous lesion, we studied the expression patterns of bcl-2 and p53 proteins in 25 cases of carcinoma in situ, 12 cases of microinvasive cervical carcinoma, and 37 cases of invasive cervical carcinoma, respectively. By immunohistochemistry, 76% of carcinoma, 33.3% of microinvasive cervical carcinoma, and 60.9% of invasive cervical carcinoma were positive for bcl-2, while the staining of basal cell layers, columnar cells, and squamous metaplastic epithelium of normal cervical epithelium were positive for bcl-2 in 91.9%, 73.1%, and 81.8% of cases respectively. Furthermore, two out of fourteen cases of invasive cervical carcinoma with lymph node metastasis were positive for bcl-2. p53 was expressed in 72.7% of condyloma or dysplasia, 12% of in situ carcinomas, 33.3% of microinvasive cervical carcinoma, and 43.8% of invasive cervical carcinomas without metastasis. Six out of fourteen cases of invasive cervical carcinoma with lymph node metastasis were positive for p53 immunostaining. In contrast, 5.4% of basal cells and 9.1% of squamous epithelium, and none of the columnar cells in normal cervical epithelium were positive for p53. In summary, the bcl-2 protein was highly expressed in the proliferative lesion of reserve cells, such as normal reserve cells, columnar cells, squamous metaplasia, carcinoma in situ, and microinvasive squamous cell carcinoma. p53 expression was increased in condyloma, carcinoma in situ, and invasive carcinoma where the reserve cells were non-proliferative. Based on these findings, we propose that bcl-2 and p53 protein are involved in the development and progression of uterine cervical carcinoma. (Korean J Pathol 2000; 34: 280~287)

Key Words: bcl-2, p53, Cervical cancer, Precancerous lesion
성화된 환경에서의 bcl-2의 과발현이 자궁 경부암종의 발생과 관련이 있으며, bcl-2의 발현이 자궁 경부에서의 암발생과 진행에 중요한 역할을 한다고 하였다. bcl-2 유전자는 18번 염색체의 장편에 위치하는 원종 양 유전자로서 14번 염색체와 18번 염색체의 전위를 보이는 염색체 B세포 리프트종에서 처음으로 발견되었다.
그 후 bcl-2 유전자는 염색체의 전위가 없는 염색체 B세포, 만성 림프구성 백혈병, 웅모세포 백혈병 등과 함께 정상 림프조직 외에도12 전립선암,13 폐암종,14 유방암종,15,16 등 비조혈립프조직의 악성 종양에서도 발현이 보고되었다. bcl-2 유전자 산물인 bcl-2 단백질은 세포내 미토콘드리아의 외막, 해막, 세포막, 내형질세 맛 등에 위치하며, 비록 정확한 생화학적 작용 기전은 밝혀지지 않았지만 세포의 발달과 분화, 조직 형성, 형태발생에 중요한 역할을 하고, 계획된 세포사 (programmed cell death, apoptosis)를 억제함으로써 세포의 사멸을 연장시켜 종양 발생과 관여하는 것으로 알려져 있다. 19-21

p53 유전자는 17번 염색체의 단단한 위치에 존재하는 종양예 체 유전자로서22 정상적으로는 세포증식을 조절하며 손 상된 세포의 성장을 G1단계에서 정지시켜서 S기로의 진행을 막는다. 23 p53 유전자는 대장암종, 24 유방암종, 25 폐암종 26 등 사람에서 발생하는 악성 종양에서 가장 흔히 발생이 되는 종양예체 유전자로서 그 산물인 p53 단백질은 사람의 모든 암에서 50% 정도 발현된다. 27 대부분의 정상 세포들은 낮은 지수의 p53 mRNA를 발현하며 정상 형 p53 단백질의 반감기가 매우 짧기 때문에 거의 검출되지 않지만 돌연변이형 p53 단백질은 구조적으로 안정되어 핵내에 축적되므로 p53 항체를 이용하여 면역조직화학 염색에 의해 검출할 수 있다. 28 정상형 p53 단백질은 종양 예체 등이 있지만 돌연변이형 p53 단백질은 암유전자로 작용하여 궁극적으로는 악성 발생의 생애를 판여함을 알려져 있다. 29

이와 같은 면역학적 검사를 바탕으로 저자들은 암 발생과 관련이 있을 것으로 추측되는 p53 및 bcl-2의 발현이 자궁의 상피내 전암성 병변 및 절연암 암종과 정상 상피세포와 어떻게 차이가 나는지를 비교 분석해 보고자 하였다.

재료 및 방법

1. 연구 재료

1996년부터 1998년까지 경희대학교 동산의료원에서 시행한 근치적 자궁경동출, 복직 혹은 절제 자궁경동출 및 원추조직질제술을 시행한 환자 중 37예의 치유성 전립선 암, 12예의 미세침윤성 암종, 25예의 상피내암 종, 11예의 힐막암 혹은 이형성을 대상으로 하였다. 치유성 암종 37예 중 리프트질이 동반된 경우는 14 에였다. 이들 85예 모두는 항암치료 혹은 방사선치료를 시행받기 전에 절제된 것이며 이들 85예를 대상으로

2. 면역조직화학 염색

파라인프레 조직으로부터 5μm 두께의 절편을 만들 어 3-aminopropyltriethoxysilane(ane)이 도포된 유리슬라이 드에 부착한 후 100% xylene에서 탈파리판하고 100%, 95%, 70% 알코올에서 차례대로 압수 과정을 거쳐 증 출에서 5분간 수세하였다. 내피성 전피하조직의 악체를 위하여 0.3% 과산화수소와 100% 메탄올의 혼합액 60분간 처리하고 증출으로수세하였다. 악천선 희 복을 위하여 citrate buffer (0.01 M, pH 6.0)에 담가서 5분간 �InputChange microwav에 열을 가하여 실험에서 내피 시간 후 PBS로 수세하였다. 일차항체인 bcl-2 (Novocastra, UK)와 p53 (Novocastra, UK)를 각각 1: 10, 1: 100으로 최적하여 37℃에서 2시간 동안 반응시간 후 PBS로 수세하였다. 이차항체인 biotinylated link antibody (DAKO, USA)로 37℃에서 15분간 반응시킨 PBS로 수세하고 streptavidin-biotin complex (DAKO, USA)로 37℃에서 15분간 반응시켰다. Immunodazole buffer와 3,3-diaminobenzidine tetrachloride (DAB) chromogen (DAKO, USA)로 37℃에서 15분간 반응시켰다. 3. 결과 판정 및 통계학적 분석

염색의 판정은 무작위로 선택한 10개의 400배 배출으로 판찰하여 500개 이상의 종양세포에서 확인할 수 있음을 것으로 판찰되는 세포수의 백분율로 점수를 매겨서 종양세 포소 비대 양성 세포 수로 계산하였다. 양성세포 수의 비율이 5% 이하 경우가 환자군의 세포들이 높은 군과 낮 은 군으로의 분류에 적합하다는 보고에 따라 5%를 양 성과 음성으로 판정하는 데 있어 기준으로 사용하였다. 자궁의 전암성 병변 및 절연암 종양에서의 bcl-2와 p53

<table>
<thead>
<tr>
<th>Table 1. Immunoreactivity for bcl-2 and p53 protein in normal cervical epithelium, premalignant lesion, and invasive squamous cell carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcl-2 (%)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Basal cells</td>
</tr>
<tr>
<td>Columnar cells</td>
</tr>
<tr>
<td>Squamous metaplasia</td>
</tr>
<tr>
<td>Condyloma</td>
</tr>
<tr>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>Microinvasive carcinoma</td>
</tr>
<tr>
<td>Invasive squamous cell carcinoma 14 (60.9) 10 (43.5) 24</td>
</tr>
<tr>
<td>Invasive squamous cell carcinoma 2 (14.3) 6 (42.9) 14</td>
</tr>
</tbody>
</table>

Table 1. Immunoreactivity for bcl-2 and p53 protein in normal cervical epithelium, premalignant lesion, and invasive squamous cell carcinoma
Fig. 1. Basal cells in the normal cervical epithelium show positivity for bcl-2 (A) and negativity for p53 protein (B).

Fig. 2. p53 protein is positively stained at the nucleus of the koilocytes in condyloma.

세포에서는 37예 중 34예 (Fig. 1A), 원주세포에서는 26 예 중 19예, 전립 염은에서는 11예 중 9예에서 양성 반응 을 나타내었다 (Table 1). 콘딜로마 혹은 이형성은 11예 중 2예에서 양성이었고 상피내암종은 25예 중 19예에서 양성이었다 (Fig. 3A). 미세침윤성 암종은 12예 중 10예 에서 양성이었고 침윤성 전립염종은 37예 중 16예 에서 양성이었다 (Fig. 4). 침윤성 암종 중에서 림프절 전이를 동반한 경우에는 14예 중 2예에서 양성이었다.

2. p53 단백의 발현

p53 단백의 발현은 전체 85예 중 31예에서 양성이었 다. 콘딜로마 혹은 이형성에서 11예 중 8예에서 양성이 있고 (Fig. 2) 상피내암종은 25예 중 3예에서 양성이었 다 (Fig. 3B). 미세침윤성 암종은 12예 중 4예에서 양성 이었고 침윤성 암종은 37예 중 16예에서 양성이었다. 침윤성 암종 중에서 림프절 전이를 동반한 경우는 14예 중 6예에서 양성이었다. p53 단백의 정상세포에서의 발 현 양상을 보면, 기저세포에서는 37예 중 2예, 원주세포 에서는 26예 중 0예, 전립염에서 11예 중 1예에서 양성 반응을 나타내었다 (Table 1).

고 쟈

최근 암발생에 관한 기전은 세포성장의 지속적인 자 균, 계획된 세포사 및 면역감시기술 (immunologic surveillance) 등이 관여한다고 설명되고 있다. 그 중 계획 된 세포사와 유사분열은 정상 및 중앙 조직에서 모두 발견한 관계가 있으며, 정상 세포 및 중앙세포에서 자 발적으로 일어날 수도 있고, 내과적인 혹은 방사선치료에
Fig. 3. Carcinoma in situ shows positive cytoplasmic staining for bcl-2 (A) and nuclear staining for p53 protein (B).

Fig. 4. Invasive cervical carcinoma shows positive cytoplasmic staining for bcl-2 in the poorly differentiated portion and negative staining in the well differentiated portion with keratin pearl formation (arrow).
편평명주상피 접합부 영역의 액세스포지션에서의 발현도가 자궁경관의 다른 부위에 비해 약하게 나타났으며, 자궁경관 내막의 원주세포에서는 75%에서 발현하며, 자궁경관 상피내증상에서는 이하의 정도가 선행적 소수의 병원체 발현에 주로 보고하였으나, 자궁경관 상피내증상에서 bcl-2 단백의 발현은 계획된 세포기에서 보호에 통하고자 하였으며, 상피내증상에서 bcl-2 단백의 발현은 육상으로 발현체제에 약간 발현하게 되며, 발현세포의 분자방식이 bcl-2 단백의 발현이 기저 세포포증에 주로 통한 자궁경관 액세스포지션 양성과 보았다. 본 연구에서도 Harmsel 등37의 보고와 비슷하게 기저세포에서는 37세 34세, 원주세포에서는 26세 19세, 편평화장에서는 11세 8세에서 양성발현을 보였다. Tjia et al.38은 2세의 자궁경관 상피내증상과 137세의 체중임 양성을 대상으로 bcl-2에 대한 면역 화학적 검사를 시행하였는데, 상피내증상에서는 82% (18/22), 체중임 양성에서는 61% (83/137)가 양성발현을 보았다. 이들은 자궁경관양성과 진행하면서 bcl-2 발현이 감소되고, bcl-2의 발현양성은 높은수록 매개하고 보고하였다. 본 연구에서는 림프절 전이를 통한가능 않은 체중임 양성에서 60.9%, 림프절전이를 통한 체중임 양성에서 14.3%, 미세침침성 양성에서 83.3%, 상피내증상에서 76.0%, 콘あれ마에서 18.2%에서 양성발현을 보였다. 체중임 양성 및 미세침침성 양성에서의 발현율과 상피내증상, 콘あれ마에서의 발현율의 차이는 통계학적 의의가 없었다 (p>0.05). 림프절 전이를 통한 체중임 양성에서 전이의 유무는 양성발현을 나타내었고, 비교적 발생이 빠르지면서 기저세포와 유사한 형태를 보이는 부위에서 주로 양성발현을 나타내었다.

p53 유전자는 사람의 액세스포지션에서 가장 흔히 변이 되는 종양예체 유전자로서 세포의 DNA 손상시 세포의 성장을 G1기에서 정지시키거나 손상된 DNA를 복구함으로써 유전자 안정을 유지하고, DNA를 복구할 수 없는 경우는 세포스 죽음으로 계산하여 종양 발생을 억제한다고 알려져 있다. 비록 정상의 기전은 알려져 있지 않지만, p53 기능의 소실이 자궁경관양성의 발생에 중요한 역할을 한다는 보고가 있다.39 p53 단백은 세포 포장성 틴업열에,39 이종접합성의 소실,40,41 유전자바이러스에 의한 감염42 등에 의해 불활성화되면서, 결핵에 손상된 DNA가 복구되는 것을 방지할 수 없게 된다. 이는 정상 세포의 돌연변이를 통한 불활성화가 가장 흔한 기전으로, 이러한 돌연변이는 p53 유전자의 보존된 DNA결합 영역에서 전물적으로 발생하여, p53의 해양성 세포주기 조절단백의 표현을 유발하는 전사인자로서의 역할을 불가결하게 한다.42 p53 돌연변이는 빈도 (56%), 대장 (50%), 피부 (44%), 유방 (25%) 등 사람의 주요 액세스포지션에서 발견되지만,43 자궁경관양성에서 발현빈도가 상대적으로 높다고 보고된다. 자궁경관에서 발현양성은 유전자 유전을 바이러스 전단백인 p53 단백에 의하여 ubiquitin 메개섬 p53 단백의 분해를 촉진시킨다.41,42 SV40 바이러스의 거미 T 항원 또한 MDM2 단백제와 같은 여러 가지 다른 바이러스성 포도변성 단백들의 p53 단백을 포유성으로 반활성화시킬 수 있는데, 이때는 이들 단백이 p53 단백의 분해를 방해하지 않고 p53 단백과 직접 결합하여 이들 복합체의 촉진을 일으킨다.45,46 Holm 등은 모든 등급의 자궁경관 상피내증상과 선상피내증상에서 p53의 발현이 양성으로 나타났기 때문에, p53 단백의 변성이 자궁경관양성의 발생에 있어 초기 변화는 아니라고 주장하였다. Bosari 등46은 p53 양성을 나타내는 세포들의 분포가 편평화장의 이형성 변화의 범위와 유사하다는 사실을 관찰하고 p53의 양성발현이 원인한 액세스포지션 체종성의 표현형을 가지는 종양의 발생을 설명한다고 주장하였다. 본 연구에서는 역시 p53 단백의 발현이 상피내증상에서 12.0%, 콘あれ마 양성은 72.7%의 발현율을 보여 이들의 추론을 뒷받침하고 있다. Hunt 등47은 82%의 병가 IB 혹은 IIIB인 자궁경관양성을 대상으로 하는 p53 단백의 발현을 조사한 결과 17.1% (14/82)가 양성발현을 나타내었고, p53의 과발현은 체중임 자궁경관양성의 근본이 있는 고태의 이형성의 체적 유전자에 나타난 것이며, 경도 혹은 중등도의 이형성과 자궁경관 선상피내증상 양성은 보이지 못하고 경상상태에서는 나타나지 않았다고 보고하였다. 이들은 이 실험이 p53 단백은 자궁경관양성 발현에 있어 필수적인 역할을 하지만, p53 단백의 과발현은 예후인자로 이용되지 않고 주장하였다. 본 연구에서는 p53 단백 이 체중임 양성에서 43.5%, 림프절 전이를 통한 체중임 양성에서 42.9%, 상피내증상에서 12.0%, 미세침침성 양성에서 33.3%, 콘あれ마에서 72.7%에서 양성발현을 보였다. 체중임 양성 및 미세침침성 양성에서의 발현율과 상피내증상, 콘あれ마에서의 발현율의 차이는 통계학적 의의가 없었다 (p>0.05). 상피내증상 및 전립선병변에서의 낮은 발현율은 Bosari 등47의 보고와 일치하지만, 체중임 양성의 40% 정도의 발현율에 대해서는 그 의미를 찾기가 쉽지 않았다. 질병자궁경부조직소의 p53 단백의 발현양상을 보면, 기저세포에서는 37세 12세, 편평화장에서는 11세 1세에서 양성발현을 보였으며 원주세포에서는 보이지 않았다. 이성과의 결과로 자궁경관의 전할성 변변과 체중임 양성에서 bcl-2와 p53 단백의 발현은 자궁경관양성의 발생과 관련관계가 있으나 체중임 양성으로의 이행과의 관계관계는 추후 연구가 더 필요할 것으로 생각하였다.

결론

참고 문헌

12. Pezzella F, Tse AGD, Cordell JL, et al. Expression of the bcl-2 oncoprotein is not specific for the 14;18 chro-

