Polyamine Ibuprofen

Effect of Ibuprofen on the Changes of Polyamine Level and Neuronal Cell Damage after Transient Global Ischemia in Gerbil

Seung-Hwan Lee, M.D., Seong-Ryong Lee, M.D.,* Jeong-Geun Lim, M.D., Hyung Lee, M.D., Sang-Doe Yi, M.D.

Departments of Neurology and Pharmacology,* School of Medicine, Keimyung University

Background : In brain ischemia, increased arachidonic acid metabolism can play important roles in neuronal damage. Ibuprofen was reported to have a protective role against neuronal damage in focal brain ischemia and reperfusion. The present study was designed to investigate whether ibuprofen can inhibit the global ischemia-induced neuronal damage and changes of polyamine (PA) level which is known to related to the neuronal damage, breakdown of blood brain barrier, and brain edema. Methods : Male Mongolian gerbils were used in this study. Transient global ischemia was induced by occlusion of bilateral common carotid arteries for 3 min with microclips. Ibuprofen was administered immediately after ischemia. The animals were sacrificed one day after ischemia for PA measurement and sacrificed 5 days after ischemia for histological evaluation. Histological examination was performed by counting surviving neuronal cells in one mm of CA1 area in dorsal hippocampus. Results : Cerebral cortex and hippocampal putrescine(PU) levels in vehicle-treated ischemic group significantly increased comparing to sham-operated animals and the increase of PU was attenuated by ibuprofen administration (50 mg/kg). Hippocampal spermine level decreased significantly after ischemia. Hippocampal neuronal cell damage in CA1 area was markedly observed in vehicle-treated animals compared to sham operated animals. Ibuprofen administration at the dose of 50 mg/kg significantly inhibited hippocampal CA1 neuronal damage compared to vehicle-treated animals. Conclusions : Ibuprofen attenuates PA response following transient global ischemia and may have putative neuroprotective effect against neuronal damage induced by global ischemia. J Korean Neurol Assoc 20(3):265~272, 2002

,^{1,2} COX-2 가가 cyclooxygenase(COX) .³ COX-2 arachidonic acid prostaglandin (PG) thromboxane(TX) 가 . COX .⁴⁻⁶ COX-2 type 1(COX-1) type 2(COX-2) 가 가 eicosanoids (free radical) . COX-1 7-8 COX-2 Manuscript received December 19, 2001. COX Accepted in final form March 13, 2002. 9-11 Address for correspondence Sang-Doe Yi, M.D. (non-steroidal anti-inflammatory Department of Neurology, Keimyung University drugs, NSAIDs) COX-2 School of Medicine. 194 Dongsan-dong, Daegu, 700-310, Korea 12-14 Tel: +82-53-250-7832 Fax: +82-53-252-1605 COX-2 E-mail : sdlee@dsmc.or.kr

Key Words : Global ischemia, Polyamine, Ibuprofen, Neuronal damage, Hippocampus, Neuroprotection

Copyright 2002 by the Korean Neurological Association

. NSAIDs ibuprofen

. Ibuprofen 가 , ,¹⁵⁻¹⁶, COX , , glutamate . polyamine(PA) putrescine

(PU), spermidine(SD) spermine(SM) PA , .¹⁸⁻¹⁹ PA

, PA , (blood brain barrier) . PA 7ト ,²¹⁻²² .²³ Paschen ²⁴ PA PU

가 . PA PA . .25-26 gerbil , NSAIDs ibuprofen PA 가

1. 60~80 g Mongolian gerbils(Meriones ungiculatus) .

2. Chloral hydrate(Sigma Chemical Co., St. Luise, MO, USA) 400 mg/kg 2 cm

(CMA, Stockholm, Sweden) 37±0.5 ibuprofen(Sigma Chemical Co., St. Luise, MO, USA) 10, 25 50 mg/kg 100 g 0.2 ml7ł

(microclip)

3

3. 5 (1) Sham : (PA n=5; , n=6) (2) Vehicle : (PA , n=5; n=6) (3) Ibuprofen 10 mg/kg : 10 mg/kg ibuprofen (PA , n=4; , n=6) (4) Ibuprofen 25 mg/kg 25 mg/kg ibuprofen (PA , n=4; , n=6)

(5) Ibuprofen 50 mg/kg : 50 mg/kg ibuprofen (PA , n=5; , n=8)

4. PA PA Spragg Hutchings ²⁷ . 24

Eppendorf -70 0.4 M perchloric . (2 mM disodium EDTA 4×10^{-5} M acid 1,8-diaminooctane 10) 가 homogenizer (12,000 g, 4 , 15 min) . 1 M sodium bicarbonate 100 µl 300 µl 4-fluoro-3-nitrobenzotrifluride(FNBT) 20 60 40 µl 1 M histidine 가 5 가 2 ml 2-methylbutane 2 PA . 5 가

methanol(500 µ) 20 µ Hamilton (mobile phase) acetonitrile 86 14() 10 7F (degassing) 1 mL , column Rainin ODS C18 column [250 mm()×4 mm()] . UV(ultraviolet) 242 nm

.

5. 5 chloral hydrate (2 IU/mI)phosphate-buffered saline(PBS, pH 7.2) 10% formalin 가 10% formalin (24~48). rotary microtome 6 µm hematoxylin eosin CA1 .

CA1 1 mm

Eke 28

6.

PU, SD, SM 1,8-diaminooctane Sigma (Sigma Chemical Co., St. Luise, MO, USA)

, FNBT Aldrich (Sigma Chemical Co., St. Luise, MO, USA) , acetonitrile J.T. Baker (J.T.Baker Co., Phillips- burg, NJ, USA) .

7.						
	(PA) ANOVA			4		
Scheffe test						
±			, p	0.05		
	가					
1.		PA				
ibuprofen						
PU	sl	sham (9.5±0.8		5±0.8		
nmol/g tissue)	ve	vehicle (27.5±3.5		. 5± 3 . 5		
nmol/g tissue)		가 (p<0.01,		<0.01,		
Fig. 1-A),	-A), 가 ibuprofen 10 mg/kg					
(29.2±4.3 nmol/g tissue) 25 mg/kg						
(27.4±3.9 nmol/g tissue)						
, 50 mg/k	g					
(19.7±1.5 nmol/g tissue, p<0.05, Fig. 1-A).						
SD	sh	sham		(168.2±2.5		
nmol/g tissue)	ve	vehicle (168.4±8.8		.4±8.8		
nmol/g tissue)						
(Fig. 1-B), ibuprofen 10, 25 50 mg/kg						
(158.2±5.2 nmol/g tissue, 158.8±5.2						
nmol/g tissue	153.6±1	1.1 nm	ol/g tiss	ue)		

Figure 1. Changes of putrescine (A), spermidine (B), and spermine (C) levels in the gerbil cortex after global ischemia and effects of ibuprofen administration. Putrescine levels are given nmol/g wet tissue. *p<0.05 in comparison with vehicle-treated gerbils (VEH); **p<0.01 in comparison with shamoperated gerbils. n = 4-5. Sham: sham-operated; VEH: vehicle-treated; IB10: ibuprofen 10 mg/kg administered; IB25: ibuprofen 25 mg/kg administered; IB50: ibuprofen 50 mg/kg administered gerbils. Data expressed as mean ± SEM.

Sham

VEH

IB10

IB25

IB50

vehicle (Fig. 1-B). SM sham (636 ±17.2 nmol/g tissue) (610 vehicle ±17.2 nmol/g tissue) (Fig. 1-B), ibuprofen 10, 25 50 mg/kg580±40 nmol/g tissue, 607.9±26.6 (nmol/g tissue 555.4±32.8 nmol/g tissue) vehicle (Fig. 1-B).

2. ΡA ibupro fen ΡU (9.9 ± 0.4) sham vehicle nmol/g tissue) (22.1±2.1 nmol/g tissue) 가 가 (p<0.01, Fig. 2-A), ibuprofen (22.4±2.2 nmol/g tissue) 10 mg/kg 25 (20.5±3.6 nmol/g tissue) mg/kg , 50 mg/kg (15.9±1.4 nmol/g tissue, p<0.05, Fig. 2-A). (144.7 ± 2.7) SD sham nmol/g tissue) (150.2 ± 6.3) vehicle

ibuprofen 10, 25	50 mg/kg	(136.3±		
1.8 nmol/g tissue,	136.7 ± 2.8	nmol/g	tissue		
134.7±7.2 nmol/g	tissue)	vehicle	e		
	(Fig. 2-B).				
SM	sham	(450).6±11.4		
nmol/g tissue)	vehicle	(40)	2.8±11.7		
nmol/g tissue)		(F	ig. 2-C),		
ibuprofen 10, 25	50 mg/kg	(412.0±		
39.4 nmol/g tissue, 402.2 ± 25.9 nmol/g tissue					
385±16.2 nmol/	g tissue)	vehicl	е		
		(Fig.	2-C).		

Gerbil		
CA1	가 sham	294.5±
5.4	vehicle	13.3
±3.7		(p<0.01,
Fig. 3 4).		ibuprofen
	10 mg/kg	12.2±5.5
	, 25 mg/kg	51.7
±25.3		
. Ibuprofe	97.9±28.5	
		(p<0.05, Fig.
3,4).		

3.

Figure 2. Changes of putrescine (A), spermidine (B), and spermine (C) levels in the gerbil hippocampus after global ischemia and effects of ibuprofen administration. Putrescine levels are given nmol/g wet tissue. p<0.05 in comparison with vehicle-treated gerbils (VEH); **p<0.01 in comparison with sham-operated gerbils. n = 4-8. Sham: sham-operated; VEH: vehicle-treated; IB10: ibuprofen 10 mg/kg administered; IB25: ibuprofen 25 mg/kg administered; IB50: ibuprofen 50 mg/kg administered gerbils. Data expressed as mean \pm SEM.

Figure 3. Microphotographs of the hippocampal CA1 area in the gerbil 5 days after transient global ischemia (hematoxylin and eosin staining, \times 200). Effect of ibuprofen administration on the number of surviving cells in the CA1 area of hippocampus five days after transient global ischemia in gerbils. CA1 area in sham-operated (A), in vehicle-treated (B), in ibuprofen 10 mg/kg administered gerbils (C), in ibuprofen 50 mg/kg administered gerbils (D). Bar = 50 µm.

			. ³³ SSAT	ODC 7	ŀ
				가	가
	gerbil		. ³⁴ ODC	; 가	PU 가가
PA	, PU 💈	가	가	SSA	AT 가 가
ibuprofei	n		PU	가	
			PA PU		가
1.	polyam	line	, ³⁵ PU	가	
ibupr	ofen				
	ibuprofen	PA			
			35-36		32,37
PA	, ,		PA		
18,25	PA	, kainate	. Paschen	35	ODC
			alph	a-difluoromet	hylornithin₽U
	,				, Baskaya ²⁶
	. ²⁹⁻³² PU PA		ODC		
ornithine	decarboxylase(O	DC) 가	. Doga	an ³⁶ PU	가
가	, SD SM di	iamine	PA	oxidase	PU
	가	가	3		
	. SD	D SM SD/SM N1-	PU	sham	가
acetyltra	nsferase(SSAT) 가	, 가	50 mg/kg ib	uprofen
	PA oxidase	e PU	. 1	0 mg/kg 25	mg/kg ibuprofen
F	PU 가		PU	가	

Figure 4. Effect of ibuprofen administration on the number of surviving cells in the CA1 area of hippocampus 5 days after transient global ischemia in gerbils. *p<0.05 in comparison with vehicle treated-gerbils. Sham, sham-operated (n = 6); VEH, vehicle-treated (n = 6); IB10: ibuprofen 10 mg/kg administered(n = 6); IB25: ibuprofen 25 mg/kg administered (n = 6); IB50: ibuprofen 50 mg/kg administered gerbils (n = 8). Data are expressed as mean ± SEM.

REFERENCES

가

- 1. DeWitt DL, Smith WL. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc Natl Acad Sci USA 1988;85:1412-1416.
- 2. Reiger MK, DeWitt DL, Shindler MS, Smith WL. Subcellular localization of prostaglandin endoperoxide synthase-2 in murine 3T3 cells. Arch Biochem Biophys 1993;301:439-444.
- 3. Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR. TIS10, a phorbol ester tumor promotorinducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem 1991;266:12866-12872.
- 4. Kujubu DA, Herschman HR. Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/

cyclooxygenase gene. J Biol Chem 1992;267:7991-7994.

- O'Banion MK, Winn VD, Young DA. cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. *Proc Natl Acd Sci USA* 1992;89:4888-4892.
- Feng L, Sun W, Xia Y, Tang WW, Chanmugam P, Soyoola E, et al. Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. *Arch Biochem Biophys* 1993;307:361-368.
- Nogawa S, Zhang F, Ross ME, Iadecola C. Cyclo-oxygenase-2 gene expression in neuronal contributes to ischemic brain damage. *J Neurosci* 1997;17:2746-2755.
- Domoki F, Veltkamp R, Thrikawala N, Robins G, Bari F, Louis TM, et al. Ischemia-reperfusion rapidly increases COX-2 expression in piglet cerebral arteries. *Am J Physiol* 1999;277:H1207-H1214.
- Patel PM, Drummond JC, Sano T, Cole DJ, Kalkman CJ, Yaksh TL. Effect of ibuprofen on regional eicosanoid production and neuronal injury after forebrain ischemia in rats. *Brain Res* 1993;614:315-324.
- Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, et al. Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. *Proc Natl Acad Sci USA* 1998;95: 10954-10959.
- Nagayama M, Niwa K, Nagayama T, Ross ME, Iadecola C. The cyclooxygenase-2 inhibitor NS-398 aeliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 1999;19:1213-1219.
- Nakagomi T, Sasaki T, Kirino T, Tamura A, Noguchi M, Saito I, et al. Effect of cyclooxygenase and lipooxygenase inhibitors on delayed neuronal death in the gerbil hippocampus. *Stroke* 1989;20:925-929.
- Buccellati C, Folco GC, Sala A, Scelsi R, Masoero E, Poggi P, et al. Inhibition of prostanoid synthesis protects against neuronal damage induced by focal ischemia in rat brain. *Neurosci Lett* 1998;257:123-126.
- Hara K, Kong DL, Sharp FR, Weinstein PR. Effect of selective inhibition of cyclooxygenase 2 on temporary focal cerebral ischemia in rats. *Neurosci Lett* 1998;256:53-56.
- Grice SC, Chappell ET, Prough DS, Whitley JM, Su M, Watkins WD. Ibuprofen improves cerebral blood flow after global cerebral ischemia in dogs. *Stroke* 1987;18: 787-791.
- Chyatte D. Prevention of chronic cerebral vasospasm in dogs with ibuprofen and high-dose methylprednisolone. *Stroke* 1989;20:1021-1026.
- Casper D, Yaparpalvi U, Rempel N, Werner P. Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. *Neurosci Lett* 2000;289:201-204.
- Tabor CW, Tabor H. Polyamines. Annu Rev Biochem 1984;53:749-790.

- 19. Pegg AE. Recent advances in the biochemistry of polyamines in eukaryotes. *Biochem J* 1986;234:249-262.
- Williams K, Romano C, Dichter MA, Molinoff PB. Modulation of the NMDA receptor by polyamines. *Life Sci* 1991;48:469-498.
- Koenig H, Goldsteine AD, Lu CY. Polyamines regulate calcium fluxes in a rapid plasma membrane response. *Nature* 1983;305:530-534.
- Iqbal Z, Koenig H. Polyamines appear to be second messengers in mediating Ca++ fluxes and neurotransmitter release in potassium-depolarized synaptosomes. *Biochem Biophys Res Commun* 1985;133:563-573.
- 23. Bondy SC, Walker CH. Polyamines contribute to calciumstimulated release of aspartate from brain particulate fractions. *Brain Res* 1986;371:96-100.
- Paschen W, Schmidt-Kastner R, Hallmayer J, Djuricic B. Polyamines in cerebral ischemia. *Neurochem Pathol* 1988; 9:1-20.
- Dempsey RJ, Carney JM, Kindy MS. Modulation of ornithine decarboxylase mRNA following transient ischemia in the gerbil. J Cereb Blood Flow Metab 1991; 11:979-985.
- 26. Baskaya MK, Rao AM, Puckett L, Prasad MR, Dempsey RJ. Effect of difluoro- methylornithine treatment on regional ornithine decarboxylase activity and edema formation after experimental brain injury. *J Neurotrauma* 1996;13:85-92.
- Spragg BP, Hutchings AD. High-performance liquid chromatographic determination of putrescine, spermidine, and spermine after deprivation with 4-fluoro-3-nitrobenzotrifluoride. *J Chromatogr* 1983;258:289-292.
- Eke A, Conger KA, Anderson M. Histological assessment of neurons in rat model of cerebral ischemia. *Stroke* 1990; 21:299-304.
- 29. Pajunen AEI, Hietala OA, Virransalo E-L, Piha RS. Ornithine decarboxylase in mouse brain effect of electrical stimulation. *J Neurochem* 1978;30:281-283.
- Paschen W, Hallmayer J, Mies G. Regional profile of polyamines in reversible cerebral ischemia of Mongolian gerbils. *Neurochem Pathol* 1987;7:143-156.
- Reed LJ, de Belleroche J. Induction of ornithine decarboxylase in cerebral cortex by excitotxin lesion of nucleus basalis: association with postsynaptic responsiveness and N-methyl-D-aspartate receptor activation. *J Neurochem* 1990;55:780-787.
- Martinez E, de Vera N, Artigas F. Differential response of rat brain polyamines to convulsant agents. *Life Sci* 1991; 48:77-84.
- 33. Seiler N, Bolkenius FN. Polyamine reutilization and turnover in brain. *Neurochem Res* 1985;10:529-544.
- Casero RA Jr., Celano P, Ervin SJ, Applegren NB, Wiest L, Pegg AE. Isolation and characterization of a cDNA clone that codes for human spermidine/spermine N1acetyltransferase. *J Biol Chem* 1991;266:810-814.

- Paschen W, Rohn G, Meese CO, Djuricic B, Schmidt-Kastner R. Polyamine metabolism in reversible cerebral ischemia: effect of -difluoromethylornithine. *Brain Res* 1988;453:9-16.
- 36. Dogan A, Rao AM, Hatcher J, Rao VLR, Baskaya MK, Dempsey RJ. Effects of MDL 72527, a specific inhibitor of polyamine oxidase, on brain edema, ischemic injury volume, and tissue polyamine levels in rats after temporary middle cerebral artery occlusion. *J Neurochem* 1999;72:765-770.
- Najm I, el-Skaf G, Massicotte G, Vanderklish P, Lynch G, Baudry M. Changes in polyamine levels and spectrin degradation following kainate-induced seizure activity: effect of difluoromethylornithine. *Exp Neurol* 1992; 116:345-354.
- Paschen W, Widmann R, Weber C. Changes in regional polyamine profiles in rat brains after transient cerebral ischemia (single versus repetitive ischemia): evidence for release of polyamines from injured neurons. *Neurosci Lett* 1992;135:121-124.
- Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T, et al. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. *Stoke* 1999;30: 1962-1968.
- Collacomoraes Y, Aspey B, Harrison M, Debelleroche J. Cyclo-oxygenase-2 messenger RNA induction in focal cerebral ischemia. *J Cereb Blood Flow Metab* 1996;16: 1366-1372.
- 41. Sanz O, Estrada A, Ferrer I, Planas AM. Differential cellu-

ar distribution and dynamics of HSP70, cyclooxygenase-2 and c-Fos in the rat brain after transient focal ischemia or kainic acid. *Neuroscience* 1997;80:221-232.

- 42. Tocco G, Freire-Moar J, Schreiber SS, Sakhi SH, Aisen PS, Pasinetti GM. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer's disease. *Exp Neurol* 1997;144:339-349.
- Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Lodi Rizzini B, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. *Nature* 1998;391: 281-285.
- 44. Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Brain synapses contain inducible forms of the transcription factor NF- B. *Mech Dev* 1993;43:135-147.
- 45. Hunot S, Brugg B, Richard D, Michel PP, Muriel MP, Ruberg M, et al. Nuclear translocation of NF- B is increased in dopaminergic neurons of patients with Parkinson's disease. *Proc Natl Acad Sci USA* 1997;94: 7531-7536.
- 46. Bulera SJ, Birge RB, Cohen SD, Khairallah EA. Identification of the mouse liver 44-kDa acetaminophenbinding protein as a subunit of glutamine synthase. *Toxicol Appl Pharmacol* 1995;134:313-320.
- Halmes NC, Hinson JA, Martin BM, Pumford NR. Glutamate dehydrogenase covalently binds to a reactive metabolite of acetaminophen. *Chem Res Toxicol* 1996;9: 541-546.
- 48. Grilli M, Pizzi M, Memo M, Spano P. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappa B activation. *Science* 1996;274:1383-1385.