대한재활의학회지: 제 26 권 제 1호 2002

정상 성인에서 보툴리눔 독소 A 주사 후 신경생리학적 변화

계명대학교 의과대학 재활의학교실

박기영 · 김현리 · 김종민 · 이소영

Neurophysiological Changes after Botulinum Toxin A Injection in Normal Adults

Gi-young Park M.D., Ph.D., Hyun-ree Kim M.D., Jong-min Kim M.D. and So-young Lee M.D., Ph.D.

Department of Rehabilitation Medicine, Dongsan Medical Center, Keimyung University College of Medicine

Objective: To evaluate the neurophysiological changes after intramuscular botulinum toxin A (BTX-A) injection in normal adults.

Method: Nine subjects were studied by electrophysiological measurements before and after the injections. BTX-A (5 IU, Botox[®], Allergen, USA) was injected in the extensor digitorum brevis (EDB) muscles. Thereafter, electrophysiological measurement was followed up during 6 months.

Results: The compound muscle action potential (CMAP) amplitude of injected EDB muscle decreased significantly for 8 weeks, a maximal decrement at 4 weeks after in-

jection. CMAP peak area changes over time were nearly identical to those of CMAP peak amplitudes. The first/fourth amplitude change of CMAP with 3-Hz repetitive nerve stimulation decreased significantly for 8 weeks and the amplitude following post-exercise activation increased significantly after injection. There were no significant changes in F-wave amplitude and latency.

Conclusion: Serial electrophysiological measurements after intramuscular BTX-A injection into EDB provide useful information for the neurophysiological change after injection.

(J Korean Acad Rehab Med 2002; 26: 55-60)

Key Words: Botulinum toxin A, Electrophysiological change, Extensor digitorum brevis

서 론

Botulinum toxin은 Clostridium botulinum의 단백질 산물로서 신경근 접합 부위의 콜린성 신경말단에서 세포 내 이입에 의해 선택적으로 흡수되어 아세틸콜린을 함유한 연접세포들의 분비를 차단하는 효과를 나타내며, 이와 같은 신경근 차단 효과는 수개월 후 신경의 말단 발아에 의해 새로운 신경근 접합이 형성되면서 감소하게 된다. 16,241 Botulinum toxin A는 안과적 질환인 사시와 안검 연축 치료에 임상적으로 처음 적용된 이후 반검안측경련, 사경, 경련성 발성장애, 근 긴장 이상 등과 같은 다양한 국소적 신경 질환에 사용되고 있다. 9,23,261 Botulinum toxin A 주사는 Das와 Park⁶¹이 1989년 경직 치료에 처음 사용하기 시작한 이후 현재 재활의학 영역에서 뇌성마비, 뇌졸중, 외상성 뇌손상, 다발성 경화증, 배뇨괄약근 실조증 환자 등의 경직을 완화시키는 치료방법으로 활발히 이용하고 있다. 2,3,7,8,18,25)

Botulinum toxin A 근육 주사 후 신경 근 차단 효과는 근육

접수일: 2001년 9월 14일, 게재승인일: 2001년 12월 5일 교신저자: 김종민, 대구시 중구 동산동 194

> ② 700-712, 계명대학교 의과대학 재활의학교실 Tel: 053-250-7268, Fax: 053-250-7268

이 연구는 2001년 계명대학교 연구비 지원에 의해 이루어진 것임.

크기, 용량, 농도, 주사 방법, 주사 위치, 근육 활성도 등에 따라 달라질 수 있다. Botulinum toxin A 주사는 임상적으로 대부분 환자에서 반복 주사가 필요하므로 객관적으로 신경 근 차단 효과와 시간 경과에 따른 변화를 추적 관찰하기 위한 적절한 평가 방법이 필요하다. 경직 환자에서 Botulinum toxin A 치료 효과를 측정하기 위하여 관절 운동 범위, 근 긴장도, Ashworth 척도 등이 사용되고 있으나 주관 적이라는 단점이 있다.1) 최근 흰쥐의 비복근에 Botulinum toxin A 주사 후 복합근 활동전위와 비복근의 연축력(twitch force)을 측정하여 객관적으로 신경 차단 효과의 지속 기간 을 측정하려는 시도가 이루어지고 있으나 인체에 직접 주 사한 후 신경생리학적 변화를 장기간 조사한 연구는 매우 드물다.^{4,14,19,20)} 이에 저자들은 정상 성인들을 대상으로 Botulinum toxin A를 단지신근에 주사한 후 장기간 연속적 인 전기 생리학적 검사를 통하여 시간 경과에 따른 신경생 리학적 변화를 조사하여 향후 경직성 마비환자뿐 아니라 Botulinum toxin A 주사를 맞는 환자 평가에 대한 기초자료 로서 도움을 주고자 하였다.

연구대상 및 방법

1) 연구대상

2000년 2월 29일부터 2000년 10월 28일까지 중추신경, 말

초신경 및 근육 질환의 과거력이 없는 정상 성인 남녀 9명을 대상으로 하였다. 대상자의 연령분포는 19세에서 35세로 평균연령은 25.3세였고, 성별분포는 남자 5명, 여자 4명이었다 (Table 1). 대상자들은 Botulinum toxin A 주사 전 신경학적 검사를 하여 이상소견이 없는 것을 확인한 후 단지신근에 대한 전기생리학적 검사를 하였다.

2) 연구방법

무작위로 대상자의 편측을 선정한 후 단지신근을 최대 수축한 상태에서 최대 팽대 부위에 주사 후 단지신근 운동 에 따라 주사 바늘이 움직이는 것을 확인한 후 Botulinum toxin A (Botox[®], Allergen, USA) 5 unit를 0.2 cc 생리식염수 에 희석한 용액을 주사하였다. 주사 후 일상생활동작은 제 한하지 않았으나 발가락의 추가적인 운동은 금지하였다. 신경생리학적 검사는 Synergy® (Medelec, UK)를 사용하여 주사 전, Botulinum toxin A 주사 후 첫 4주간 매주, 8주까지 는 2주간, 그 이후에는 주사 후 3개월, 4개월, 6개월까지 반 복 시행하였다. 비골 신경전도검사의 전기 자극위치, 표면 기록 전극의 위치와 거리 등은 Kimura 13)가 기술한 방식에 따라 시행하였다. 표면 기록 전극의 위치는 주기적으로 실 시한 전기생리학적인 검사에서 Botulinum toxin A를 주사한 단지신근의 최대 팽대 부위에 위치시킨 후 복합근 활동전 위를 구한 후 조금씩 위치를 변화시키면서 가장 큰 복합근 활동전위의 진폭이 나타날 때까지 최소 세 부위 이상에서 검사를 하였다. 또한 검사하는 동안 대상자의 하지 표면 온 도는 32°C에서 34°C 사이를 유지하였다.

단지신근의 복합근 활동전위의 정점간 진폭과 음성 정점 면적(negative peak area)을 측정하여 주사 전후 진폭과 면적 에 대한 백분율을 구하였고, 슬관절과 족관절 사이의 비골 운동신경 전도속도와 단지신근의 복합근 활동전위의 원위 잠시를 측정하였다. 단지신근의 F파는 휴식 상태에서 족관 절 부위의 비골 신경을 최대 자극하여 10개의 F파 반응을 얻은 후 F파 진폭, 기시 잠시, F/M 진폭비의 평균값을 계산 하였다.

단지신근의 반복신경자극은 3 Hz의 저 빈도로 단지신근 휴식 시와 15초간 최대 근 수축 직후, 1분, 3분, 5분에 족관절 부위의 비골 신경을 반복 자극하였다. 주사 전후 반복신경자극 시의 첫 번째 복합근 활동전위에 대한 네 번째 전위의 진폭 증가 또는 감소를 백분율로 측정하였고, 같은 방법으로 최대 근 수축 후 복합근 활동전위 진폭의 변화를 측정하였다.

Botulinum toxin A를 주사한 단지신근의 자발적 운동 활성을 정량적으로 측정하기 위하여 피검사자가 저항에 대하여 최대로 단지신근을 수축시키면서 최대 복합근 활동전위주위의 500-ms 간격의 mean rectified voltage (MRV)를 9번 측정하여 평균값을 계산하였다. 본 연구에서 얻은 결과들은 비모수 통계적 방법으로 Wilcoxon Signed Ranks 검정을

이용하여 통계학적 유의성을 검정하였다.

결 과

1) 주사 전후 단지신근의 비골 운동신경 원위 잠시와 전도속도

단지신근의 복합근 활동전위의 원위 잠시는 주사 후 증가하였으나 통계학적으로 유의하지 않았고, 비골 운동신경전도속도는 주사 후 변화가 없었다(Table 2).

2) 주사 전후 단지신근의 복합근 활동전위 진폭과 면적 변화

단지신근의 복합근 활동전위 평균 진폭은 주사 전 9.7 mV 였으나 주사 후 4주에 3.5 mV로 가장 작았으며 주사 후 4주 까지 통계학적으로 유의하게 감소하였다. 진폭 변화는 주사 후 1주에 41%로 가장 크게 감소하였다. 단지신근의 복합 근 활동전위 평균 면적은 주사 전 22.0 mV ms였으나 주사

Table 1. Age and Sex Distribution

A (,)	No. of ca	No. of cases (%)	
Age (yrs)	Male	Female	Total (%)
<u>≤20</u>	0	1	1 (11.0)
$21 \sim 30$	3	2	5 (56.0)
$31 \sim 40$	2	1	3 (33.0)
Total	5 (56.0)	4 (44.0)	9 (100.0)

Table 2. Distal Latency and Conduction Velocity of Peroneal Nerve before and after Injection

Time	Distal latency (msec)	Conduction velocity (m/s)
Before	4.1±0.6	50.9±3.2
After 1 week	4.2 ± 0.6	50.6 ± 1.8
2 weeks	4.2 ± 1.0	50.6 ± 2.3
3 weeks	4.1 ± 0.7	51.9 ± 2.4
4 weeks	4.4 ± 0.7	49.6±2.2
6 weeks	4.1 ± 0.6	51.2±4.0
8 weeks	4.5 ± 0.7	51.1±0.5
3 months	4.6±0.9	49.9±0.9
4 months	4.5 ± 0.5	50.2 ± 5.3
6 months	4.5±0.4	49.7±3.6

Values are mean±S.D.

*p<0.01

후 4주에 7.1 mV ms로 가장 작았으며 주사 후 4주까지 통계 학적으로 유의하게 감소하였다. 면적 변화는 주사 후 1주에 37 %로 가장 크게 감소하였다. 주사 후 6개월에 진폭과 면 적은 각각 5.0 mV, 11.2 mV ms로 주사 전에 비해 여전히 낮은 진폭과 면적을 나타내었으나 통계학적으로 유의하지 않았다(Table 3).

3) 주사 전후 단지신근의 F파 진폭, 잠시 및 F/M 진폭 비 단지신근의 F파 평균 진폭은 주사 전 173uV였으나 주사

Table 3. Peak Amplitude and Area of Compound Muscle Action Potential (CMAP) Recorded on Extensor Digitorum Brevis before and after Injection

Time	CMAP amplitude (mV)	Area (mV ms)
Before	9.7±1.9	22.0±5.8
After 1 week	4.0±1.0*	8.1±3.3*
2 weeks	3.7±0.6*	7.9±3.6*
3 weeks	3.7±1.4*	7.6±3.5*
4 weeks	3.5±1.5*	7.1±3.3*
6 weeks	4.1±1.0	8.3±3.0
8 weeks	4.4±1.2	9.4±2.7
3 months	4.6 ± 1.5	9.7±3.6
4 months	4.6 ± 0.8	9.9±2.1
6 months	5.0±0.4	11.2±2.5

Values are mean±S.D.

Table 4. Amplitude and Latency of F-wave and F/M Amplitude Ratio Recorded on Extensor Digitorum Brevis before and after Injection

Time	F-wave amplitude (µV)	F-wave latency (msec)	F/M ratio ¹⁾
Before	173±89	48.1±3.6	28.8±25.7
After 1 week	98±27*	47.5±3.4	30.9 ± 18.7
2 weeks	s 89±28*	47.8 ± 4.1	34.7±35.9
3 weeks	s 100±47	49.3±3.6	32.8 ± 32.4
4 weeks	s 104±28	50.2 ± 4.0	33.4 ± 13.7
6 weeks	s 109±41	49.4±3.1	35.2 ± 19.6
8 weeks	s 115±26	51.3±2.4	28.9 ± 14.9
3 month	ns 141±19	50.3±2.1	26.3 ± 3.6
4 montl	hs 112±51	47.1±3.2	23.0 ± 3.0
6 month	hs 141±41	48.7 ± 4.1	23.4 ± 4.7

Values are mean±S.D.

후 2주에 89µV로 가장 작았고 주사 후 2주까지 통계학적으 로 유의하게 감소하였다. 단지신근의 F파 잠시는 주사 후 통계학적으로 유의하게 변화하지 않았다. 단지신근의 F/M 진폭 비는 주사 후 6주까지 증가한 후 감소하였으며, 6주에 35.2로 가장 높았으나 통계학적으로 유의하게 변화하지 않 았다(Table 4).

Table 5. Amplitude Change of Compound Muscle Action Potential Recorded on Extensor Digitorum Brevis between First and Fourth Stimulus 3-Hz Repetitive Stimulation and Following Postexercise Activation before and after In-

Time	CMAP amplitude change (%) ¹⁾	CMAP amplitude change (%) ²⁾
Before	-2.1±1.5	5.9±8.7
After 1 weeks	-4.9±2.7	15.4 ± 3.8
2 weeks	-9.8±4.1*	18.1 ± 3.3
3 weeks	-10.1±3.9*	12.8±9.6
4 weeks	-11.5±2.1*	15.7 ± 8.7
6 weeks	-8.2±4.1	18.7 ± 2.1
8 weeks	-7.3±3.1	18.0 ± 6.9
3 months	-6.8±2.5	16.0 ± 2.2
4 months	-7.0±0.3	36.2 ± 4.2
6 months	-6.4±4.8	22.8±9.4

Values are mean CMAP amplitude change percentage. Negative integers represent of decrement.

1. CMAP amplitude change percentage between the first and fourth stimulus 3-Hz repetitive stimulation, 2. CMAP amplitude change percentage following postexercise activation p < 0.01

Table 6. Mean Rectified Voltage in Voluntary Motor Activity of Extensor Digitorum Brevis before and after Injection

Time	EDB mean rectified voltage (%)
Before	294±198 (100.0)
After 1 week	60±35* (20.4)
2 weeks	59±56* (20.1)
3 weeks	56±41* (19.0)
4 weeks	67±52* (22.7)
6 weeks	69±42* (23.4)
8 weeks	70±56* (23.8)
3 months	83±72 (28.2)
4 months	90±29 (30.6)
6 months	98±31 (30.0)

Values are mean±S.D.

p < 0.01

^{1.} F/M ratio means F wave amplitude (µV)/CMAP amplitude $(mV) \times 10^{-3}$

p < 0.01

p < 0.01

4) 주사 전후 반복신경자극 후 단지신근의 복합근 활동 전위 진폭 비 변화 및 최대 근 수축 후 진폭 변화

3 Hz 반복신경자극 후 첫 번째와 네 번째 복합근 활동전 위의 진폭 비는 주사 후 2주부터 4주까지 통계학적으로 유의하게 감소하였으며, 4주에 -11.5%로 가장 낮았다. 최대근 수축 후 복합근 활동전위의 진폭은 주사 전에 비해 주사후 검사한 모든 시기에 증가하였으나, 통계학적으로 유의하지 않았다(Table 5).

5) 주사 전후 단지신근의 자발적 운동 활성 변화

단지신근의 자발적 운동 활성 시 MRV 변화는 주사 후 1주에 20.4%로 가장 크게 감소하였으며 주사 후 8주까지 통계학적으로 유의하게 감소하였다. MRV는 주사 후 3주에 19.0%로 가장 낮은 후 증가하였다(Table 6).

고 찰

Botulinum toxin의 신경근 차단 효과는 이학적 검사, 기능 적 평가, 조직병리학적 검사, 전기생리학적 검사 등을 이용 하여 평가할 수 있다. Gutman과 Pratt¹¹⁾는 복합근 활동전위 의 진폭 감소는 Botulinum toxin에 의해 유발된 신경근 차단 을 반영한다고 주장하였다. Sanders 등²²⁾과 Lange 등¹⁴⁾은 Botulinum toxin을 근육 주사한 후 멀리 위치한 근육에서 단 일 섬유 근전도 검사를 이용하여 객관적으로 Botulinum toxin 의 원위 효과를 평가하였고, Ostergaard 등¹⁹⁾은 정량적 근전 도 검사를 이용하여 Botulinum toxin의 치료 효과를 평가할 뿐 아니라 적절한 근육 주사 위치도 알 수 있다고 보고하였 다. Hamjian과 Walker¹²⁾는 인간의 단지신근에 Botulinum toxin A를 주사한 후 전기생리학적 검사와 초음파 검사를 이용하여 화학적 탈신경(chemodenervation) 효과를 연구하 였다. Kessler와 Benecke¹⁷⁾는 단지신근에 Botulinum toxin A 주사 후 복합근 활동전위의 진폭 측정이 주사 후 이차적 무반응 환자의 항체 검출을 위한 임상적 검사로 유용하게 사용될 수 있다고 보고하였다. 그러나 이제까지 연구는 Botulinum toxin A의 효과 측정을 동물을 대상으로 실험하 거나 인간을 대상으로 하더라도 주사 후 단기간의 추적관 찰에 그치거나 혹은 다양한 전기생리학적 검사를 하지 않 은 제한점이 있었다.

본 연구에서 정상 성인들을 대상으로 인간에 주사 시 일 상 활동에 장애가 없고, 쉽게 전기생리학적 검사를 할 수 있는 단지신근을 선택하여 주사 후 6개월간 장기간 시간 경과에 따른 단지신근의 다양한 신경생리학적 변화를 측정 하였다.

Botulinum toxin A 주사 후 약효 지속 기간은 저자마다 다양하게 보고하고 있으나 대개 3개월부터 6개월 이내이고, 근육마비는 주사 후 1일부터 4일 사이에 나타나기 시작

하여 주사 후 2주에 최대 효과를 나타낸 후 6주 내지 16주 동안 정적인 상태를 유지한 후 2개월 동안 서서히 주사 전 상태로 회복된다.^{5.7)} Hamjian과 Walker¹²⁾는 인간의 단지신근 주사 후 복합근 활동전위의 진폭은 주사 후 21일에 주사 전에 비해 64%로 최대로 감소하였다고 보고하였다.

본 연구에서 Botulinum toxin A에 의한 정상 성인의 단지 신근 마비 정도를 시간 경과에 따른 복합근 활동전위의 진 폭, 면적 및 자발적 운동 활성 시 MRV를 조사하여 다른 연구결과와 비교하였다. 주사 후 진폭과 면적 변화는 주사 후 1주에 진폭과 면적 모두 41%, 37%로 가장 크게 감소하 였으며, 주사 후 4주에 37%, 33%로 가장 낮은 진폭과 면적 을 나타내어 최대 효과를 나타내었다. 본 연구에서 단지신 근에 동일한 제품의 Botulinum toxin A (Botox[®], Allergen, USA)를 Hamjian과 Walker¹²⁾ 연구보다 적은 용량을 주사하 였으나 근육 마비 효과가 크게 나타난 것은 대상인의 나이, 주사 후 운동, 주사방법, 단지신근 크기, 희석 농도 및 인종 차이 등에 의해 발생하였다고 생각한다. 자발적 운동 활성 시 MRV 변화는 주사 후 1주에 20.4%로 가장 크게 감소하 였으며 주사 후 8주까지 통계학적으로 유의하게 감소하여 복합근 활동전위의 진폭과 면적 변화와 유사한 경향을 나 타내었다.

복합근 활동전위의 진폭과 면적의 회복은 주사 후 4주부터 나타나기 시작하여 6개월에 각각 52%, 51%로 주사 전에비해 여전히 낮은 진폭과 면적을 나타내어 근육 마비가 주사후 6개월 이후에도 지속된다는 것을 알 수 있었다. 이는 전신성 botulinum 중독 후 완전 회복되는 데 1년 내지 2년기간이 필요한 것을 고려하면 합당한 소견이며, 향후 장기간의 추적 조사가 뒤따라야 할 것으로 생각한다. 현재 반복적으로 주사하는 경우 경직과 근긴장 이상 등을 가진 환자에서 3개월 정도에 반복 주사하고 있으나 이는 정상 성인에 있어 주사후 6개월 이후에도 근육마비가 50% 가량 지속되는 것을 감안할 때 반복 주사 시기에 대한 추가 연구가 필요하다. 또한 정상인과 경직 혹은 근긴장 이상을 가진 환자의 주사후 신경생리학적 변화의 차이에 대한 가능성을 고려할 때 환자들을 대상으로 장기간의 연속적 신경생리학적 연구가 필요할 것으로 생각한다.

Hamjian과 Walker¹²는 Botulinum toxin A의 말초신경에 대한 국소적 효과로 인하여 Botulinum toxin A 주사 후 단지 신근의 복합근 활동전위의 원위 잠시가 통계학적으로 유의 하게 증가되었으나, 슬관절과 족관절 사이의 비골 운동신경 전도속도와 F과 잠시는 변화가 없었다고 보고하였다. 또한 주사 후 10일과 20일 사이에 복합근 활동전위의 진폭과 MRV는 감소하였으나 F과 진폭과 F/M 진폭비는 증가하였는데 이는 전각 세포들의 Renshaw 세포 억제에 Botulinum toxin A가 영향을 미쳐 척수 운동 신경원의 흥분성이 증가하여 발생하였다고 주장하였다. 또한 척수신경 후근 절제술의 경우 근방추로부터 운동신경원으로 구심성 입력이 변

화되어 F파 진폭의 증가를 관찰할 수 있으며, Botulinum toxin A는 방추 외근과 내근 섬유 위축으로 인한 긴장성 감 각유입의 변화를 통하여 척수 분절 운동 체계의 기능을 변 화시킨다. 10,15,21)

본 연구에서도 단지신근 복합근 활동전위의 원위 잠시는 주사 후 증가하였으나 통계학적으로 유의하지 않았으며, 비골 운동신경 전도속도와 F파 잠시는 변화가 없어 동일한 결과를 나타내었다. 복합근 활동전위의 원위 잠시는 Botulinum toxin A 주사 후 근육 신경 재지배 즉 새롭게 발아하 는 신경 말단들로 인하여 증가하는 것으로 생각된다. Botulinum toxin A 주사 후 비골 운동신경 전도속도와 F파 잠시에 변화가 없어 말초신경 전도에는 영향을 주지 않는 다고 생각한다. F파 진폭은 주사 후 2주까지 통계학적으로 유의하게 감소하였으며 주사 후 6개월까지 감소하였다. 또 한 F/M 진폭비는 주사 후 6주까지 증가한 후 감소하였으며 6주에 가장 높았는데, 이는 Hamjian과 Walker¹²⁾의 결과와 상반되는 것으로 주사 용량과 희석 농도의 차이, Botulinum toxin A가 척수 운동신경원의 흥분성에는 영향을 미치지 않 거나, 주사 후 6주까지 F파 진폭 감소보다 복합근 활동전위 진폭의 감소가 크기 때문이라고 생각한다.

정상인의 신경근육 접합부에 대한 전기신경 생리학적 검 사에서 1 내지 5 Hz의 저빈도로 신경을 반복 자극하면 즉시 사용 가능한 신경근육 전달 물질인 아세틸콜린을 소모시켜 유발되는 활동전위의 진폭이 자극 전에 비해 5 내지 8% 미 만으로 감소하게 된다. 신경근육 접합부의 시냅스 후 단계 의 아세틸콜린 수용체에 대한 항체로 인하여 수용체가 부 족한 근 무력증에 있어 신경을 저빈도로 반복 자극하면 안 정역(margin of safety)이 낮아 활동전위의 진폭이 10% 이상 감소된다. 그러나 신경근육 접합부의 시냅스 전 단계에서 아세틸콜린 방출을 억제하는 보툴리누스 중독과 Eaton-Lambert 증후군에서 정상인에 비해 복합근 활동전위의 진 폭이 작으며, 저빈도 반복 신경 자극 시 진폭이 감소하나 고빈도 반복 자극 시 진폭이 증가한다. 이와 같은 진폭 증가 는 고 빈도 반복 자극에 의해 아세틸콜린이 신경말단으로 재수용(reuptake)되지 못하여 신경근육 접합부 시냅스에 축 적되기 때문이다.¹⁾

본 연구에서도 3 Hz 반복 신경 자극 검사에서 첫 번째와 네 번째 복합근 활동전위의 진폭 비는 주사 후 2주부터 4주 까지 통계학적으로 유의하게 감소하였고, 최대 근 수축 후 복합근 활동전위의 진폭은 주사 전에 비해 주사 후 검사한 모든 시기에 증가하여 신경근육 접합부의 시냅스 전 단계 이상 시 나타나는 전기생리학적 변화와 유사한 결과를 나 타내었다. 그러나 주사 후 최대 근 수축 후 복합근 활동전위 의 진폭은 Eaton-Lambert 증후군 등에서와 같이 200% 이상 높게 증가하지 않았다.

본 연구의 제한점들로 첫째, 주사 후 근육의 신경생리학 적 변화만을 측정하여 형태학 및 조직학적 변화 등을 조사

하지 못하였고. 둘째. 추적연구 기간이 신경근 차단 효과가 회복되지 않은 6개월로 제한되어 좀 더 장기간 신경생리학 적 변화를 측정하지 못하였고, 셋째, 정상인과 다양한 질환 을 가진 환자들을 대상으로 한 비교 연구가 이루어지지 않 았다는 점 등을 들 수 있을 것이다

Botulinum toxin A에 관한 연구는 주로 각 질환에 대한 임상적 효과와 이에 대한 기전에 집중되어 이루어져 왔다. 그러나 인간에 있어 Botulinum toxin A 주사 후 신경생리학 적 효과에 대하여 장기간 추적 관찰한 연구는 부족하다. 그 러므로 본 연구에서는 정상 성인에서 Botulinum toxin A를 단지신근에 주사한 후 장시간 연속적 전기 생리학적 검사 들을 실시하여 시간 경과에 따른 다양한 신경 생리학적 변 화를 객관적으로 측정할 수 있었을 뿐 아니라 향후 Botulinum toxin A 주사를 맞는 모든 환자에서 주사 후 치료 효과 판 정, 재주사 시기 결정, 항체 검색 및 추적검사 등에 기초자 료로 유용하게 사용할 수 있을 것으로 생각한다. 그러나 Botulinum toxin A 주사 후 신경근의 신경생리학적 검사 외 에 형태학 및 조직학적 변화의 추가 연구, 1년 이상 장기간 의 추적 연구 및 정상인과 다양한 질환을 가진 환자들과의 비교연구가 이루어져야 하겠다.

참 고 문 허

- 1) 이은하, 김세주: 흰쥐 비복근 활동전위 및 반복신경자극을 이 용한 보툴리눔 독소 효과 연구. 대한재활의학회지 1997; 21: 772-783
- 2) 박기영: 뇌성마비 환아에서 botulinum toxin A의 치료 효과. 대한재활의학회지 1997; 21: 390-398
- 3) 진기은, 박희석, 김기찬, 정호중, 장희경: 흰쥐에서 보툴리누스 독소 근주 후 조직병리 및 근섬유전도검사 소견. 대한재활의 학회지 1998; 22: 440-446
- 4) Aramich M, Ongerboer BW, Devriese PP, Bour LJ, Speelman JD: Electromyographic features of levator palpebrae superioris and orbicularis oculi muscles in blepharospasm. Brain 1994; 117: 27-38
- 5) Cosgrove AP, Corry IS, Graham HK: Botulinum toxin in the management of the lower limb in cerebral palsy. Dev Med Child Neurol 1994; 36: 386-396
- 6) Das TK, Park DM: Botulinum toxin in treating spasticity. Br J Clin Pract 1989; 43: 401-403
- 7) Dunne JW, Heye N, Dunne SL: Treatment of chronic limb spasticity with botulinum toxin A. J Neurol Neurosurg Psychiatry 1995; 58: 232-235
- 8) Dykstra DD, Sidi AA: Treatment of detrusor-sphincter dyssynergia with botulinum A toxin: a double-blind study. Arch Phys Med Rehabil 1990; 71: 24-26

- Filippi GM, Errico P, Santarelli R, Ragolini B, Manni E: Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol (Stockh) 1993; 113: 400-404
- Fox JE, Hitchcock ER: F-wave size as a monitor of motor neuron excitability: the effect of deafferentation. J Neurol Neurosurg Psychiatry 1987; 50: 453-459
- 11) Gutman L, Pratt L: Pathophysiological aspects of human botulism. Arch Neurol 1976; 33: 175-179
- Hamjian JA, Walker FO: Serial neurophysiological studies of intramuscular botulinum-A toxin in humans. Muscle Nerve 1994; 17: 1385-1392
- 13) Kimura J: Electrodiagnosis in disease of nerve and muscle: Principles and practice, 2nd ed, Philadelphia: FA Davis, 1989, pp127
- 14) Lange DJ, Brin MF, Warner CL, Fahn S, Lovelace RE: Distant effects of local injection of botulinum toxin. Muscle Nerve 1987; 10: 552-555
- 15) Mayer RF, Feldman RG: Observations on the nature of the F-wave in man. Neurology 1967; 17: 147-156
- 16) Melling J, Hambleton P, Schone CC: Clostridium botulinum toxins: nature and preparation for clinical use. Eye 1988; 2: 16-23
- 17) Modungo N, Priori A, Berardelli A, Vacca L, Mercuri B, Manfrei M: Botulinum toxin restores presynaptic inhibition of group Ia afferents in patients with essential tremor. Muscle Nerve 1998; 21: 1701-1705

- Nerville B: Botulinum toxin in the cerebral palsies. Br Med J 1994; 309: 1526-1527
- 19) Ostergard L, Fuglsang-Frederiksen A, Werdelin L, Sjo O, Winkel H: Quantitative EMG in botulinum toxin treatment of cervical dystonia. A double-blind, placebo-controlled study. Electroencephalogr Clin Neurophysiol 1994; 93: 434-439
- 20) Polo KB, Bahman J: Effectiveness of botulinum toxin type A against painful limb myoclonus of spinal cord origin. Movement Disorder 1994; 9: 233-235
- 21) Rosales RL, Kimiyoshi A, Takenaga S, Osame M: Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection. Muscle Nerve 1996; 19: 488-496
- 22) Sanders DB, Massey EW, Buckley EG: Botulinum toxin for blepharospasm: Single-fiber EMG studies. Neurology 1986; 36: 545-547
- 23) Scott AB: Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmol 1980; 87: 1044-1049
- 24) Sellin LC: The action of botulinum toxin at the neuromuscular junction. Med Biol 1981; 59: 11-20
- 25) Snow BJ, Tsui JKC, Bhatt MH, Varelas M, Hashimoto SA, Cakne DB: Treatment of spasticity with botulinum toxin; a double-blind study. Ann Neurol 1990; 28: 512-515
- 26) Tsui JKC, Fross RD, Calne S, Calne DB: Local treatment of spasmodic torticollis with botulinum toxin. Can J Neurol Sci 1987; 14: 533-535