
INTRODUCTION

Parkinson’s disease (PD) is one of neurodegenerative dis-
eases with selective death of dopaminergic neurons in the 
substantia nigra of the brain, leading to the movement disor-
der (Kalia and Lang, 2016). Oxidative stress has been impli-
cated in the pathogenesis of PD by exposure of free radical 
or other reactive species and defect of antioxidant defense 
mechanisms (Kikuchi et al., 2002; Halliwell, 2006). To develop 
in vitro or in vivo models of PD, the oxidative stress can be 
induced by 6-hydroxydopamine (6-OHDA) which destroys 
dopaminergic neurons through free radical-mediated mecha-
nisms (Shiraga et al., 1993). Thus, the 6-OHDA model has 
been widely used for replicating a PD-like loss of dopaminer-
gic neurons (Blandini et al., 2008).

Carbon monoxide (CO) is widely known as a virulent gas. 
CO poisoning causes various toxic symptoms such as nausea, 

vomiting, dizziness, fatigue and oxygen deficiency (Pietrus et 
al., 2015). It has been also reported that CO is endogenously 
generated in a mammalian cell by activity of heme oxygenase 
(HO) enzyme (Tenhunen et al., 1968). The past decade has 
witnessed an increase in research into the role of CO as neu-
rotransmitter modulating inflammatory responses in the body 
(Verma et al., 1993; Herman, 1997; McCoole et al., 2012; 
Christie et al., 2014). Converging lines of evidence revealed 
that low dose of CO exhibits beneficial effects in an array of 
pathophysiological conditions (Choi, 2017). Carbon monoxide 
releasing molecules (CORMs) is widely used as a CO donor 
to perform the CO-related studies. CORM-2 that was used in 
this study is a lipid-soluble metal carbonyl complex tricarbon-
yldichlororuthenium (II) dimer ([Ru(CO)3Cl2]2). This synthetic 
metal carbonyl complexes can release controlled amounts of 
CO to cell and tissues and be developed as a promising thera-
peutic agents. 
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Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel 
relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological condi-
tions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO 
in neurodegenerative diseases like Parkinson’s disease (PD). To test whether CO could exert a beneficial action during oxidative 
cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treat-
ment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent 
manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 
increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Sub-
sequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), 
which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have 
protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation 
of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.
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A variety of therapeutic studies about administration of CO 
has been reported to be beneficial in bacterial infection, can-
cer, stroke, erectile dysfunction, cardiac arrest, and transplant. 
Most recently, co-treatment of hydrogen sulfide and carbon 
monoxide protects gastric mucosa against alendronate com-
promised by mild stress (Magierowski et al., 2016) and CO 
significantly reduces endothelial cell proliferation in the gastric 
cancer cells (Lian et al., 2016). Interestingly, CO sensitizes 
cancer cells, not normal cells, to the genotoxin doxorubicin 
(Suliman et al., 2007; Kim et al., 2009) and spares normal 
cells compared by cancer cell in the cancer-laden tissue (We-
giel et al., 2013). In another studies, CO and HO-1 prevented 
from intestinal inflammation by promoting bacterial clearance 
(Onyiah et al., 2013) and attenuated aeroallergen-induced 
inflammation in mice (Chapman et al., 2001). CO also pre-
vents ischemia-reperfusion injury during kidney transplanta-
tion (Caumartin et al., 2011). CO protects cardiac mitochon-
drial function by decreasing the production of reactive oxygen 
species in a rat model of cardiac arrest (Yao et al., 2015). 
Although accumulating evidence revealed the potential thera-
peutic effects of CO under the various pathological conditions, 
the role of CO in the neurodegenerative diseases like PD has 
not been elucidated yet. In this study, we examined the ef-
fects of CO on 6-OHDA-induced cell death in C6 glioma cells. 
The results of this study will shed an insight on whether CO 
could be applied as therapeutic agents for the treatments and/
or prevention of PD. 

MATERIALS AND METHODS

Materials
Tricarbonyldichlororuthenuim (II) dimer (CORM-2), 6-hy-

droxydopamine hydrochloride, MTT[3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide], anti-actin antibody and 
other chemicals were provided from Sigma-Aldrich (St. Louis, 
MO, USA). Dulbecco’s modified Eagle’s medium (DMEM) 
were obtained from Hyclone (GE Healthcare life sciences, 
Logan, Utah, USA). Fetal bovine serum (FBS) and penicil-
lin-streptomycin antibiotic were purchased from Gibco BRL 
(Grand Island, NY, USA). Anti-bodies against Bcl-2, Bax, ca-
pase-3, NF-E2-related factor 2 (Nrf2), manganese superoxide 
dismutase (MnSOD) and copper-zinc superoxide dismutase 
(CuZnSOD) were provided from Santa cruz Biotechnology 
(Santa Cruz, CA, USA). Anti-heme oxygenase-1 (HO-1) an-
tibody was supplied by Enzo life sciences (Farmingdale, NY, 
USA) and Anti-phospho Nrf2 antibody was supplied by Abcam 
(Cambridge, UK). Anti-cleaved caspase-3 was purchased 
from Cell signaling (Danvers, MA, USA).

Cell culture
C6 glioma cells were cultured in DMEM supplement with 

10% FBS, penicillin (100 U/ml) and streptomycin (100 U/ml). 
Cells were incubated at 37°C in a humidified 5% CO2 incuba-
tor and sub-cultured at appropriate density for each experi-
ment.

Cell viability assay
Cell viability was analyzed using thiazolyl blue tetrazolium 

bromide (MTT) reduction assays. Cellular density was 1.0× 
105 cells/200 µl in 48-well plates. After cells were treated with 
6-OHDA and CORM-2, MTT solution was added and further 

incubated for 3 h. Then dimethyl sulfoxide was added to solu-
bilize the formazan products formed by viable cells. Absor-
bance was measured at 570 nm using an ELISA microplate 
reader from Tecan (Mannedorf, Switzerland). 

Detection of cell apoptosis 
To measure apoptosis, terminal deoxynucleotidyl transfer-

ase-mediated dUTP nick end-labeling (TUNEL) staining was 
conducted under the protocol named In situ Cell Death Dec-
tection Kit (Roche Diagnostics GmbH, Rotkreuz, Switzerland). 
Cells were cultured at a density of 1×105 cells/400 µl in 4-well 
chamber slide and treated with 6-OHDA for 24 h in the pres-
ence or absence of CORM-2. After treatment, cells were fixed 
in 4% paraformaldehyde in PBS, pH 7.4 and then incubated 
with 3% H2O2 in methanol for 10 min at room temperature 
(RT). Cells were incubated in 0.1% triton X-100 in 0.1% so-
dium citrate for 2 min on ice and then reacted with TUNEL 
reaction mixture according to the protocol for 60 min at 37°C. 
Anti-fluorescein antibody (converter-POD) and 3,3-diamino-
benzidine (DAB, VECTOR Lab., CA, USA) were added for 
10 min to visualized the TUNEL-positive cells. Apoptotic cells 
were analyzed under a light microscope (Leica Co., Welzlar, 
Germany).

Measurement of mitochondrial membrane potential
Mitochondrial membrane potential was measured by us-

ing tetramethylrhodamine ethyl ester perchlorate (TMRE) 
fluorescent dye. Cells were cultured at a density of 1×105 
cells/400 µl in 4-well chamber slides. C6 cells were incubated 
with 6-OHDA in the presence or absence of 6-OHDA for 24 h 
and TMRE solution (150 nM) was added for 30 min. Images 
were acquired under a fluorescence microscope (Leica Co, 
Welzlar, Germany).

Western blotting
The expression of proteins was measured by Western blot 

analysis. After treatment of 6-OHDA in the presence or ab-
sence of CORM-2, protein samples were isolated by RIPA 
buffer (Sigma-Aldrich). Protein samples were separated in 
10% or 12% SDS-polyacrylamide gels and transferred to a 
polyvinylidene fluoride (PVDF) membrane (Pall Co., MI, USA). 
The membranes were blocked by 0.1% Tween 20 in PBS 
(PBST) containing 5% non-fat milk for 30 min at RT and then 
incubated with primary antibodies [anti-actin (1:1000), anti-
bcl-2 (1:1000), anti-bax (1:1000), anti-caspase-3 (1:1000), 
anti-cleaved caspase-3 (1:1000), anti-phospho-Nrf2 (1:1000), 
anti-HO-1 (1:1000), anti-MnSOD (1:1000) and anti-CuZnSOD 
(1:1000)] in PBST containing 5% non-fat milk at 4°C overnight. 
After three times of wash with PBST, the blot were reacted 
with horse-radish peroxidase (HRP)-conjugated anti-rabbit 
(1:10000, Sigma-Aldrich) or anti-mouse secondary antibody 
(1:10000, Santa Cruz Biotechnology). The specific bands 
were detected by using enhanced chemiluminescence (ECL) 
Western blotting detection reagent (Thermo, Rockford, IL, 
USA).

Reverse transcription-polymerase chain reaction (RT-PCR)
The level of mRNAs was measured by RT-PCR. Total RNA 

samples were extracted by using Trizol Reagent (Life Tech-
nologies, Carlsbad, CA, USA). Reverse transcription to DNA 
was conducted by using M-MLV reverse transcriptase (Pro-
mega, WI, USA). cDNA was amplified by PCR using specific 
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primers for HO-1, MnSOD, CuZnSOD, and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) as follows. HO-1 : 5’-
ACT TTC AGA AGG GTC AGG TGT CC-3’ (sense) and 5’-
TTG AGC AGG AAG GCG GTC TTA G-3’ (antisense), MnSOD 
: 5’-TGA CCT GCC TTA CGA CTA TG-3’ (sense) and 5’-CGA 
CCT TGC TCC TTA TTG AA-3’ (antisense), CuZnSOD : 5’-
CCA TCA ATA TGG GGA CAA TAC AC-3’ (sense) and -5’ACA 
CGA TCT TCA ATG GAC AC-3’ (antisense), GAPDH : 5’-GCC 
AAG GTC ATC CAT GAC AAC-3’ (sense) and 5’-AGT GTA 
GCC CAG GAT GCC CTT-3’. The PCR products were sepa-
rated by 1% agarose gel electrophoresis in Tris-borate-EDTA 
buffer and visualized by staining with Eco green dye (Biofact, 
Daejeon, Korea). The specific bands were visualized by UV 
lighting using gel documentation system (Bio-rad laboratories, 
Hercules, CA, USA).

Statistical analysis
Statistical analysis was performed using Graphpad prism 

5.0 (San Diego, CA, USA) and IBM SPSS statistics for win-
dows (SPSS Inc. Chicago, IL, USA). The data were expressed 
as mean ± standard error of the mean (SEM). Multiple group 
comparisons were done by ANOVA followed by post-hoc anal-
ysis. 

RESULTS

Effect of CO on 6-OHDA-induced cell death in C6 glioma cells
To investigated the effect CO on 6-OHDA-induced oxidative 

cell death in C6 cells, various concentrations of CORM-2 (0, 
10, 20, 50, 100, 500 µM) were treated for 24 h at 37°C and cell 
viability was measured by MTT assay (Fig. 1A). Low doses of 
CORM-2 increased the cell viability in a concentration-depen-
dent manner upto 100 µM. However high dose of CORM-2 

(500 µM) showed cytotoxicity. Inactive CORM-2 (iCORM-2), 
a CO-depleted molecule was of no significant effect on 6-OH-
DA-induced cell deaths. To further characterize the cell deaths 
which was rescued by CO, TUNEL staining was carried out to 
measured DNA fragmentation formed by apoptotic signaling 
cascade (Fig. 1B). 6-OHDA increased the production of DNA 
fragmentation as an index of apoptotic cell whereas CORM-
2 decreased it. Collectively, CORM-2 significantly attenuated 
the apoptotic cell death caused by 6-OHDA in C6 glioma cells. 

Effect of CO on 6-OHDA-induced apoptotic signaling
Since we demonstrated that CO attenuated the 6-OHDA-

induced apoptotic cell death in C6 cells, we examined the ex-
pression levels of some of the distinct markers such as Bax 
and Bcl2 for apoptotic signaling. Treatment of 6-OHDA in C6 
cells increased the ratio of Bax/Bcl2 expression, which was 
an indicator of pro-apoptotic signal whereas CORM-2 signi-
ficantly suppressed the Bax/Bcl2 ratio (Fig. 2A). In addition, 
6-OHDA increased the level of cleaved caspase-3, one of ex-
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Fig. 1. Protective effect of CO against 6-OHDA-induced cytotoxic-
ity and apoptosis in C6 cells (A) Cells were treated with 6-OHDA 
(150 µM) and various concentrations of CORM-2 for 24 h and cell 
viability was measured by MTT assay. iCORM stands for inactive 
CORM which is CO-depleting molecule. (B) Apoptotic cell death 
was measured by TUNEL staining. (a) control; (b) 6-OHDA (150 
µM) alone; (c) 6-OHDA (150 µM)+CORM-2 (10 µM); (d) 6-OHDA 
(150 µM)+CORM-2 (100 µM). *p<0.05 and **p<0.01 compared by 
6-OHDA treatment alone and ##p<0.01 compared by co-treatment 
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Fig. 2. Effect of CO on 6-OHDA-induced activation of apoptotic 
signals in C6 cells Cells were treated with 6-OHDA (150 µM) 
and CORM-2 (10 µM or 100 µM) for 24 h. (A) Expression of pro-
apoptotic protein, Bax and anti-apoptotic protein. Quantitative data 
for the relative ratio of Bax to Bcl2 was shown on the right panel. (B) 
Activation of caspase-3 protein by cleavage. Quantitative data for 
the expression levels of total and cleaved forms of caspase-3 was 
shown on the right panel. *p<0.05 compared by 6-OHDA alone 
group. (C) Alterations in mitochondrial transmembrane potential. 
The TMRE staining images were acquired by using a fluorescence 
microscope. (a) control; (b) 6-OHDA (150 µM) alone; (c) 6-OHDA 
(150 µM)+CORM-2 (10 µM); (d) 6-OHDA (150 µM)+CORM-2 (100 
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ecutor of apoptosis, but CORM-2 inhibited cleavage of cas-
pase-3 induced by 6-OHDA toxicity (Fig. 2B). 

Effect of CO on mitochondrial membrane potential  
disturbed by 6-OHDA

Mitochondrial transmembrane potential was measured 
by using TMRE fluorescent dye, which rapidly equilibrates 
between cellular compartments due to potential differences. 
When apoptotic events progress, mitochondria undergo ma-
jor changes in membrane integrity followed by manifestation 
of apoptotic-associated molecules such as Bcl-2 family, cyto-
chrome c, and caspases. Mitochondrial transmembrane po-
tential is highly related in mitochondrial process such as ATP 
synthesis, generation of ROS, import of proteins into the mi-
tochondrion and mitochondrial membrane dynamics. Pharma-
cological change in mitochondrial transmembrane potential 
is regarded as a multitude of mitochondrial pathological pa-
rameters. In the present study, mitochondrial transmembrane 
potential was significantly decreased by 6-OHDA treatment. 
Conversely, CORM-2 treatment restrored 6-OHDA-disturbed 
mitochondrial transmembrane potentials as measured by red 
fluorescence of TMRE (Fig. 2C).

Effect of CO on intracellular accumulation of reactive 
oxygen species 

To determine the possible involvement of oxidative stress 
in 6-OHDA-induced apoptotic cell death in C6 cells, reactive 
oxygen species (ROS) was measured by DCF-DA fluorescent 
staining which detected hydroxyl radical, peroxide and other 
ROS activity within the cell. 6-OHDA increased the intensity 
of the typical green fluorescence of DCF-DA indicating the ac-
cumulation of ROS, whereas CORM-2 significantly decreased 
the fluorescent intensity (Fig. 3A). 

Effect of CO on redox signaling molecules mediating  
antioxidant defense capacity 

To further explore the possible mechanisms by which CO 
attenuates 6-OHDA-induced oxidative cell death, we examine 
the expression of antioxidant response element, Nrf2. It has 
been investigated Nrf2 regulates the expression of antioxidant 
proteins in response to oxidative damages. In this study, treat-
ment of CORM-2 increased phosphorylation of Nrf2, which in-
creased at 3 h, peaked at 6 h, and lasted until 12 h (Fig. 3B). 
The expression of phosphorylation of Nrf2 was decreased by 
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6-OHDA treatment whereas CORM-2 significantly increased 
the phosphorylation of Nrf2 at 6 h (Fig. 3C).

To test whether the antioxidant enzymes might be involved 
in the protective effects of CO against 6-OHDA-induced cell 
death in C6 cells, we examined the expression of key anti-
oxidant enzymes for instance HO-1, MnSOD, and CuZnSOD. 
After cells were treated with CORM-2 (100 µM) and 6-OHDA 
(150 µM), the levels of mRNA and protein of HO-1 were mea-
sured in a time-dependent manner by RT-PCR and western 
blot analysis, respectively. The mRNA level of HO-1 began to 
be elevated at 6 h after treatment of CORM-2 and lasted until 
24 h) (Fig. 4A, 4B). To demonstrate the role of HO-1 in CO-
mediated protection against 6-OHDA-induced cell death in C6 
cells, we used ZnPP, a chemical inhibitor of HO-1. As dem-
onstrated before, CORM-2 treatment protected cells against 
6-OHDA-induced cell death. On the contrary, protective ef-
fects of CORM-2 were abrogated by pretreatment of ZnPP 
(Fig. 4C). These results suggest that the protective effect of 
CORM-2 against 6-OHDA might be mediated through HO-1 
activation. Another anti-oxidative enzymes, SODs were also 
examined in the same way. The mRNA and protein expres-
sion of MnSOD and CuZnSOD (Fig. 5) was increased from 6 
h after treatment of CORM-2 and lasted until 24 h. 

DISCUSSION

In this study, we examine the effects of CO on 6-OHDA-
induced oxidative cell death in C6 cells. CO released from 
CORM-2 attenuated oxidative cell death by reducing apoptotic 
death signals and fortifying the adaptive survival responses 
which were mediated by Nrf2, HO-1, and SODs. These find-
ings suggest that CO might exert beneficial actions rather than 

toxic ones in neuronal disorders such as Alzheimer’s disease, 
PD, stroke, etc.

Consistent with this idea from this study, it has also been 
demonstrated that CORM-2 protects mice from doxorubicin-
induced cardiotoxicity and decreases hepatic ischemia reper-
fusion injury in rats against apoptosis (Wei et al., 2010; Soni 
et al., 2011). As such, protective effect of CO against 6-OH-
DA-induced cell death has been examined as measured by 
MTT reduction assay and TUNEL staining. Representative 
anti-apoptotic protein is Bcl-2, which promotes cellular sur-
vival and inhibits the actions of pro-apoptotic proteins (Ruvolo 
et al., 1998). CORM treatment increases the expression of 
anti-apoptotic Bcl-2 and decreases the expression of apop-
totic cleaved caspase-3 in acute hepatic ischemia reperfusion 
injury (Wei et al., 2010). CORM-2 treatment causes up-regu-
lation of anti-apoptotic Bcl-2 whereas it does down-regulation 
of pro-apoptotic Bax and cleaved caspase-3 on iron over-
load induced apoptosis in mouse neuronal stem cell (Xie et 
al., 2016). In agreement with the previous findings, CORM-2 
treatment in 6-OHDA-treated C6 glioma cell increased the ex-
pression of bax/bcl2 ratio and cleave caspase-3 in the present 
study. 

Up-stream transcription factor of antioxidant enzyme, Nrf-2 
has been reported to protect cells or tissues against oxidative 
stress in many disease such as cancer, kidney injury, brain 
inflammation and neurodegenerative disorders (Innamorato et 
al., 2008; Joshi and Johnson, 2012; Fledderus and Goldsch-
meding, 2013; Zhou et al., 2013). In the same manner, some 
researches have documented that CORM-2 protects cells 
from oxidative stress via increasing Nrf-2. CORM-2 activates 
Nrf-2 which regulates antioxidant signal against oxidative 
stress and inflammation-related disorders (Qin et al., 2015). 
CORM-2 increases formation of Nrf-2 and other antioxidant 
elements, c-Jun and Sp1 to protect astrocyte of rat brain (Chi 
et al., 2015). In this study, CORM-2 also elevated the expres-
sion of Nrf-2 to defend C6 cell against 6-OHDA induced toxic-
ity which is known as PD model. 

It has been reported that HO-1 is induced by oxidative 
damage to protect against oxidative injury (Schipper, 1999; 
Ghattas et al., 2002). There is a study on the neuroprotec-
tive effects of HO-1 against oxidative damage in HT22 cells, 
a mouse hippocampal cell line (Kaizaki et al., 2006). SOD 
families have been known to catalyze the dismutation of the 
superoxide radical into either molecular oxygen or hydrogen 
peroxide and considered as important antioxidant enzyme in 
living cells exposed to reactive oxygen species (Michiels et al., 
1994). In this study, CO released from CORM-2 upregulated 
both MnSOD (SOD-2) located in mitochondrial matrix and 
CuZnSOD (SOD-1) located in mitochondrial intermembrane, 
cytosol, extracellular space. There has been other studies 
supporting that CORM-2 increases HO-1, SOD expression 
leading to increase in cell survival. It is reported on the antioxi-
dant effect of CORM-A1 on TNF-alpha/cycloheximide-induced 
oxidative stress in murine intestinal epithelial MODE-K cells 
(Babu et al., 2015). Protective effects of CORM-2 has been 
studied on hepatic ischemia reperfusion injury against oxida-
tive stress (Soni et al., 2011). CORM-A1 prevents dysfunction 
of blood-brain barrier induced by ionotropic glutamate recep-
tor-mediated oxidative stress and apoptosis (Basuroy et al., 
2013). CORM-2 attenuates beta-amyloid-induced cell death 
and increased antioxidant signal (Hettiarachchi et al., 2014). 
Co-treatment of CORM-2 and hydrogen sulfide (H2S) protects 
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Fig. 5. CO-induced expression of antioxidant enzyme SOD in 
6-OHDA-treated C6 cells (A) Effect of CORM-2 on the protein 
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24 h which was the peak time of the expression of SOD. Statistical 
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against alendronate- induced toxicity via increasing the mRNA 
level of HO-1 and SOD (Magierowski et al., 2016). Another 
carbon monoxide releasing molecule, CORM-3 significantly 
increases total cell-associated SOD activity (Mizuguchi et al., 
2010). 

To elucidate the mechanisms by which CO exerts antioxi-
dant actions in 6-OHDA-treated C6 cells, we examined wheth-
er antioxidant molecules can be regulated by CORM-2. One of 
the candidates is HO-1, which is induced by oxidative stress 
and protects against oxidative damage in PD (Schipper et al., 
1998). CORMs can induce HO-1 expression and then inhibit 
STAT3 phosphorylation by using HO-1 siRNA (Yang et al., 
2014). CO and HO-1 induction regulates IRG1 and A20 ex-
pression which have crucial functions in embryonic implanta-
tion and neurodegeneration, leading to inhibition of inflamma-
tion by using HO-1 siRNA and ZnPP as HO-1 inhibitors (Uddin 
et al., 2016). In accordance with previous findings, we dem-
onstrated that expression of HO-1 was increased by CORM-
2 treatment compared with 6-OHDA alone and inhibition of 
HO-1 by ZnPP has significantly decreased the cell viability as 
well as the expression of HO-1, which had been increased 
by CORM-2. Interestingly, it seems that CO released from 
CORM-2 can induce the expression of HO-1 and HO-1 also 
can generate CO as a byproduct while degrading heme mol-
ecule. This makes a positive feedback loop by which CO pro-
tect C6 cells against 6-OHDA-induced oxidative cell deaths. 

Taken together, CORM-2 protected C6 cells against 
6-OHDA induced cell death by inhibition of apoptotic cellular 
signal and increase of anti-apoptotic and by potentiating anti-
oxidative defense capacity via activating Nrf-2 and upregulat-
ing antioxidant enzymes such as HO-1 and SOD. These re-
sults suggest that CO inhalation or administration of CORM-2 
could be considered when developing promising therapeutic 
strategies to treat and/or prevent neurodegenerative diseases 
like PD. 
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