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Abstract: Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples,
cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and
anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki)
cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase
(PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase
inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor
5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked
fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation
of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced
DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen
species production, which had no effect on fisetin-induced apoptosis. Taken together, our study
demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression
at the transcriptional level.
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1. Introduction

Many natural flavonoids have anti-cancer effects. Fisetin (3′,4′,7-tetrahydroxyflavone) is one of
these natural compounds, found in fruits and vegetables such as strawberries, apples, cucumbers, and
onions [1]. Fisetin has multiple biological effects, such as anti-proliferation [2,3] and anti-inflammation
activities [4,5]. Additionally, fisetin has anti-cancer effects in several types of cancer cells [3,6,7].
For example, fisetin induces apoptosis via inhibition of the MAPK signaling pathway in human
non-small cell lung cancer [7] and reactive oxygen species (ROS) production in human oral cancer
cells [8]. Furthermore, fisetin has a sensitizing effect in anti-cancer therapy. Combined treatment
with fisetin and cabazitaxol has been shown to induce apoptosis [9]. Additionally, treatment with
fisetin enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis
in cancer cells [10]. However, the molecular mechanism of this anti-cancer effect by fisetin is not
well understood.

Apoptosis signaling is mainly divided into two pathways: the intrinsic and the extrinsic pathway.
The intrinsic pathway is activated from within the cell, with the Bcl-2 family of proteins playing a
critical role on apoptosis. In contrast, the extrinsic pathway is activated from outside of the cell with the
binding of a ligand to death receptors (DRs) on the membrane, creating a critical event. These TRAILs
bind to their receptor (DR4 or DR5), and recruit caspase-8 into a death-inducing signaling complex
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(DISC). Activation of caspase-8 induces apoptosis. DR4 or DR5-mediated apoptosis is modulated by
two main steps: up-regulation of DR expression and expression of DRs on the cell membrane. First,
up-regulation of DR expression at the transcription level plays a critical role on apoptosis. The promoter
for the DR4 and DR5 genes contains binding elements for transcription factors, including activator
protein (AP) 1 [11], p53 [12,13], C/EBP homologous protein (CHOP) [14], and nuclear factor-κB
(NF-κB) [15]. Second, the surface expression of DRs on the cell plasma membrane also modulates
apoptosis. In some cancer cells, DRs remain within autophagosomes, nuclei, nuclear membranes, or the
endoplasmic reticulum (ER), resulting in down-regulation of DR expression on the cell surface, leading
to drug resistance [16–20]. The presentation of DRs on the cell surface overcomes drug resistance.

Renal cell carcinoma is the most common form of kidney cancer, and is one of the drug-resistant
malignancies in humans, which is a frequent cause of cancer mortality [21]. Therefore, there is a
necessity for the development of novel therapeutic strategies against this type of cancer. In our
study, we examined the effects of fisetin on apoptosis, and investigated the molecular mechanism in
fisetin-induced apoptosis in renal cancer cells.

2. Results

2.1. Fisetin Induces Apoptosis in Human Renal Carcinoma Caki Cells

Previous studies have reported that fisetin has anti-cancer effects, such as induction of
apoptosis [7] and inhibition of proliferation [3]. Therefore, we investigated whether fisetin induces
apoptosis in human renal carcinoma (Caki) cells. As shown in Figure 1A, treatment with fisetin
induced a sub-G1 population in a dose-dependent manner. Furthermore, cleavage of poly(ADP-ribose)
polymerase (PARP)—a substrate of caspase and a marker of apoptosis—was also increased (Figure 1B).
Fisetin induced morphological changes, followed by cell shrinkage and membrane blebbing (Figure 1C).
We also investigated the effect of fisetin on apoptosis in normal mouse kidney (TCMK-1) cells. Fisetin
induced apoptosis in TCMK-1 cells, however the levels of apoptosis were lower, compared with those
of Caki cells (Figure 1C). Therefore, this data suggested that cancer cells were more sensitive than
normal cells to fisetin treatment. In addition, chromosomal damage and DNA fragmentation was also
detected in fisetin-treated cells (Figure 1D,E). We next investigated the effect of fisetin on apoptosis in
a second type of cancer cell: human hepatoma SK-Hep1 cells. Fisetin markedly induced apoptosis in
SK-Hep1 cells (Figure 1F). Therefore, this data indicated that fisetin induced apoptosis in cancer cells.
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Figure 1. Fisetin induces apoptosis in human renal carcinoma Caki cells. (A,B) Caki cells were 
treated with the indicated concentrations of fisetin for 24 h; (A) The sub-G1 fraction was measured 
using flow cytometry as an indicator of the level of apoptosis; (B) The protein expression levels of 
PARP and actin were determined by western blotting; (C) Caki cells and TCMK-1 cells were treated 
with the indicated concentrations of fisetin for 24 h. The cell morphology was examined using 
interference light microscopy. The sub-G1 fraction was measured by flow cytometry; (D,E) Caki 
cells were treated with the indicated concentrations of fisetin for 24 h; (D) The condensation and 
fragmentation of the nuclei were detected by 4′,6′-diamidino-2-phenylindole staining; (E) The 
cytoplasmic histone-associated DNA fragments were determined by a DNA fragmentation 
detection kit; (F) SK-Hep-1 cells were treated with the indicated concentrations of fisetin for 24 h. 
The sub-G1 fraction was measured using flow cytometry. The values in (A,C,E,F) represent the 
mean ± SD from three independent samples. * p < 0.01 compared to the control. 

2.2. Caspase Activation Is Involved in Fisetin-Induced Apoptosis 

Caspase activation plays a critical role in apoptosis. As such, we investigated whether 
fisetin-induced apoptosis is dependent upon the activation of caspase. Fisetin markedly increased 
caspase activation (Figure 2A). Moreover, z-VAD-fmk, a pan-caspase inhibitor, completely blocked 
fisetin-induced sub-G1 population and PARP cleavage (Figure 2B). This data suggested that fisetin 
induced caspase-mediated apoptosis. Next, to identify the molecular mechanism of fisetin-induced 
apoptosis, we examined the expression of apoptosis-related proteins.  

 
Figure 2. Fisetin induced apoptosis in a caspase-dependent manner. (A) Caki cells were treated with 
the indicated concentrations of fisetin for 24 h. Caspase activities were determined with colorimetric 
assays using caspase-3 (DEVDase) assay kits; (B) Caki cells were treated with 200 μM fisetin in the 
presence or absence of 20 μM z-VAD-fmk (z-VAD). The sub-G1 fraction was measured by flow 
cytometry. The protein expression levels of PARP and actin were determined by Western blotting. 
The level of actin was used as a loading control; (C) Caki cells were treated with the indicated 
concentrations of fisetin for 24 h. The protein expression levels of DR5, DR4, Fas, c-FLIP, FADD, Bcl-2, 
Bcl-xL, PUMA and actin were determined by western blotting. The level of actin was used as a loading 
control; the values in (A,B) represent the mean ± SD from three independent samples. * p < 0.01 
compared with the control. ** p < 0.01 compared with the fisetin treatment. 

Figure 1. Fisetin induces apoptosis in human renal carcinoma Caki cells. (A,B) Caki cells were treated
with the indicated concentrations of fisetin for 24 h; (A) The sub-G1 fraction was measured using flow
cytometry as an indicator of the level of apoptosis; (B) The protein expression levels of PARP and
actin were determined by western blotting; (C) Caki cells and TCMK-1 cells were treated with the
indicated concentrations of fisetin for 24 h. The cell morphology was examined using interference light
microscopy. The sub-G1 fraction was measured by flow cytometry; (D,E) Caki cells were treated with
the indicated concentrations of fisetin for 24 h; (D) The condensation and fragmentation of the nuclei
were detected by 4′,6′-diamidino-2-phenylindole staining; (E) The cytoplasmic histone-associated DNA
fragments were determined by a DNA fragmentation detection kit; (F) SK-Hep-1 cells were treated
with the indicated concentrations of fisetin for 24 h. The sub-G1 fraction was measured using flow
cytometry. The values in (A,C,E,F) represent the mean± SD from three independent samples. * p < 0.01
compared to the control.

2.2. Caspase Activation Is Involved in Fisetin-Induced Apoptosis

Caspase activation plays a critical role in apoptosis. As such, we investigated whether
fisetin-induced apoptosis is dependent upon the activation of caspase. Fisetin markedly increased
caspase activation (Figure 2A). Moreover, z-VAD-fmk, a pan-caspase inhibitor, completely blocked
fisetin-induced sub-G1 population and PARP cleavage (Figure 2B). This data suggested that fisetin
induced caspase-mediated apoptosis. Next, to identify the molecular mechanism of fisetin-induced
apoptosis, we examined the expression of apoptosis-related proteins.
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Figure 2. Fisetin induced apoptosis in a caspase-dependent manner. (A) Caki cells were treated with the
indicated concentrations of fisetin for 24 h. Caspase activities were determined with colorimetric assays
using caspase-3 (DEVDase) assay kits; (B) Caki cells were treated with 200 µM fisetin in the presence
or absence of 20 µM z-VAD-fmk (z-VAD). The sub-G1 fraction was measured by flow cytometry.
The protein expression levels of PARP and actin were determined by Western blotting. The level of
actin was used as a loading control; (C) Caki cells were treated with the indicated concentrations of
fisetin for 24 h. The protein expression levels of DR5, DR4, Fas, c-FLIP, FADD, Bcl-2, Bcl-xL, PUMA
and actin were determined by western blotting. The level of actin was used as a loading control; the
values in (A,B) represent the mean ± SD from three independent samples. * p < 0.01 compared with
the control. ** p < 0.01 compared with the fisetin treatment.
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As shown in Figure 2C, the expression levels of Fas, c-FLIP, FADD, Bcl-2, Bcl-xL, and PUMA
did not change with fisetin treatment (Figure 2C). However, fisetin induced up-regulation of death
receptor DR4 and DR5 expression in a dose-dependent manner (Figure 2C).

2.3. Fisetin Induced Apoptosis Through Up-Regulation of DR5 Expression

Since up-regulation of DR5 expression is induced at significant levels with fisetin treatment, we
focused on the modulation of DR5 expression. To confirm the up-regulation of DR5 by fisetin, we
examined the effect of fisetin on DR5 expression through the use of a time-kinetic analysis. As shown
in Figure 3A, fisetin induced up-regulation of DR5 within 6 h, with regulation gradually increasing up
to 24 h.
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Figure 3. Fisetin induced DR5 expression at a transcriptional level. (A,B) Caki cells were treated with
200 µM fisetin for the indicated time periods. Western blotting and protein expression determined
DR5 mRNA and protein expression, respectively. The level of actin was used as the loading control;
(C) Caki cells were treated with 200 µM fisetin for 24 h. The cell surface expression level of DR5 was
measured by flow cytometry; (D) Caki cells were transfected with control or DR5 siRNA. Twenty-four
hours after transfection, cells were treated with 200 µM fisetin for 24 h. The level of apoptosis was
analyzed by the sub-G1 fraction using flow cytometry. The protein expression levels of PARP, DR5 and
actin were determined by western blotting. The level of actin was used as a loading control; the values
in (C) represent the mean ± SD from three independent samples. * p < 0.01 compared to fisetin-treated
control siRNA.
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Furthermore, fisetin modulated DR5 expression on a transcriptional level (Figure 3B). Since
translocation of the DR5 protein to the plasma membrane is important for DR-mediated apoptosis,
we examined whether fisetin increases DR5 expression at the cell surface. The expression levels of
DR5 were higher in fisetin-treated cells compared with that of control cells (Figure 3C). To identify
the functional role of DR5 up-regulation of fisetin-induced apoptosis, Caki cells were transfected
with DR5 siRNA. Down-regulation of DR5 by siRNA reduced sub-G1 population and cleavage of
PARP in fisetin-treated cells (Figure 3D). Therefore, up-regulation of DR5 plays critical roles on
fisetin-induced apoptosis.

2.4. Endoplasmic Reticulum Stress Has No Effect on Fisetin-Induced DR5 Expression

Transcriptional regulation of DR5 is mediated by several transcriptional factors. Among them,
CCAAT-enhancer-binding protein homologous protein (CHOP) is one of candidates, which modulate
DR5 expression [14]. Kang et al. have reported that fisetin induced apoptosis in human non-small
cell lung cancer via induction of endoplasmic reticulum (ER) stress [7]. Therefore, we investigated
whether fisetin induced ER stress response in human renal carcinoma Caki cells. Fisetin induced
expression of ER stress-related proteins, including CHOP and activating transcription factor (ATF4)
(Figure 4A). In addition, fisetin also increased the spliced form of the X-box binding protein (XBP)-1
mRNA (Figure 4B).
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Figure 4. Up-regulation of CHOP expression has no effect on DR5 expression in fisetin-treated cells.
(A,B) Caki cells were treated with the indicated concentrations of fisetin for 6 h; (A) The protein
expression levels of CHOP, ATF4 and actin were determined by western blotting; (B) The mRNA
expression levels of XBP-1 and actin were determined by RT-PCR. The level of actin was used as
a loading control; (C) Caki cells were transiently transfected with pDR5/-605 or CHOP-mutated
pDR5/-605 and then treated with the indicated concentrations of fisetin for 24 h. After treatment, cells
were lysed and assayed for luciferase activity; (D) Caki cells were transfected with control or CHOP
siRNA. Twenty-four hours after transfection, cells were treated with 200 µM fisetin for 24 h. The protein
expression levels of DR5, CHOP and actin were determined by western blotting. The level of actin was
used as a loading control; the values in (C) represent the mean ± SD from three independent samples.
* p < 0.01 compared to control.
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Next, we examined whether fisetin-induced CHOP expression is involved in DR5 expression. As
shown in Figure 4B, we mutated the potential CHOP site (−276 to −263) of the DR5 promoter gene
followed by the transfection of Caki cells with either the DR5 promoter (pDR5/605) or mutated CHOP
binding site (pDR5/605-mCHOP). The resulting promoter activities were analyzed by a luciferase assay
in the presence or absence of fisetin. Fisetin markedly increased the two promoter activities for DR5
(Figure 4C). Furthermore, down-regulation of CHOP by siRNA did not change fisetin-induced DR5
expression (Figure 4D). Therefore, fisetin induced DR5 up-regulation in a CHOP-independent manner.

2.5. Fisetin-Induced p53 Expression Is Associated with DR5 Up-Regulation

A previous study reported that fisetin induced p53 expression in human colon cancer cells [22].
Additionally, p53 is known to have an important role in the up-regulation of DR5 [23]. Fisetin markedly
induced p53 protein expression in a dose-dependent manner (Figure 5A). However, levels of p53
mRNA did not alter in fisetin-treated cells (Figure 5B). Therefore, we investigated whether fisetin
modulates p53 protein stability.
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Figure 5. Fisetin induced DR5 expression via up-regulation of p53 expression at the post-translational
levels. (A,B) Caki cells were treated with the indicated concentrations of fisetin for 24 h. p53 and
actin protein and mRNA expression were determined by western blotting and RT-PCR, respectively;
(C) Caki cells were treated with 200 µM fisetin for 12 h, and then washed twice with PBS. After washing,
cells were treated with or without 200 µM fisetin in the presence of cyclohexamide (CHX) (20 µg/mL)
for the indicated time periods. p53 and actin protein expression were determined by western blotting;
the band intensities of p53 protein were measured using the public domain JAVA image-processing
program ImageJ (D) Caki cells were transfected with control or p53 siRNA. Twenty-four hours after
transfection, cells were treated with 200 µM fisetin for 24 h. The protein expression levels of p53, DR5,
and actin were determined by western blotting. The level of actin was used as a loading control.
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Caki cells were treated with cycloheximide (CHX), an inhibitor of de novo protein synthesis in
the presence or absence of fisetin. CHX alone gradually decreased p53 protein expression, whereas
co-treatment with CHX and fisetin sustained p53 protein expression (Figure 5C). This data indicated
that fisetin increased p53 protein expression via induction of protein stability. Next, to identify the
significance of fisetin-induced p53 expression, Caki cells were transfected with either the control or the
p53 siRNA. Down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression.
Therefore, our data indicated that fisetin induced DR5 expression though up-regulation of p53
protein expression.

2.6. Fisetin-Induced Reactive Oxygen Species Production Has No Effect on Apoptosis

Reactive oxygen species (ROS) is one of the major signaling molecules known to induce apoptosis
in cancer cells. Fisetin has been shown to induce ROS production in multiple myeloma, resulting in
apoptosis [24]. Therefore, we examined the effect of ROS production on fisetin-induced apoptosis.
Fisetin induced ROS production within 10 min, and then gradually decreased to basal levels (Figure 6A).
However, ROS scavengers [N-acetylcystine (NAC) and glutathione ethyl ester (GEE)] had no effect on
fisetin-induced induction of sub-G1 population and PARP cleavage (Figure 6B). Therefore, this data
indicated that ROS signaling is not involved in fisetin-induced apoptosis. Taken together, our results
demonstrate that fisetin induces apoptosis through p53-mediated up-regulation of DR5 expression in
human renal carcinoma Caki cells.
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Figure 6. The effect of ROS production on fisetin-induced apoptosis. (A) Caki cells were treated with
200 µM fisetin for the indicated time periods (upper panel) or 10 min (lower panel), and were loaded
with H2DCF-DA fluorescent dye. H2DCF-DA fluorescence intensity was detected by flow cytometry
(upper panel) and fluorescence microscopy (lower panel); (B) Caki cells were pretreated with 5 mM
N-acetylcystine (NAC) and 2 mM glutathione ethyl ester (GEE) for 30 min, and then stimulated with
200 µM fisetin for 24 h. The sub-G1 fraction was measured by flow cytometry as an indicator of the level
of apoptosis. The protein expression levels of PARP and actin were determined by western blotting;
the values in (B) represent the mean ± SD from three independent samples.

3. Discussion

In this study, we demonstrated a mechanism underlying fisetin-induced apoptosis.
Fisetin markedly induced apoptosis via induction of DR5 expression. In addition, fisetin induced
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up-regulation of p53 expression at the post-translational level, and down-regulation of p53 by
siRNA-inhibited up-regulation of DR5 expression in fisetin-treated cells. Therefore, our results suggest
that fisetin induces apoptosis though p53-mediated up-regulation of DR5 expression.

Several papers have reported that fisetin induced apoptosis in multiple cancer cell lines, and
in addition suggested the molecular mechanisms related with induction of apoptosis [7,22,24–29].
First, fisetin modulates the MAPK signaling pathway. Fisetin induced apoptosis in human non-small
lung cancer cells and cervical cancer cells through activation of the MAPK signaling pathway [7,25].
Sustained activation of ERK and ERK-mediated CHOP expression is associated with fisetin-induced
apoptosis [7,25]. Second, fisetin inhibited NF-κB signaling pathways. Fisetin induced apoptosis
in colon cancer cells as well as in bladder cancer cells through inhibition of NF-κB signaling
pathways [26,27]. Inhibition of NF-κB signaling resulted in down-regulation of anti-apoptotic
proteins (c-FLIP and cyclooxygenase-2). Third, p53 plays critical roles on fisetin-induced apoptosis.
Two previous studies reported that induction of p53 expression contributed to induction of apoptosis
in human colon cancer cells [22] and bladder cancer cells [27]. In contrast, fisetin can also induce
apoptosis in a p53-independent manner. In gastric cancer cells, although fisetin increased p53 protein
expression, inhibitor of p53 did not reduce fisetin-mediated apoptosis [3]. Therefore, roles of p53 on
fisetin-induced apoptosis are different depending on cell type. Finally, ROS are important signaling
molecules on fisetin-induced apoptosis. Production of ROS by fisetin treatment is associated with
induction of apoptosis in multiple myeloma [24] and oral cancer cells [8]. An ROS scavenger molecule,
NAC, reduced fisetin-induced apoptosis in both cells. Recently, Wu et al. suggested that NAC
enhanced fisetin-induced apoptosis through inhibition of ERK phosphorylation in colon cancer
cells [28]. In this study, NAC completely inhibited H2O2-induced ROS production and apoptosis,
whereas fisetin-induced ROS production did not alter with NAC treatment [28]. Lim et al. suggested
that the enhanced effect of NAC on fisetin-mediated apoptosis is independent of the scavenging
effect of NAC. In our study, NAC did not enhance fisetin-induced apoptosis, and the ROS scavenger,
GEE, also had no effect on apoptosis (Figure 6B). Therefore, ROS signaling is not associated with
fisetin-induced apoptosis in human renal carcinoma Caki cells.

As shown in Figures 2C and 3C, fisetin induced DR5 expression and subsequently increased
DR5 presentation on cell surface. Previous studies reported that death receptors could activate
in a ligand-independent manner [29–31]. For example, palmitate increased ER stress-induced
CHOP expression, resulting in the upreguatlion of DR5 in hepatocytes [29]. Although human
recombinant DR5-Fc chimera proteins inhibited TRAIL-induced apoptosis, plamitate-induced
apoptosis through induction of DR5 was not blocked by DR5-Fc [29]. In addtion, persistent ER
stress-mediated up-regulation of DR5 expression also promoted apoptosis through ligand-independent
DR5 activation [30]. Furthermore, Lim et al. reported that the recruitment of DR5 to a lipid raft induced
DR5 activation, followed by apoptosis in ursodeoxycholic acid-treated human gastric cancer cells [31].
Therefore, this strategy to induce up-regulation of DR5 might be effective to promote cancer cell death.
Taken together, our data suggested that fisetin induced apoptosis through p53-mediated up-regulation
of DR5 expression in human renal carcinoma Caki cells, and these findings provide an important
molecular mechanism involved in fisetin-induced apoptosis.

4. Materials and Methods

4.1. Cell Culture and Materials

Human renal carcinoma (Caki), human hepatoma (SK-Hep1), and mouse kidney (TCMK-1)
were obtained from the American Type Culture Collection (Manassas, VA, USA). The culture
medium used throughout these experiments was Dulbecco’s Modified Eagle’s Medium (DMEM)
containing 10% fetal bovine serum (FBS), 20 mM HEPES buffer and 100 µg/mL gentamycin. The PCR
primers were purchased from Macrogen (Seoul, Korea). The z-VAD-fmk was purchased from R&D
Systems (Minneapolis, MN, USA), and N-acetyl-L-cysteine (NAC) was obtained from Calbiochem
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(San Diego, CA, USA). Anti-Bcl-2, anti-p53, anti-DR4, anti-Bcl-xL, anti-PUMA, anti-CHOP, and
anti-ATF4 antibodies were purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Anti-DR5 and
anti-PARP antibodies were obtained from Cell Signaling Technology (Beverly, MA, USA). Anti-c-FLIP
antibody was obtained from ALEXIS Corporation (San Diego, CA, USA). Anti-FAS antibody was
obtained from Upstate-Merck Millipore (Lake Placid, NY, USA). Anti-actin antibody and other
chemicals were obtained from Sigma Chemical Co. (St. Louis, MO, USA).

4.2. Flow Cytometry Analysis

For flow cytometry, the cells were resuspended in 100 µL of phosphate-buffered saline (PBS), and
200 µL of 95% ethanol was added while the cells were being vortexed. Next, the cells were incubated
at 4 ◦C for 1 h, washed with PBS, resuspended in 250 µL of 1.12% sodium citrate buffer (pH 8.4)
with 12.5 µg of RNase and incubated for an additional 30 min at 37 ◦C. The cellular DNA was then
stained by adding 250 µL of a propidium iodide solution (50 µg/mL) to the cells for 30 min at room
temperature. The stained cells were analyzed by fluorescent-activated cell sorting on a FACSCanto II
flow cytometer (BD Biosciences, San Jose, CA, USA) to determine the relative DNA content, which
was based on the red fluorescence intensity.

4.3. Western Blot Analysis

Cells were washed with cold PBS and lysed on ice in modified RIPA buffer (50 mM Tris-HCl, pH
7.4, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM Na3VO4, and 1 mM NaF) containing
protease inhibitors (100 µM phenylmethylsulfonyl fluoride, 10 µg/mL leupeptin, 10 µg/mL pepstatin,
and 2 mM EDTA). Lysates were centrifuged at 13,000× g for 15 min at 4 ◦C, and the supernatant
fractions were collected. Proteins were separated by SDS-PAGE and transferred to an Immobilon-P
membrane. Specific proteins were detected using enhanced chemiluminescence.

4.4. 4′,6′-diamidino-2-phenylindole Staining (DAPI) for Nuclei Condensation and Fragmentation

To examine cellular nuclei, the cells were fixed with 1% paraformaldehyde on glass slides
for 30 min at room temperature. After fixation, the cells were washed with PBS and a 300 nM
4′,6′-diamidino-2-phenylindole solution (Roche, Mannheim, Germany) was added to the fixed cells for
5 min. After the nuclei were stained, the cells were examined by fluorescence microscopy.

4.5. DNA Fragmentation Assay

The cell death detection ELISA plus kit (Boerhringer Mannheim; Indianapolis, IN, USA) was used
to determine the level of apoptosis by detecting fragmented DNA within the nuclei of fisetin-treated
cells. Each culture plate was centrifuged for 10 min at 200× g, the supernatant was removed, and
the cell pellet was lysed for 30 min. Next, the plate was centrifuged again at 200× g for 10 min, and
the supernatant that contained the cytoplasmic histone-associated DNA fragments was collected and
incubated with an immobilized anti-histone antibody. The reaction products were incubated with a
peroxidase substrate for 5 min and measured by spectrophotometry at 405 nm and 490 nm (reference
wavelength) with a microplate reader. The signals in the wells containing the substrate alone were
considered as background and were subtracted.

4.6. Asp-Glu-Val-Asp-ase (DEVDase) Activity Assay

To evaluate DEVDase activity, cell lysates were prepared after their respective treatments with
fisetin. Assays were performed in 96-well microtiter plates by incubating 20 µg of cell lysates
in 100 µL of reaction buffer (1% NP-40, 20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 10% glycerol)
containing a caspase substrate [Asp-Glu-Val-Asp-chromophore-p-nitroanilide (DVAD-pNA)] at 5 µM.
Lysates were incubated at 37 ◦C for 2 h. Thereafter, the absorbance was measured at 405 nm with
a spectrophotometer.



Molecules 2017, 22, 1285 10 of 13

4.7. Analysis of Cell Surface DR5

Cells were detached with 0.5 mM EDTA, and washed three times with PBS wash buffer
supplemented with 0.5% BSA. Cells (5 × 105). Cells were resuspended in 200 µL of PBS, and
stained with primary antibody (1 µg/mL) and incubated for 30 min at 4 ◦C. Unreacted antibody
was removed by washing the cells twice with the same PBS buffer. Cells were stained with the
secondary antibody conjugated with fluorescein isothiocyanate (FITC) and incubated for 30 min at
4 ◦C. Unbound FITC-conjugated antibody was washed twice with PBS. Cells were resuspended in
200 µL of PBS. Cell-surface expression of DR5 receptor was determined by flow cytometry. Fluorescent
intensity of the cells is directly proportional to the density of the present receptor.

4.8. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated using TriZol (Life Technologies; Gaithersburg, MD, USA), and the cDNA
was prepared using M-MLV reverse transcriptase (Gibco-BRL; Gaithersburg, MD, USA) according
to the manufacturers’ instructions [32,33]. The following primers were used for the amplification
of human p53, DR5, Xbp-1, and actin: p53 (sense) 5′-GAA GAC CCA GGT CCA GAT GA-3′ and
(antisense) 5′-CTC CGT CAT GTG CTG TGA CT-3′; DR5 (sense) 5′-AAG ACC CTT GTG CTC GTT
GT-3′ and (antisense) 5′-GA CAC ATT CGA TGT CAC TCC A-3′; Xbp-1 (sense) 5′-CCT TGT AGT TGA
GAA CCA GG-3′ and (antisense) 5′-GGG GCT TGG TAT ATA TGT GG-3′; actin (sense) 5′-GGC ATC
GTC ACC AAC TGG GAC-3′ and (anti-sense) 5′-CGA TTT CCC GCT CGG CCG TGG-3′. The PCR
amplification was carried out using the following cycling conditions: 94 ◦C for 3 minutes followed
by 17 cycles (actin) and 25 cycles (p53 and Xbp-1) or 28 cycles (DR5) of 94 ◦C for 45 s, 58 ◦C for 45 s,
72 ◦C for 1 min, and a final extension at 72 ◦C for 10 min. The amplified products were separated by
electrophoresis on a 1.5% agarose gel and detected under UV light.

4.9. DNA Transfection and Luciferase Assay

Transient transfection was performed on six-well plates. One day before transfection, Caki
cells were plated to maintain approximately 60–80% confluence. DR5 promoter and mutant CHOP
containing DR5 promoter plasmid were transfected into cells using the Lipofectamine™ 2000 reagent
(Invitrogen, Carlsbad, CA, USA). To assess promoter-driven expression of the luciferase gene, cells
were collected and disrupted by sonication in lysis buffer (25 mM Tris-phosphate, pH 7.8, 2 mM EDTA,
1% Triton X-100, and 10% glycerol), and aliquots of the supernatants were analyzed by measuring
luciferase activity according to the manufacturer’s instructions (Promega, Madison, WI, USA).

4.10. Small Interfering RNA (siRNA)

The DR5, p53 and CHOP siRNA used in this study were purchased from Santa Cruz Biotechnology.
The green fluorescent protein (GFP) (control) siRNA was purchased from Bioneer (Daejeon, Korea).
Cells were transfected with siRNA using Oligofectamine Reagent (Invitrogen) according to the
manufacturer’s recommendations.

4.11. Measurement of Reactive Oxygen Species (ROS)

Intracellular accumulation of ROS was determined using the fluorescent probes
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) and Mitosox Red. Caki cells were treated
with fisetin, and then cells were stained with the H2DCFDA fluorescent dye or Mitosox Red for
an additional 10 min. Cells were then trypsinized and resuspended in PBS, and fluorescence was
measured at specific time intervals with a flow cytometer (Becton–Dickinson; Franklin Lakes, NJ, USA)
or fluorescence microscopy (Zeiss, Jena, Germany).
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4.12. Statistical Analysis

The data was analyzed using a one-way ANOVA and post hoc comparisons
(Student-Newman-Keuls) using the Statistical Package for Social Sciences 22.0 software (SPSS Inc.;
Chicago, IL, USA). We determined the sample size on the basis of the smallest effect we wish
to measure.
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