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AIMS
Recombinant tissue plasminogen activator (rt-PA) is the only first-line agent approved by the US Food and Drug Administration to
treat acute ischaemic stroke. However, it often causes the serious adverse event (AE) of haemorrhagic transformation. The present
study developed a pharmacometric model for the rt-PA treatment effect and AE and, using the developed model, proposed a
benefit-to-risk ratio assessment scheme as a supportive tool to optimize treatment outcome.

METHODS
The data from 336 acute ischaemic stroke patients were used. The treatment effect was assessed based on an improvement in
National Institutes of Health Stroke Scale (NIHSS) scores, which were described using an item response theory (IRT)-based disease
progression model. Treatment failure and AE probabilities, and their occurrence times, were described by incidence and time-to-
event models. Using the developed model, benefit-to-risk ratios were simulated under various scenarios using the global benefit-
to-risk trade-off ratio (GBR).

RESULTS
High initial NIHSS score and middle cerebral artery (MCA) stroke were risk factors for treatment failure, where the failure rate with
MCA stroke was 2.87-fold higher than with non-MCA stroke. The haemorrhagic transformation time was associated with longi-
tudinal changes in NIHSS scores. The benefit-to-risk ratio simulated was highest in minor stroke severity, with GBR >1 in all sce-
narios, and the ratio with non-MCA stroke was 2–3 fold higher than with MCA stroke.

CONCLUSIONS
The study demonstrated the feasibility of applying an IRT model to describing the time course of the rt-PA treatment effect and AE.
Benefit-to-risk ratio analyses showed that the treatment was optimal in non-MCA stroke with minor stroke severity.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• In assessments of the recombinant tissue plasminogen activator (rt-PA) treatment effect in acute ischaemic stroke,
approaches using categorized National Institutes of Health Stroke Scale scores have yielded contradictory results.

• There have been no previous studies that have quantitatively analysed rt-PA effects and adverse events (AEs) together,
from the perspective of a benefit-to-risk ratio assessment.

WHAT THIS STUDY ADDS
• Our study demonstrated the feasibility of using an item response theory model to predict rt-PA treatment effects and the
AE of haemorrhagic incidence, and to assess benefit-to-risk ratios for the treatment.

• Benefit-to-risk ratio analyses showed that the treatment was optimal in non-MCA stroke with minor stroke severity.

Introduction
Acute ischaemic stroke is defined as an episode of neurolog-
ical dysfunction caused by focal cerebral, spinal or retinal
infarction, and accounts for approximately 80% of strokes
[1, 2]. When a stroke occurs, blood flow to the brain tissue
is interrupted, cerebral metabolism can be altered and pri-
mary neuronal injury can occur in the centre of the in-
farcted tissue, which can ultimately result in cell death [3].
In this respect, rapidly resolving blood clots and achieving
revascularization have been regarded as a primary goal of
the management of acute ischaemic stroke.

To date, however, recombinant tissue plasminogen
activator (rt-PA) has been the only first-line agent available
for the treatment of early detected stroke [4].

A variety of scoring systems have been proposed to evalu-
ate the effect of treatment on disease severity, which is not
measurable in nature for many types of disease, including
neurological diseases. The National Institutes of Health
Stroke Scale (NIHSS) scoring system, consisting of 13 tests, is
widely used in assessing neurological deficit in stroke patients
[5]. For simplicity and convenience, the NIHSS score is often
transformed into a categorical scale using cut-off points se-
lected to define different levels of disease severity from a clin-
ical significance point of view [6].

However, approaches using categorized NIHSS scores
based on cut-off points have yielded contradictory results.
For example, it has previously been shown that when clinical
improvement was defined as a decrease of more than four
points in the NIHSS score, the NIHSS score decrease at 24 h af-
ter the treatment was not statistically significant in the treat-
ment group compared with the placebo group [7]. However,
when the assessment wasmade at 90 days after the treatment,
the improvement was significantly better in the rt-PA treat-
ment group than in the placebo group. By contrast, a reanal-
ysis of the data presented in the above-cited study, where a
cut-off point was defined differently, as a decrease of more
than five points in the NIHSS score, showed that clinical im-
provement when using rt-PA was statistically significant even
at 24 h after treatment [8]. This clearly shows the limitation of
using categorical scoring systems in analyses, and indicates
the importance of establishing an appropriate criterion for
accurately assessing clinical improvement. In general, the
categorization of data is not recommended, not only because
of the loss of information, but also because of potential in-
creases in type I errors [9].

In addition, given the potential adverse event (AE) of
haemorrhagic transformation associated with rt-PA

treatment, researchers have proposed scoring systems to eval-
uate the risk factors associated with the occurrence of
haemorrhagic events [10–13] and to distinguish those pa-
tients who are vulnerable to such AEs [10, 13, 14]. However,
to date, there have been no studies that have quantitatively
analysed the rt-PA effect and AE together, from the perspec-
tive of a benefit-to-risk ratio assessment.

Using noncategorized NIHSS scores, the primary aims of
the present study were to develop an integrative quantitative
model for rt-PA treatment that could predict: (i) the longitu-
dinal change in stroke progression and (ii) the incidence
and occurrence time of dropouts (i.e. treatment failure) and
haemorrhagic transformation. The secondary aim was to ap-
ply the developed model to propose a benefit-to-risk ratio as-
sessment scheme for patient subpopulations. The model was
developed within the framework of item response theory
(IRT), which has been increasingly used in the analysis of
clinical outcome based on a scoring system composed of mul-
tiple tests. It was anticipated that the developed approach
could be used as a supportive tool for better evaluation and
management of revascularization treatment in acute ischae-
mic stroke.

Methods

Data
Data were retrospectively collected from the electronic medi-
cal records of patients who had received intravenous rt-PA
treatment at Yonsei University Severance Hospital, Seoul, Ko-
rea, during the period 2006–2014. A total of 336 patients were
eligible for the analysis. The inclusion criterion was being an
acute ischaemic stroke patient who had been treated with rt-
PA as first-line therapy and had NIHSS scores available before
and after rt-PA treatment.

The NIHSS score, which represents the total score derived
from 13 items (or 13 tests), measures neurological deficits for
the following items: ʻlevel of consciousness (LOC): respon-
sivenessʼ (Test 1); ʻ LOC: questionsʼ (Test 2); ʻ LOC: com-
mandsʼ (Test 3); ʻhorizontal eye movementʼ (Test 4), ʻvisual
field testʼ (Test 5); ʻfacial palsyʼ (Test 6); ʻmotor armʼ (Test 7);
ʻmotor legʼ (Test 8); ʻlimb ataxiaʼ (Test 9); ʻsensoryʼ (Test 10);
ʻlanguageʼ (Test 11); ʻspeechʼ (Test 12) and ʻextinction and in-
attentionʼ (Test 13). Each test was scored from 0 to its maxi-
mum value, where the maximum varied from 2 to 4,
depending on the given test. Accordingly, the NIHSS score
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per patient ranged from 0 to 42, with a higher NIHSS score in-
dicating more severe neurological impairment.

Data inspection revealed that most of the patients re-
ceived anticoagulant or antiplatelet agents the day after rt-
PA treatment, even if revascularization was successfully
achieved using rt-PA treatment, indicating that receiving rt-
PA treatment alone was not sufficient to promote a full recov-
ery from neurological damage. Accordingly, only NIHSS
scores up to 24 h after the onset of stroke were used in the
analysis to avoid confounding the effect of rt-PA with that
of other agents, as illustrated in the literature [2]. Conse-
quently, the number of NIHSS scores per patients used in
the analysis was limited to between one and eight.

This retrospective study was approved by the Institutional
Review Board of Yonsei University Severance Hospital.

IRT
IRT has been developed for the analysis and scoring of tests,
questionnaires and similar tools used to assess a subject’s abil-
ity, attitude or other variables. Assuming a test consisting of
multiple items, where each item is not equally difficult, this
theory focuses on the item itself, whereas other approaches
focus on a test level assuming equal difficulty among items.
In this context, the term item represents any informative item
measured on a discrete scale, such as multiple-choice ques-
tions, questionnaires to indicate rating, or symptoms scored
as present/absent.

IRT-based models, often referred to as latent trait models,
can be classified by the type of data they are used to analyse,
and if the data is polychotomous, they can be further classi-
fied into nominal response models for nominal data and
graded response models (GRM) or partial credit models
(PCM) for ordered data [15]. In the present study, both the
GRM and PCM were tested.

Baseline model for NIHSS scores
The first step in IRT modelling is to characterize the probabil-
ity distribution of the latent severity of each item comprising
NIHSS scores at baseline (t = 0) using an item characteristic
curve (ICC), which is described in terms of a logistic model.

For the GRM approach, the ICC is formulated as
follows [16]:

P Yij ≥ kþ 1
� � ¼ eαj Di�βjkð Þ

1þ eαj Di�βjkð Þ ; k ¼ 1; ::;mj � 1 (1)

P Yij ¼ kþ 1
� � ¼ P Yij ≥ kþ 1

� �� P Yij ≥ kþ 2
� �

(2)

where P is the probability, Yij the i-th subject’s response to the
j-th item, k the category and mj the number of categories
of the j-th item, with P(Yij = 1) = 1 � P(Yij ≥ 2) and
P(Yij = mj) = P(Yij ≥ mj). In Equation (1), αj is the slope or scale
parameter denoting the discrimination power of the j-th
item, quantifying the capability to discern patients’ ability
(αj > 0), βjk is the location or threshold parameter denoting
the item difficulty (βjk > 0) and Di is the patient-specific abil-
ity common to all items, denoting latent trait or unobserved
disease severity, which is assumed to follow a standard nor-
mal distribution. βjk is the point on the latent scale where
the probability that a patient would respond to category k
or higher in the j-th item is 0.5.

For the PCM approach, the ICC is formulated as follows:

P Yij ¼ 1
� � ¼ 1

1þ∑mj�1
c¼1 exp ∑c

v¼1aj Di � bjv
� �� � (3)

P Yij ¼ kþ 1
� � ¼ exp ∑k

v¼1aj Di � bjv
� �� �

1þ∑mj�1
c¼1 exp ∑c

v¼1aj Di � bjv
� �� � ;

k ¼ 1; ::;mj � 1

(4)

In the above parameterization, aj is the slope parameter,
similar to αj in the GRM model. However, bjv has a different
meaning, in that it is defined as the item step or intersec-
tion parameter denoting the points on the latent trait scale
where the plots of P(Yij = k) and P(Yij = k + 1) intersect [17].
bjv is not sequentially ordered with increasing v because it
represents the relative difficulty in transiting from category
k to k + 1.

Disease progression model for NIHSS scores
After the ICC has been characterized, the rt-PA treatment ef-
fect was assessed based on disease progression or longitudinal
change in NIHSS score over the first 24 h, which was de-
scribed as being driven by the corresponding longitudinal
change of latent disease severity Di(t) as follows:

Di tð Þ ¼ D0i þ AMPi· 1� e�SLOi ·t
� �

(5)

where D0i, AMPi and SLOi are, respectively, the initial value,
the amplitude and the slope of D(t) for the i-th subject. Di(t)
in Equation (5) was then substituted as Di(t) in Equations
(1), (3) and (4) to estimate D0i, AMPi and SLOi, with αj and
βjv being fixed at their estimates obtained in the previous step
of characterizing the ICC for baseline NIHSS scores.

In modelling disease progression in Equation (5), the nat-
ural course of severity progression could not be incorporated
because placebo treatment data were unavailable for the pa-
tients due to ethical considerations. Using the parameter esti-
mates thus obtained, the NIHSS score was predicted as the
sum of Yij, the value of which was determined by comparing
P(Yij = k) with a generated random number from the uniform
distribution (0, 1).

Incidence model for dropout
The dropout from rt-PAmonotherapy due to no treatment ef-
fect and receiving additional treatment during the first 24 h
after rt-PA treatment was described using a logistic model as
shown in Equation (6), where θ0 is the baseline logit, COVi

is a set of covariates and θi is a set of associated covariate coef-
ficients.

P Y ¼ 1ð Þ ¼ exp θ0 þ∑θi·COVið Þ
1þ exp θ0 þ∑θi·COVið Þ ;

where Y ¼ 1 for dropout (6)
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Time to event (TTE) model for dropout
To assess the probability of dropout from rt-PA monotherapy
with time, a TTE model was used to describe the time to drop-
out, where various hazard functions were tested, including
constant, Weibull, log-logistic and Gompertz hazard func-
tions, as shown below.

S tð Þ ¼ exp �∫
t

0h τð Þdτ
� �

h tð Þ ¼ λ Constantð Þ
¼ λ�γ�tγ�1 Weibullð Þ

¼ λ�p� λ�tð Þ p�1ð Þ

1þ λ�tð Þp Log� logisticð Þ

¼ λ� exp γ�tð Þ Gompertzð Þ

(7)

S(t) denotes survival probability and h(t) hazard. The pre-
dicted hazard h(t) was then compared with the observed haz-
ard h(t)obs for goodness of fit, where h(t)obs was obtained as a
conditional probability, as shown in Equation (8):

h tð Þobs ¼
N tð Þnew
N tð Þ (8)

where N(t)new is the number of patients who dropped out be-
tween t-Δt and t, and N(t) is the number of patients who did
not drop out until t-Δt [18], with Δt chosen to be 0.01 h.

Incidence model for haemorrhagic
transformation
Haemorrhagic transformation was defined as clinical deterio-
ration verified by computed tomography (CT) or magnetic
resonance imaging within 36 h after rt-PA administration
[19, 20]. The incidence model was described using a logistic
model similar to that shown in Equation (6).

TTE model for haemorrhagic transformation
As the exact time for haemorrhagic transformation was not
known, where time was defined as the time from treatment
initiation, the haemorrhagic event was conjectured to have
occurred between the last observation time of the NIHSS
score and the time of the CT scan. This was based on the
emergency management guidelines for rt-PA treatment in
acute ischaemic stroke, which require that CT scans should
be obtained 24 h before the beginning of anticoagulant or an-
tiplatelet treatment [21] and additionally require that scans
should be performed when patients develop symptoms of de-
terioration such as headache, nausea or vomiting [14, 21]. Ac-
cordingly, the TTE model for haemorrhagic transformation
was built using the interval censored time between the last
observation and the time of the CT scan. Similarly to the
TTE model for dropout, constant, Weibull and log-logistic
functions were examined for the hazard model.

Covariate effects
At each modelling stage, a step-wise covariate modelling ap-
proach was used based on the criteria of P < 0.01 [which cor-
responds to an objective function value (OFV) difference of
6.63 at a degree of freedom of 1] for forward selection and P
< 0.001 (which corresponds to an OFV difference of 10.83

at a degree of freedom of 1) for backward deletion. Covariate ef-
fects were tested for demographics; past/present medical and
disease history, including hypertension, stroke, diabetes and car-
diovascular diseases; and baseline status, including NIHSS score,
location of infarction, platelet count, blood glucose, interna-
tional normalized ratio (INR) and blood pressure. Furthermore,
time to treatment (TTT) and weight-normalized dose (ʻdoseʼ)
were tested. Histories of hypertension, stroke and diabetes were
treated as dichotomous variables of ʻpresenceʼ vs. ʻabsenceʼ, and
cardiovascular disease as a categorical variable ranging from 0 to
4 associated with the number of cardiovascular diseases that
patients have. Location of infarction was assessed for middle
cerebral artery (MCA) stroke vs. non-MCA stroke. NIHSS score,
platelet count, glucose, INR, blood glucose, TTT and dose were
treated as continuous variables. For TTE models, a covariate
searchwas performedusing two different approaches, one by in-
corporating covariates directly into parameters of hazard
function, and the other by implementing them using a propor-
tional hazard modelling framework, where NIHSS score change
with time was included in potential covariates to check for the
influence of time-varying severity of disease progression.

Benefit-to-risk ratio analysis
In this analysis, benefit was defined as a reduction of
four points in NIHSS score or latent disease severity [Di(t) in
Equation (5)] at 24 h after rt-PA administration, and risk was
defined as an occurrence of haemorrhage transformation
within 36 h after rt-PA administration.

Assuming 10 scenarios (five for MCA infarction and five
for non-MCA infarction), 100 simulated datasets, each with
1000 subjects, were generated using the developed models:
disease progression, drop-out incidence and TTE haemor-
rhage models. Simulated subjects were classified into minor
(NIHSS score 1–5), moderate (NIHSS score 5–15), moderate-
to-severe (NIHSS 16–20) and severe (NIHSS 21–42) groups
[6]. Then, for each dataset, the benefit-to-risk ratio was esti-
mated using the global benefit–risk trade-off ratio (GBR) [22,
23], which is defined in Equation (9) (see Supporting Infor-
mation for the derivation):

R ¼ P1 þ α·P2

1� αð Þ·P4 þ P5
(9)

P1: Probability for benefit without risk
P2: Probability for benefit with risk
P4: Probability for no benefit with risk
P5: Probability for drop-out.
P5: Probability for drop-out.
α: Constant (0 < α < 1)

Software and model evaluation
All models were built using NONMEM 7.3.0 (ICON
Development Solutions, Hanover, MD, USA) and the
Laplacian method. Perl-Speaks-NONMEM 3.6.2 and R
(3.2.2) were used for graphical representation of the
data [24, 25]. Model selection was performed on the basis
of OFV, the Akaike information criterion and the precision
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of parameter estimates. For model evaluation, goodness-of-
fit plots, such as a logistic plot for the IRT model, a bar plot
for the incidence model and a hazard plot for TTE models,
were examined. A visual predicted check (VPC) was then

performed by simulating 1000 data sets and checking that
the 95% confidence interval of simulated values includes
observed values, and a Kaplan–Meier mean covariate plot
was additionally investigated when the model included
time-varying covariates [26].

Nomenclature of targets and ligands
The key protein target in this article is hyperlinked to the cor-
responding entry in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to
PHARMACOLOGY [27], and is permanently archived in the
Concise Guide to PHARMACOLOGY 2017/18 [28].

Results

Data
Table 1 summarizes patient characteristics, including basic
demographics, disease history, baseline status and treatment

Table 1
Patients’ characteristics

Demographics

Gender, no. (%) Male: 201 (59.8)

Female: 135 (40.2)

Age (years), median (range) 69 (26–90)

Weight (kg), median (range) 61 (37–130)

Medical and disease history

Premedication, no. (%) No: 221 (65.8)

Yes: 115 (34.2)

Hypertension, no. (%) No: 110 (32.7)

Yes: 226 (67.3)

Previous stroke, no. (%) No: 261 (77.7)

Yes: 75 (22.3)

Diabetes, no. (%) No: 248 (73.8)

Yes: 88 (26.2)

Cardiovascular diseases, no. (%) No: 146 (43.5)

Yes: 190 (56.5)

(1:130, 2:47, 3:11,
4:2)a

Baseline status

NIHSS score, median (range) 14 (2–36)

Location of infarction, no. (%) MCA: 246 (73.2)

PCA: 12 (3.6)

Basilar: 18 (5.4)

Multiple: 33 (9.8)

Others: 27 (8.0)

Creatinine (mg dl–1), median (range) 0.95 (0.4–14.9)

Platelet count (× 103μl), median (range) 233 (107–568)

Glucose (mg dl–1), median (range) 124.5 (67–580)

INR, median (range) 0.97 (0.78–3.32)

Systolic blood pressure (mmHg),
median (range)

150 (93–270)

Diastolic blood pressure (mmHg),
median (range)

81 (46–210)

Treatment factors

Time to treatment (h), median (range) 1.63 (0.23–3.82)

Dose (mg kg–1), median (range) 0.9 (0.36–1.45)

Additional therapy, no. (%) No: 229 (68.2)

Yes: 107 (31.8)

Haemorrhage in rt-PA treatment
only, no. (%)

No: 192 (83.8)

Yes: 37 (16.2)

INR, international normalized ratio; MCA, middle cerebral artery;
NIHSS, National Institutes of Health Stroke Scale; PCA, posterior
cerebral artery; rt-PA, recombinant tissue plasminogen activator
aIn A:B, A means the number of cardiovascular diseases each pa-
tient had and B the number of patients

Table 2
Item characteristic curve parameter estimates (% relative standard
error) for baseline National Institutes of Health Stroke Scale scores

j αj βj1 βj2 βj3 βj4

1 0.443
(46.5)

4.051 (45.6) 3.075
(38.5)

3.851
(42.8)

2 0.183
(97.5)

11.44 (98.4) �10.4
(98.8)

3 0.337
(62.3)

5.313 (63.6) �3.064
(70.9)

4 0.710
(19.0)

0.172 (123.7) 0.695
(31.1)

5 0.454
(23.7)

3.293 (31.1) �4.215
(27.6)

8.39
(25.9)

6 0.991
(20.6)

�1.44 (15.6) 0.351
(40.6)

4.367
(19.1)

7 2.864
(49.8)

�1.117 (10.3) �0.320
(36.9)

�0.493
(59.1)

0.995
(13.0)

8 2.131
(25.3)

�0.918 (13.3) �0.272
(44.1)

�0.038
(383.6)

1.656
(10.4)

9 0.739
(20.8)

�0.671 (29.5) 2.928
(16.9)

10 0.001
FIX

3989 (7.37) 0 FIX

11 0.184
(73.1)

11.28 (75.4) �3.935
(88.4)

�3.349
(75.1)

12 0.629
(37.8)

�3.312 (29.6) �0.104
(200.4)

13 0.140
(97.2)

17.51 (98.2) �10.02
(100.9)

αj, slope or scale parameter denoting the discrimination power of
test j; βjv, test step or intersection parameter denoting the points on
the latent trait scale, where the plots of P(Yij = k) and P(Yij = k + 1) in-
tersect, with Yij being a test score; j, test number (j = 1, 2, ... 13), v,
category number (v = 1, 2, 3, 4)
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factors related to intravenous rt-PA treatment. The median
age of patients (59.8% of whom were male) was 69 years
and the median weight was 61 kg. In terms of medical and
disease history, 34.2% of patients had taken an antiplatelet
agent or an anticoagulant, 67.3% had been diagnosed with
hypertension, 22.3% had cerebrovascular events and 56.5%
had cardiovascular diseases other than hypertension. For
baseline status, the median NIHSS score was 14, and 73.2%
of patients had MCA stroke. For treatment factors, the me-
dian time to treatment from symptom onset was 1.63 h, addi-
tional therapy for revascularization such as intra-arterial
thrombolysis and endovascular treatment was conducted in
31.8% of patients, and haemorrhagic transformation within
36 h after treatment was observed in 16.2% of patients receiv-
ing rt-PA monotherapy.

Baseline model for NIHSS scores
The GRM described baseline NIHSS scores better than the
PCM (7613.71 vs. 7776.01 in OFV, respectively), yielding
model parameter estimates for 13 tests, as shown in Table 2,
and ICCs, as displayed in Figure 1. Among the 13 tests, Test
7 for dysarthria was found to have the highest discrimination
power for neurological deficit (α7 = 2.864) and Test 10 for limb

ataxia had the lowest discrimination power (α10 = 0.001). The
discrimination power is also reflected in Figure 1, in which
the slope of the ICC of Test 7 was the steepest and that of Test
10 was almost flat. Estimation of α10was not successful be-
cause the majority of patients received a score of 0 in this test,
so that α10 was fixed to 0.001. β10,2 was also fixed to zero as its
estimate was almost zero with a large relative standard error
(RSE, %).

To check the reliability of the ICC, the VPC for the pre-
dicted probability of receiving a specific score for each test
based on the ICC was compared with the corresponding ob-
served probability, as displayed in Figure 2. Apart from a few
tests (e.g. Tests 7 and 8), the overall observed probability
was satisfactorily included in the 95% confidence interval of
the predicted probability.

Disease progression model for NIHSS scores
The estimates of D0, AMP and SLO, and the typical or popu-
lation median values of D0i, AMPi and SLOi, are shown in
Table 3. Attempts to estimate the interindividual variability
for SLO were unsuccessful. Despite the high interindividual
variability of model parameters, no significant covariate was
found. The VPC for each test indicates that almost all the

Figure 1
Item characteristic curves estimated for each test. The x-axis shows severity, and the y-axis the predicted probability of getting a score greater than
1 (solid line), 2 (dashed line), 3 (dotted line) and 4 (dot–dash line), respectively

Model-based assessment of rt-PA treatment effect
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observed probability was well covered by the 95% confidence
interval of the model prediction (Figure 3A). The VPC for to-
tal NIHSS scores displayed in Figure 3B shows that overesti-
mation occurred after about 5 h, and the degree of
overestimation increased with time.

Incidence model for dropout
The observed initial NIHSS score, denoted as NIHSS0, and lo-
cation of infarction were significant covariates for the inci-
dence of dropout from rt-PA monotherapy due to treatment
failure and requiring an additional therapy during the hyper-
acute phase (Table 3). This result indicates that patients with
MCA stroke are 2.87 times [= 0.0868/0.0303 from θ0= �3.468
and θi= 1.115 substituted in Equation (6)] more likely to need
additional therapy. The interaction between NIHSS0 and lo-
cation of infarction was not significant, and neither TTT nor
dose was significant either. Figures 3B and 4A display
goodness-of-fit plots for the incidence model. The NHISS
score producing 50% of population dropout was approxi-
mately 18–19 for MCA stroke and 27–28 for non-MCA stroke.
Although the overall prediction followed the observation,
misfits were observed for some NIHSS scores, particularly for
non-MCA stroke, which was probably the result of the imbal-
anced distribution of observed NIHSS scores.

TTE model for dropout
All dropouts occurred within 3 h after rt-PA treatment. For a
basic hazard model, a Gompertz model was selected, yielding

an OFV of 141.85, compared with 177.99 for a constant
model and 159.32 for a Weibull model (not shown). For co-
variate analyses, baseline categorized NIHSS0, denoted as
CNIHSS0, was found to be significant for hazard, with a coef-
ficient estimate of 0.469, as shown in Table 3, where CNIHSS0
represents categorized NIHSS0, defined as CNIHSS0 = 1 for
NIHSS0 ≤ 15, CNIHSS0 = 2 for 16 ≤ NIHSS0 ≤ 20 and
CNIHSS0 = 3 for NIHSS0 ≥ 21 based on clinical significance
[6]. Other covariates, including time-varying disease severity,
TTT and dose, were found to be non-significant (Table 3).

Although categorization causes a loss of information, this
approach was used in the present study because NIHSS scores
at dropout times were not evenly distributed, with very low
incidences at high NIHSS scores, causing numerical prob-
lems. Covariate analysis was conducted within the propor-
tional hazard modelling framework, as it better described
the model than incorporating the covariate directly into the
hazard model parameters. The goodness-of-fit plot for the se-
lected model showed that the predicted hazard corresponded
well to the observed hazard (not shown). The resulting VPC
plot stratified by CNIHSS0 category is shown in Figure 4C, in-
dicating that, overall, the observed survival is satisfactorily
included in the range of the 95% prediction interval.

Incidence model for haemorrhagic
transformation
For the incidencemodel for haemorrhagic event, no covariate
was found to be significant.

Figure 2
Visual predictive check for item characteristic curve. The x-axis shows latent severity, and the y-axis the probability of getting a specific score for
each test. Solid lines are observed probability and shaded areas mean 95% confidence interval of predicted probability
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TTE model for haemorrhagic transformation
Time to haemorrhagic event was best described by the
Weibull hazard model. The predicted NIHSS score change
with time was found to improve the model fit significantly,
with an OFV decrease of 11.16 (P < 0.001). TTT and dose,
however, were not significant. Similarly to the TTE model
for dropout, the covariate effect was better explained when
incorporated using the proportional hazard modelling frame-
work. The resulting VPC plot is shown in Figure 5A, and the
associated Kaplan–Meier mean covariate plot for predicted
NIHSS score is shown in Figure 5B, which confirms the ade-
quacy of modelling the time-varying nature of this covariate.
Although the survival curve in the VPC plot was satisfactorily
included in the 95% confidence interval of predictions, the
mean covariate plot was somewhat overestimated at later
time points. A partial explanation for such misfits is the
sparseness of data at later time points.

Benefit-to-risk ratio analysis
Table 4 summarizes 10 scenarios used in the simulation and
Table 5 reports the mean and standard deviation (SD) of the

100 GBR values obtained from the 100 simulated datasets
for a set of scenarios, subjects group and alpha. Themean pro-
portion of each severity group was 0.26, 0.44, 0.21 and 0.10
for minor, moderate, moderate-to-severe and severe severity,
respectively. The key results were as follows.

1 For patients with minor and moderate severity, the benefit-
to-risk ratio was greater than 1 in all simulation scenarios,
with the ratio decreasing withNIHSS severity; patients with
minor severity showed the highest, and those with the
highest severity the lowest, benefit-to-risk ratio.

2 For moderate-to-severe and severe patients, a ratio of less
than 1 was noted for MCA stroke patients in all scenarios,
whereas a ratio greater than 1 was noted in non-MCA
stroke patients with moderate-to-severe severity in some
selected scenarios.

3 The benefit-to-risk ratio of non-MCA stroke patients was
nearly two- or three-fold higher than that of MCA stroke
patients.

Discussion
The present study proposed a pharmacometric approach that
can be used quantitatively to assess and predict clinical out-
comes (i.e. treatment effect and failure) and accompanying
risk (i.e. haemorrhagic transformation) in rt-PA treatment
using acute ischaemic stroke data collected retrospectively.
To describe treatment effects, the IRT model was used in this
work. This model was initially applied in Alzheimer’s disease
[29], where, by using the IRT approach to model the latent
variable corresponding to disease severity underlying
Alzheimer’s Disease Assessment Scale–cognitive subscale test
scores, the work demonstrated that the power to detect drug
effects can be improved.

When continuous data obtained from multiple tests are
used in analyses without being categorized, the IRT model
can produce results that are more reliable than those ob-
tained using other models. This was well illustrated in the
present work, where all NIHSS scores between 0 and 35 were
analysed without being categorized by applying the IRT model
to 13 individual test scores comprising the total NIHSS score.
In addition, the work intended to demonstrate how a popula-
tion model-based pharmacometric approach can be used in
analysing routine clinical data with an application to acute isch-
aemic stroke patients. With a growing need for efficient utiliza-
tion of patient records obtained from routine clinical practice, a
population modelling approach has become increasingly im-
portant because of its advantages in the analysis of observa-
tional data such as routine clinical data.

For the ICC of baseline NIHSS scores, the PCM was se-
lected for the following reasons. Firstly, the GRM yielded a
large estimate of 42.75 for α7, the scale parameter for Test 7.
This large value of α7 was regarded as unrealistic because a
scale parameter larger than 8 generally yields an ICC whose
shape is close to a step function. Moreover, the PCM is more
appropriate for describing NIHSS scores [30]. In the disease
progression model, the between-subject variability of AMP
was very large, but no significant covariates were selected,
suggesting that this variability might be attributable to other
sources, including inaccurate medical records, such as

Table 3
Parameter estimates for disease progression model for National Insti-
tutes of Health Stroke Scale (NIHSS) scores, incidence and time-to-
event models for dropout and haemorrhagic transformation

Model Parameter
Estimate (% relative
standard error )

DIS D0 �0.074 (81.1)

AMP �1.245 (17.4)

SLO (h�1) 0.536 (27.6)

ω
2
D0 [CV (%)] 105.3 (6.26)

ω
2
AMP [CV (%)] 164.7 (19.6)

DROPINC θ0 �3.468 (13.4)

θNIHSS0 0.127 (18.4)

θINF 1.115 (31.9)

DROPTTE γ 1.325 (25.2)

λ 0.205 (30.6)

θCNIHSS0 0.469 (25.2)

HEM γ 0.0915 (24.3)

λ 7.19 *10�6 (36.1)

θNIHSS 0.056 (34.6)

AMP, amplitude; CV, coefficient of variation; DIS, disease progression
model for NIHSS scores; DROPINC, incidence model for dropout;
DROPTTE, TTE model for dropout; D(t), longitudinal change of latent
disease severity; HEM, TTE model for haemorrhagic transformation;
NIHSS0, initial NIHSS score; SLO, slope of D(t); TTE, time to event
For DIS, the model is as follows: D(t) = D0 + AMP · (1 � e�SLO · t)
For DROPINC, DROPTTE and HEM, the models are as follows:
P(Y = 1) = exp θ0þθNIHSS0·NIHSS0þθINF ·INFð Þ

1þ exp θ0þθNIHSS0 ·NIHSS0þθINF·INFð Þ for DROPINC

h(t) = λ · exp (γ · t) · exp (θCNIHSS0 · CNIHSS0) for DROPTTE
h(t) = λ · γ · tγ � 1 · exp (θPNIHSS · PNIHSS) for HEM
where INF denotes location of infarction, NIHSS0 denotes observed
initial NIHSS score; CNIHSS0 denotes categorized NIHSS0, defined
as CNIHSS0 = 1 for NIHSS0 ≤ 15, CNIHSS0 = 2 for 16 ≤NIHSS0 ≤ 20
and CNIHSS0 = 3 for NIHSS0 ≥ 21; and PNIHSS denotes predicted
NIHSS score
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incorrect infarction volume or radiological diagnosis. Unfor-
tunately, these types of data were not available. Regarding
the misfits in Figure 3B, we inspected the data and found that
seven patients with an NIHSS score >23 had observation
records only up to 3 h, which we suggest might have
caused overestimation. Nevertheless, dropout was not

incorporated as it did not statistically improve the model
when included, probably because these patients represented
only 2% (7/336) of the entire patient group.

In the incidence model for dropout, patients with MCA
stroke and higher NIHSS0 are more unlikely to respond to
rt-PA treatment and need additional therapy afterwards.

Figure 3
(A) Visual predictive check for disease progression model for National Institutes of Health Stroke Scale (NIHSS) scores of individual test for first 24 h
after intravenous recombinant tissue plasminogen activator (rt-PA) for three selected tests with mj = 3 (Test 3: upper), 4 (Test 6: middle) and 5
(Test 8: lower), with mj being the number of category of j-th item [see Equation (1)]. Solid lines stand for observed probability and grey areas
are the 95% confidence interval of the predicted probability. (B) Visual predictive check for the disease progression model for total NIHSS scores
for the first 24 h after intravenous rt-PA. Obs, observation; Pred, prediction
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Figure 4
(A) Goodness of fit plot for the incidence model for dropout for the middle cerebral artery (MCA) group. The x-axis shows the observed
initial National Institutes of Health Stroke Scale (NIHSS) score, and the y-axis the probability of dropout following the recombinant tissue
plasminogen activator treatment (black bar: prediction, white bar: observation). (B) Goodness-of-fit plot for incidence model for dropout
for non-MCA group. (C) Visual predictive check for survival predicted by time-to-event model for dropout, obtained using the Gompertz
hazard. Survival curves denote Kaplan–Meier survival probability, and the shaded areas represent the 95% confidence interval of predicted
values
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This result might be expected from the pathophysiological
point of view, that NIHSS scores reflect a neurological defi-
cit in stroke and thus a higher score would indicate a more
severe disease state requiring additional intervention. In
the TTE model for dropout, CNIHSS0 was a significant co-
variate, which is consistent with a literature report indicat-
ing that patients with MCA stroke tend to have a relatively

low revascularization rate after rt-PA treatment [31]. The
longitudinal change in NIHSS scores showed no significant
association with the time to dropout. Alternatively,
CNIHSS0 was adopted to represent partially patients’ sever-
ity, and it was found to be significant. This might have
been because additional therapies, which are supposed to
be decided on by clinicians, were all given within 3 h after
rt-PA treatment, leading to no likelihood of NIHSS scores
beyond 3 h being used in deciding the time to dropout
for additional treatment.

With regard to the TTEmodel for haemorrhagic event, the
predicted NIHSS score change with time was selected as an
important covariate capable of predicting the probability of
haemorrhage risk at a particular time over the course of treat-
ment. The reason for the misfit observed in Figure 5B is that
the disease progression model used to predict NIHSS scores
was developed using NIHSS scores only up to 24 h, and there-
fore could not accurately predict these scores beyond 24 h.
None of the covariates reported in the literature as being sig-
nificant, including age, blood glucose level, platelet count
and blood pressure [10, 14, 32, 33], were found to be statisti-
cally significant. This discrepancy might have been due to
differences in the analytical method and the definition of
haemorrhagic event between our study and previous studies.

In the present work, TTT and dose were not found to have
a significant influence on clinical outcomes following rt-PA
treatment. We suggest that the reason is as follows: for TTT,
the interquartile range was 1.27–2.25 h (data not shown),
indicating that the majority of the patients received rt-PA
treatment within 3 h of symptom onset, which is known
to be the ʻgolden hourʼ for successful functional outcomes
with rt-PA treatment [34], and therefore treatment effect
and AE were not significantly affected by TTT. For dose,
the interquartile range was 0.89–0.90 mg kg–1 (data not
shown), indicating that almost the same dose was given
to most of the patients, resulting in no significant influ-
ence on clinical outcomes.

Despite the severe AE of haemorrhagic transformation
with rt-PA treatment, few attempts have been made to take
into account both the benefits and risks in treatment

Figure 5
Visual predictive check for time-to-event (TTE) model for haemorrhagic transformation obtained using Weibull hazard (A) and the associated
Kaplan–Meier mean covariate plot for predicted NIHSS score (B). Survival curve in (A) denotes Kaplan–Meier survival probability, and PNIHSS
in (B) denotes predicted National Institutes of Health Stroke Scale score. In both panels, shaded areas represent the 95% confidence interval of
the predicted value

Table 4
Summary of scenarios

Scenario
number Definition of benefit

1 More than 4-point decrease in NIHSS score or the
zero NIHSS score at 24 h

2 0.5-fold decrease in disease severity or the zero
NIHSS score at 24 h

3 1.0-fold decrease in disease severity or the zero
NIHSS score at 24 h

4 1.5-fold decrease in disease severity or the zero
NIHSS score at 24 h

5 2.0-fold decrease in disease severity or the zero
NIHSS score at 24 h

6 More than 4-point decrease in the NIHSS or the zero
NIHSS score at 24 h

7 0.5-fold decrease in disease severity or the zero
NIHSS score at 24 h

8 1.0-fold decrease in disease severity or the zero
NIHSS score at 24 h

9 1.5-fold decrease in disease severity or the zero
NIHSS score at 24 h

10 2.0-fold decrease in disease severity or the zero NIHSS
score at 24 h

MCA, middle cerebral artery; NIHSS, National Institutes of Health
Stroke ScaleScenario number 1, 2, 3, 4, 5: non-MCA infarction
Scenario number 6, 7, 8, 9, 10: MCA infarction
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outcome analysis, except for one example found in the isch-
aemic stroke risk score [35]. Furthermore, no study has de-
scribed a quantitative approach for assessing the benefits
and risks of rt-PA treatment in the hyperacute phase of isch-
aemic stroke. In this regard, we conducted a simulation study

using the developed model to investigate the benefit-to-risk
ratio using GBR by classifying patients into minor, moderate,
moderate-to-severe and severe patients based on NIHSS score
in each simulated dataset. Our results indicating that minor
stroke patients showed the highest benefit-to-risk ratio

Table 5
Summary of global benefit-to-risk trade-off ratio statistics, obtained from 100 simulated datasets

Scenario Groupa

R value

α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

Mean SD Mean SD Mean SD Mean SD Mean SD

1 1 6.617 0.653 6.911 0.670 7.229 0.687 7.576 0.704 7.956 0.722

2 5.096 0.200 5.171 0.199 5.247 0.198 5.325 0.197 5.405 0.196

3 2.223 0.113 2.248 0.112 2.274 0.112 2.299 0.111 2.325 0.111

4 1.000 0.084 1.010 0.084 1.021 0.084 1.032 0.084 1.043 0.084

2 1 13.153 0.762 13.514 0.755 13.893 0.746 14.292 0.735 14.711 0.721

2 5.699 0.198 5.770 0.197 5.842 0.195 5.916 0.194 5.990 0.192

3 2.266 0.111 2.291 0.111 2.317 0.110 2.343 0.110 2.369 0.110

4 0.885 0.082 0.895 0.082 0.906 0.083 0.916 0.083 0.927 0.083

3 1 10.543 0.743 10.903 0.747 11.285 0.749 11.693 0.750 12.129 0.749

2 5.438 0.198 5.511 0.197 5.585 0.196 5.661 0.194 5.738 0.193

3 1.922 0.116 1.947 0.116 1.972 0.115 1.997 0.115 2.023 0.115

4 0.554 0.084 0.562 0.085 0.570 0.085 0.577 0.086 0.585 0.087

4 1 8.741 0.701 9.080 0.711 9.444 0.721 9.836 0.729 10.259 0.737

2 5.178 0.191 5.252 0.190 5.328 0.189 5.406 0.188 5.485 0.187

3 1.556 0.115 1.579 0.115 1.602 0.115 1.626 0.116 1.650 0.116

4 0.299 0.064 0.304 0.065 0.309 0.066 0.313 0.067 0.318 0.067

5 1 7.644 0.650 7.963 0.663 8.307 0.676 8.679 0.689 9.084 0.701

2 4.906 0.174 4.981 0.173 5.059 0.172 5.137 0.171 5.218 0.171

3 1.228 0.116 1.248 0.117 1.268 0.118 1.289 0.118 1.310 0.119

4 0.141 0.048 0.144 0.048 0.146 0.049 0.149 0.050 0.151 0.050

6 1 2.504 0.231 2.550 0.233 2.598 0.236 2.647 0.238 2.698 0.240

2 1.763 0.065 1.777 0.065 1.791 0.065 1.805 0.065 1.819 0.065

3 0.749 0.036 0.755 0.036 0.760 0.036 0.766 0.036 0.772 0.036

4 0.332 0.027 0.335 0.027 0.338 0.027 0.341 0.027 0.343 0.027

7 1 4.690 0.238 4.746 0.237 4.802 0.236 4.859 0.234 4.918 0.233

2 1.958 0.064 1.971 0.064 1.985 0.064 1.999 0.064 2.013 0.064

3 0.763 0.036 0.769 0.036 0.774 0.036 0.780 0.036 0.786 0.036

4 0.295 0.027 0.298 0.027 0.300 0.027 0.303 0.027 0.305 0.027

8 1 3.848 0.244 3.903 0.244 3.960 0.245 4.017 0.245 4.077 0.245

2 1.874 0.065 1.888 0.065 1.901 0.065 1.915 0.064 1.930 0.064

3 0.651 0.038 0.656 0.038 0.661 0.038 0.667 0.038 0.672 0.038

4 0.186 0.028 0.188 0.028 0.190 0.028 0.191 0.028 0.193 0.028

9 1 3.243 0.238 3.296 0.239 3.350 0.241 3.405 0.242 3.462 0.243

2 1.790 0.063 1.804 0.063 1.818 0.063 1.832 0.063 1.846 0.062

3 0.530 0.038 0.535 0.038 0.540 0.038 0.544 0.038 0.549 0.038

4 0.101 0.021 0.102 0.022 0.103 0.022 0.104 0.022 0.105 0.022

10 1 2.865 0.225 2.915 0.227 2.966 0.229 3.019 0.231 3.073 0.233

2 1.702 0.057 1.715 0.057 1.729 0.057 1.743 0.057 1.757 0.057

3 0.421 0.039 0.425 0.039 0.428 0.039 0.432 0.039 0.436 0.039

4 0.048 0.016 0.048 0.016 0.049 0.016 0.049 0.017 0.050 0.017

NIHSS, National Institutes of Health Stroke Scale; SD, standard deviation
aGroup: 1 (minor, NIHSS score 1–5), 2 (moderate, NIHSS score 5–15), 3 (moderate-to-severe, NIHSS 16–20), 4 (severe, NIHSS 21–42)
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appear to be contradictory to the rt-PA guidelines [2], in
which rt-PA treatment is not recommended for patients with
minor neurological deficit. However, the criteria used for ex-
cluding patients with minor stroke from rt-PA treatment
were not based on clear evidence [36]. Moreover, according
to recent research, the rate of rt-PA related side effects was
relatively low in minor stroke patients, and benefits even
outweighed the risks [36, 37], which is consistent with our
results.

In summary, based on the IRT-based pharmacometric
model describing the time course of rt-PA treatment effect
and AE in stroke patients, the present work revealed that
rt-PA treatment would be best recommended for minor and
moderate severity patients, with the expected benefit-to-risk
ratio being greater than 1, and the ratio decreased with
NIHSS severity, being nearly two- or threefold higher in
non-MCA than in MCA stroke patients as compared with
at the same disease severity. Despite a limitation that very se-
vere patients with an NIHSS score >36 were not included in
the analysis and thus caution should be made when extrap-
olating the modelling results to very severe patients, this
work has demonstrated the feasibility of applying a model-
based approach in optimizing the rt-PA treatment effect in
stroke patients.
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