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Abstract: The detection of alpha-fetoprotein (AFP) in plasma is important in the diagnosis of
hepatocellular carcinoma (HCC) in humans. We developed a biosensor to detect AFP in HCC patient
plasma and in a phosphate buffer saline (PBS) solution using a graphene field-effect transistor (G-FET).
The G-FET was functionalized with 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE) for
immobilization of an anti-AFP antibody. AFP was detected by assessing the shift in the voltage of
the Dirac point (∆VDirac) after binding of AFP to the anti-AFP-immobilized G-FET channel surface.
This anti-AFP-immobilized G-FET biosensor was able to detect AFP at a concentration of 0.1 ng mL−1

in PBS, and the detection sensitivity was 16.91 mV. In HCC patient plasma, the biosensor was able to
detect AFP at a concentration of 12.9 ng mL−1, with a detection sensitivity of 5.68 mV. The sensitivity
(∆VDirac) depended on the concentration of AFP in either PBS or HCC patient plasma. These data
suggest that G-FET biosensors could have practical applications in diagnostics.
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1. Introduction

Hepatocellular carcinoma (HCC) is the third most deadly cancer in the world [1]. Only 43%
of patients are diagnosed at an early stage, and the five-year survival rate is just 31% [2]. However,
most patients with early-stage liver cancer appear healthy, and show no awareness of symptoms [3].
Alpha-fetoprotein (AFP), with a molecular weight of approximately 70 kDa, is a well-known HCC
biomarker [4]. The concentration of AFP is less than 10 ng mL−1 in healthy human serum, but increases
significantly in the serum of HCC patients [5]. Detection of AFP is therefore important in the early
stage diagnosis of HCC [5]. The methods most commonly used to detect AFP in HCC patients are
radio- and fluorescent-immunoassays [6–8]. However, these methods require expensive reagents and
are complicated to conduct. Hence, a simple, inexpensive, and highly sensitive detection method is
required to detect AFP in the clinic.
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Field-effect transistors (FETs) are promising, label-free, biosensing devices capable of detecting
biomarkers [9–11]. FETs provide a number of potential advantages such as size, fast response,
high reliability, low output impedance, portability, and low cost of mass production [12,13]. A number
of studies have confirmed the high sensitivity and stability for detecting of AFP using field-effect
transistors (FETs) on silicon [14,15] and electrochemical methods on carbon [16,17]. However, in these
studies, AFP was diluted in PBS or purchased human serum, do not realize the detection of AFP in
HCC patient plasma.

Graphene is a single atom thick, sp2-hybridized, carbon material. Graphene is a zero band
gap semiconductor in which the conduction band and valence band are connected at the K-point.
The transfer characteristics of graphene exhibit distinctive ambipolar behavior. Single-layer graphene
has an extremely high carrier mobility (>20,000 cm2 V−1 s−1) and a large carrier concentration
(~1012 cm−2) [18]. Due to its electrical properties, graphene is an ideal candidate for the fabrication of
biosensors. Graphene field-effect transistors (G-FETs) have been developed to detect different types of
biomarkers such as DNA, glucose, enzymes, and immunoglobulin E [19–22]. The G-FETs have been
studied for the quantitative detection of various cancer markers using immunoassay methods [23–25].
However, the detection of AFP using G-FETs has not been reported yet.

In this study, the detection of AFP in human plasma of HCC patient was achieved using a G-FET
biosensor for the first time. The G-FET was modified with 1-pyrenebutyric acid N-hydroxysuccinimide
ester (PBASE) to allow for immobilization of an anti-AFP antibody. The structure of the immobilized
antibody was observed by atomic force microscopy (AFM). The selectivity of the anti-AFP-immobilized
G-FET was evaluated using human chorionic gonadotropin (hCG) and carcinoembryonic antigen
(CEA). The detection of AFP was characterized in phosphate buffer solution saline (PBS) solution and
human plasma from HCC patients.

2. Materials and Methods

2.1. Materials

The monoclonal anti-alpha-fetoprotein (anti-AFP), AFP, hCG, and CEA were purchased from
Antibody Center (Seongnam, Korea). The human plasmas of HCC patients were provided at Keimyung
University school of Medicine (Daegu, Korea). The concentration of AFP in each HCC patient plasma
was verified at Keimyung University school of Medicine and HCC patient plasma were used without
any purification process. PBASE and bovine serum albumin (BSA) were purchased from Sigma-Aldrich
(Seoul, Korea). Large-sized graphene on a PET substrate was purchased from MCK Tech (Ansan, Korea).
Ultrapure water (18.2 MΩ·cm) was used for the preparation of all solutions. PBS was made in the
laboratory and was prepared using 137 mM NaCl, 8.1 mM Na2HPO4·12H2O, 2.7 mM KCl, and 1.5 mM
KH2PO4. 0.01 × PBS (pH 7.4) was prepared by diluting 1 × PBS with ultrapure water. Antigens and
antibodies were diluted in 1 × PBS.

2.2. Fabrication and Modification of G-FET

Gold (Au) was evaporated in a vacuum chamber (5.0 × 10−6 torr) to form the drain and source
electrodes on the graphene sheet using a thermal evaporator and the thickness of the Au was 10 nm
(Alpha-step). The gate channel size was 5 mm in width and 500 µm in length. For applying bias to the
electrodes, a silver paste was used for wire bonding. Polydimethylsiloxane (PDMS) was used for the
passivation of source and drain electrodes from the electrolyte. The reaction chamber was made of
a 15 mL conical tube coated with PDMS. Ag/AgCl reference electrode was used as the gate electrode.
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The G-FET was immersed in a mixture of 5 mM PBASE in dry dimethylformamide (DMF)
solution for 2 h to achieve non-covalent modification of the channel surface, followed by
rinsing with DMF [26]. After modification, a solution of anti-AFP (50 µg mL−1) was dropped
to immobilize anti-AFP on the channel surface and it was placed in a constant temperature and
humidity chamber for 9 h. Then, the anti-AFP-immobilized G-FET was washed three times with
0.01 × PBS. Non-specific adsorption was blocked by the addition of a BSA solution (1 wt %)
for 60 min. Then, the anti-AFP-immobilized G-FET was washed three times with 0.01 × PBS.
The anti-AFP-immobilized graphene was evaluated using X-ray photoelectron spectroscopy
(XPS; monochromatic Al Kα X-ray source, 1486.6 eV, beam diameter 400 µm) and atomic force
microscopy (AFM; AFM5300E, Hitachi, Tokyo, Japan).

2.3. Detection of AFP

The transfer characteristics of the G-FET were measured using a digital source meter
(Keithley 2400, Keithley, Cleveland, OH, USA). The drain-source voltage (VDS) was fixed at 0.05 V
and the gate-source voltage (VGS) was swept from 0.1 to 0.9 V. After the antigen–antibody reaction,
the characteristic of the drain-source current (IDS) on the G-FET was evaluated in 0.01 × PBS (pH 7.4)
solution. The sensitivity was evaluated by assessing the shift in voltage of the Dirac point (∆VDirac)
after specific binding of the antibody to the antigen. The voltage of Dirac point was defined as the
minimum current value in the IDS-VGS characteristics of the G-FET. This study was approved by the
Institutional Review Board of Keimyung University school of Medicine (IRB No. 2017-09-038-001).

3. Results and Discussion

3.1. Functionalization

We used a non-covalent method to immobilize the antibody on the graphene surface. PBASE
allows the binding of functional groups to graphene without disrupting the carbon atomic
structure [27,28]. PBASE contains an aromatic pyrenyl group which physically interacts through
π–π interaction with graphene sheet and a succinimidyl ester group which covalently reacts with the
amino group on the anti-AFP by an amide bond [20]. A schematic diagram of the modification steps
for G-FET is shown in Figure 1.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 9 

 

source, 1486.6 eV, beam diameter 400 μm) and atomic force microscopy (AFM; AFM5300E, Hitachi, 
Tokyo, Japan). 

2.3. Detection of AFP 

The transfer characteristics of the G-FET were measured using a digital source meter (Keithley 
2400, Keithley, Cleveland, OH, USA). The drain-source voltage (VDS) was fixed at 0.05 V and the 
gate-source voltage (VGS) was swept from 0.1 to 0.9 V. After the antigen–antibody reaction, the 
characteristic of the drain-source current (IDS) on the G-FET was evaluated in 0.01 × PBS (pH 7.4) 
solution. The sensitivity was evaluated by assessing the shift in voltage of the Dirac point (ΔVDirac) 
after specific binding of the antibody to the antigen. The voltage of Dirac point was defined as the 
minimum current value in the IDS-VGS characteristics of the G-FET. This study was approved by the 
Institutional Review Board of Keimyung University school of Medicine (IRB No. 2017-09-038-001).  

3. Results and Discussion 

3.1. Functionalization 

We used a non-covalent method to immobilize the antibody on the graphene surface. PBASE 
allows the binding of functional groups to graphene without disrupting the carbon atomic structure 
[27,28]. PBASE contains an aromatic pyrenyl group which physically interacts through π–π 
interaction with graphene sheet and a succinimidyl ester group which covalently reacts with the 
amino group on the anti-AFP by an amide bond [20]. A schematic diagram of the modification steps 
for G-FET is shown in Figure 1.  

 
Figure 1. Schematic illustration of AFP detection using G-FET and modification process. 

AFM measurements were performed to examine the height of the PBASE modification and the 
change in the surface morphology following anti-AFP immobilization. In order to compare changes 
in the z-value of the PBASE-modified graphene with that of the antibody modified graphene, the 
roughness of substrates was evaluated at root mean square (Rq) value. Figure 2 shows that the Rq 
value of pristine graphene was 2.22 nm. After PBASE-modification, the Rq value was 3.10 nm, 
whereas the Rq value of the anti-AFP-immobilized graphene increased to 9.26 nm. This increase in Rq 
value suggests that the anti-AFP antibody was successfully immobilized on the PBASE-modified 
surface [29]. Figure 2d shows the high-resolution XPS of the N 1s spectra on the graphene surface. 
After modification with PBASE, there was an increase in the characteristic N 1s peak at 402.03 eV 
[30,31]. After antibody immobilization on the graphene surface, the N 1s peak was significantly 
increased due to the presence of amine groups in the protein. 
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AFM measurements were performed to examine the height of the PBASE modification and
the change in the surface morphology following anti-AFP immobilization. In order to compare
changes in the z-value of the PBASE-modified graphene with that of the antibody modified graphene,
the roughness of substrates was evaluated at root mean square (Rq) value. Figure 2 shows that the
Rq value of pristine graphene was 2.22 nm. After PBASE-modification, the Rq value was 3.10 nm,
whereas the Rq value of the anti-AFP-immobilized graphene increased to 9.26 nm. This increase in
Rq value suggests that the anti-AFP antibody was successfully immobilized on the PBASE-modified
surface [29]. Figure 2d shows the high-resolution XPS of the N 1s spectra on the graphene surface.
After modification with PBASE, there was an increase in the characteristic N 1s peak at 402.03 eV [30,31].
After antibody immobilization on the graphene surface, the N 1s peak was significantly increased due
to the presence of amine groups in the protein.Sensors 2018, 18, x FOR PEER REVIEW  4 of 9 
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Figure 2. 3D AFM images of (a) pristine graphene; (b) PBASE-modified graphene; (c) anti-AFP-
immobilized graphene; (d) high-resolution XPS N1s spectra of pristine, PBASE-modified,
and anti-AFP-immobilized graphenes.

3.2. The Characteristic of G-FET Biosensor

The G-FET was characterized by measuring the drain-source current (IDS), gate-source current
(IGS), and gate-source voltage (VGS) in 0.01 × PBS (pH 7.4). The device characteristics (IDS-VDS, IGS-VGS,
and IDS-VGS) of the G-FET are shown in Figure 3a,b. For IDS-VGS and IGS-VGS, the VDS was fixed at
0.05 V and VGS was swept from 0.0 V to 0.9 V. The gate leakage current of G-FET was 0.3 µA.
For IDS-VDS, the VDS was swept from 0 V to 0.1 V and the IDS increased depending on the VGS

in the n-channel region. The transfer and output characteristics of the G-FET in the electrolyte
solution were typical of graphene FETs. The G-FET was stably worked in PBS solution without
redox reaction. The intrinsic properties of the graphene did not change in an electrolyte solution.
Due to the functionalization with PBASE, the Dirac point (VDirac) of G-FET was shifted in the positive
direction from 0.39 to 0.51 V, as shown in Figure 3c. This increase in the VDirac value suggests that
PBASE with its 16 π electrons creates new scattering channels for electrons, and enhance the electronic
properties of G-FET [32]. The VDirac of the anti-AFP-immobilized G-FET was shifted a further 11.2 mV,
as shown in Figure 3c, because the isoelectric point (pI) of the anti-AFP antibody is less than pH 6.0
since the anti-AFP antibody is negatively charged in 0.01 × PBS (pH 7.4) [33]. The negative charge
of the anti-AFP antibody accumulates the hole density on the channel of G-FET and VDirac of G-FET
was increased.
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Figure 3. (a) IDS-VGS and IGS-VGS transfer characteristic of G-FET; (b) IDS-VDS curves of G-FET; (c)
VDirac for pristine, PBASE-modified, and anti-AFP-immobilized G-FET.

3.3. The Detection of AFP

The G-FET was characterized in 0.01 × PBS (pH 7.4). The pI of AFP is 4.9, and so AFP is negatively
charged in 0.01 × PBS (pH 7.4) [34]. The anti-AFP-immobilized G-FET is sensitive to AFP at low
ionic strengths because charge detection is most sensitive when the screening of positive counter
ions is minimized in the electrolyte. The anti-AFP-immobilized G-FET was immersed in an AFP
solution (10 ng mL−1 in 1 × PBS) for 2 h and washed three times with 0.01 × PBS. Following this,
the VDirac of the anti-AFP-G-FET bound to AFP showed a positive shift of 43.57 mV as compared to
the anti-AFP-G-FET alone, as shown in Figure 4a. The IDS-VGS characteristics according to the AFP
concentration in PBS were shown in Figure S1 (Supporting Information). Upon binding of the anti-AFP
antibody to AFP, the hole density is increased by the enhanced negative charge. Consequently, there is
a positive shift in VDirac.
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Figure 4. (a) the IDS-VGS characteristics of G-FET before and after binding to AFP (10 ng mL−1 in PBS)
on the anti-AFP-immobilized channel surface; (b) sensitivity of the anti-AFP-immobilized G-FET for
AFP detection in PBS; (c) selectivity of the anti-AFP-immobilized G-FET for AFP compared with hCG
and CEA.

We approximate that each AFP binding to the anti-AFP antibody on the channel surface contains
an intrinsic negative charge, which directly affects the channel surface without any neutralization
by counter ions in the buffer solution. Because the Debye length of the buffer solution is 7.5 nm and
the length of the anti-AFP antibody is 4 nm, the ∆VDirac depended on the concentration of AFP in
PBS, as shown in Figure 4b. G-FET could detect AFP at concentrations as low as 0.1 ng mL−1 in PBS.
When the AFP concentration was above 50 ng mL−1, the sensitivity of G-FET decreased, indicating
that saturation had occurred. Generally, detection of AFP in the early stages of HCC patients requires
the ability to detect AFP at levels below 10 ng mL−1. Therefore, G-FET shows the possibility as an
AFP sensor. If we change the X-axis to logarithmic scale, the G-FET sensitivity is linear relative to the
AFP concentration in PBS (Figure S2, Supporting Information).
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The equilibrium dissociation constant (KD) for the anti-AFP and AFP interaction, with different
values of VDirac at the corresponding AFP concentration, was evaluated for the anti-AFP-immobilized
G-FET. The binding of AFP to the anti-AFP antibody on the graphene channel can be described by the
Langmuir equation [29]:

∆VDirac = (∆VDirac,max·CAFP)/(KD + CAFP),

where ∆VDirac,max is the saturated change in VDirac and CAFP is the concentration of AFP. From the
fitted curve shown in Figure 4b, the dissociation constant (KD) was estimated to be 4.64 × 10−11 M.
Compared with the reported binding affinity from a general characterization of the binding between
AFP and the anti-AFP antibody (10−7–10−9 M) [35–38], our data indicate that the anti-AFP antibody
immobilized on the G-FET biosensor has a high affinity for AFP.

The selectivity of the G-FET biosensor was assessed using other proteins, including hCG
and CEA. hCG is a hormone produced by the placenta after implantation and has been found
in some cancerous tumors [39]. CEA is known as a marker of cancer of the digestive system and
has been shown to be increased in levels in various cancers such as colon, stomach, and pancreas,
etc. [40]. The anti-AFP-immobilized G-FET was immersed in hCG or CEA solutions for 2 h and
then washed three times with 0.01 × PBS. In each case, the concentration of hCG and CEA was
1 µg mL−1. For hCG, the ∆VDirac of the anti-AFP-immobilized G-FET was −7.6 µV, whereas the
∆VDirac of the anti-AFP-immobilized G-FET was −5.7 mV for CEA. Although the selectivity of the
anti-AFP-immobilized G-FET was assessed using high concentrations of hCG and CEA, the ∆VDirac of
G-FET was comparable for the AFP. These data demonstrate the practical potential of G-FET for the
diagnostic detection of AFP.

The anti-AFP-immobilized G-FET biosensor was then assessed by determining its ability to detect
AFP in human plasma from HCC patients. Seven samples were used to evaluate the sensitivity of
G-FET, where the concentrations of AFP HCC patient plasma were 2.8, 12.6, 44.9, 75.6, 294.5, 434.2 and
784.9 ng mL−1. The process and conditions used for the detection of AFP in HCC patient plasma were
the same as those used for the detection of AFP in PBS. However, we applied an additional washing
step to remove any non-specifically adsorbed HCC patient plasma proteins from the channel surface of
the anti-AFP-immobilized G-FET. The anti-AFP-immobilized G-FET was immersed in human plasma
derived from HCC patients for 2 h, and then washed five times with a buffer solution. After binding
had occurred, G-FET measurements were made in 0.01 × PBS (pH 7.4). The anti-AFP-immobilized
G-FET was able to function in 0.01 × PBS after binding of the AFP from HCC patient plasma. The VDirac

of the anti-AFP-immobilized G-FET bound to AFP showed a positive shift, as compared with the
anti-AFP-immobilized G-FET alone, as shown in Figure 5a. The IDS-VGS characteristics according
to the AFP concentration in HCC patient plasma were show in Figure S3 (Supporting Information).
The G-FET gave values of 5.68, 28.2, 50.86, 73.36, 90.31 and 103.21 mV at AFP concentrations of 12.6,
44.9, 75.6, 294.5, 434.2 and 784.9 ng mL−1 in HCC patient plasma, respectively, as shown in Figure 5b.
If AFP concentration is converted into the semi-log scale, the ∆VDirac values were increased linearly
depending on the concentration of AFP in HCC patients plasma, (Figure S4, Supporting Information).
Unfortunately, G-FET could not detect AFP when the AFP concentration was 2.8 ng mL−1 in HCC
patient plasma. The most likely reason for the lower AFP sensitivity in HCC patient plasma is that
the anti-AFP-AFP binding interaction may have been disrupted by the additional washing process
required to analyze HCC patient plasma.
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4. Conclusions

We successfully detected AFP in human plasma from HCC patients using G-FET. PBASE was
employed to functionalize the G-FET and this was successfully confirmed through XPS, and AFM.
A BSA blocking process was used to avoid nonspecific interactions on the anti-AFP-immobilized G-FET
biosensor. Before the detection of AFP in HCC patient plasma, a quantitative analysis of the ability to
detect AFP in PBS was performed and the lowest concentration of AFP which could be detected by
the anti-AFP-immobilized G-FET in PBS was found to be 0.1 ng mL−1. The ability to detect AFP in
HCC patient plasma was assessed using six samples, with the result that the anti-AFP-immobilized
G-FET could detect AFP at 12.6 ng mL−1. These data demonstrate that our G-FET system is able to
quantitatively detect AFP in HCC patient plasma. Furthermore, antibody immobilized G-FETs have
a wide potential as biosensors for early and point-of-care medical diagnosis of tumor markers.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/11/4032/
s1. Figure S1: The IDS-VGS characteristics of G-FET before and after binding to each concentration of AFP (0.1, 1,
10, 50, 100 and 250 ng mL−1) in PBS on the anti-AFP-immobilized channel surface, Figure S2: The sensitivity of the
anti-AFP-immobilized G-FET for AFP detection in PBS into semi-log scale, Figure S3: The IDS-VGS characteristics
of G-FET before and after binding to each concentration of AFP (12.6, 44.9, 75.6, 294.5, 434.2, and 784.9 ng mL−1)
in human plasma of HCC patient on the anti-AFP-immobilized channel surface, Figure S4: The sensitivity of the
anti-AFP-immobilized G-FET for AFP detection in human plasma from HCC patients into semi-log scale.
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