
Vol.:(0123456789)1 3

Toxicol Res. (2020) 36:167–173 
https://doi.org/10.1007/s43188-019-00025-1

ORIGINAL ARTICLE

Arylquin 1, a potent Par‑4 secretagogue, induces lysosomal membrane 
permeabilization‑mediated non‑apoptotic cell death in cancer cells

Kyoung‑jin Min1 · Sk Abrar Shahriyar1 · Taeg Kyu Kwon1

Received: 19 July 2019 / Revised: 16 August 2019 / Accepted: 28 August 2019 / Published online: 21 November 2019 
© Korean Society of Toxicology 2019

Abstract
Arylquin 1, a small-molecule prostate-apoptosis-response-4 (Par-4) secretagogue, targets vimentin to induce Par-4 secre-
tion. Secreted Par-4 binds to its receptor, 78-kDa glucose-regulated protein (GRP78), on the cancer cell surface and induces 
apoptosis. In the present study, we investigated the molecular mechanisms of arylquin 1 in cancer cell death. Arylquin 1 
induces morphological changes (cell body shrinkage and cell detachment) and decreases cell viability in various cancer cells. 
Arylquin 1-induced cell death is not inhibited by apoptosis inhibitors (z-VAD-fmk, a pan-caspase inhibitor), necroptosis 
inhibitors (necrostatin-1), and paraptosis inhibitors. Furthermore, arylquin 1 significantly induces reactive oxygen species 
levels, but antioxidants [N-acetyl-l-cysteine and glutathione ethyl ester] do not inhibit arylquin 1-induced cell death. Further-
more, Par-4 knock-down by small interfering RNA confers no effect on cytotoxicity in arylquin 1-treated cells. Interestingly, 
arylquin 1 induces lysosomal membrane permeabilization (LMP), and cathepsin inhibitors and overexpression of 70-kDa 
heat shock protein (HSP70) markedly prevent arylquin 1-induced cell death. Therefore, our results suggest that arylquin 1 
induces non-apoptotic cell death in cancer cells through the induction of LMP.
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Introduction

Arylquin 1 is identified as a prostate‐apoptosis‐response‐4 
(Par-4) secretagogue in normal cells. Arylquin 1 binds 
vimentin and releases vimentin-bound Par-4 for secretion 
[1, 2]. Par-4 was first identified by differential screening for 
genes up-regulated after the induction of programmed cell 
death in prostate cancer cells [3]. Most studies of Par-4 focus 
on the apoptotic effect mediated by intracellular Par-4. The 
apoptotic effects of Par-4 are involved in the activation of 
the Fas death receptor signaling pathway and inhibition of 
cellular pro-survival mechanisms [4]. Recently, Rangnekar 
et al. reported that Par-4 protein is secreted by normal cells, 
and extracellular Par-4 induces cancer cell-specific apop-
tosis via interaction with the cell-surface receptor 78-kDa 
glucose-regulated protein (GRP78) [5].

Lysosomal membrane permeabilization (LMP) is defined 
as damage to the lysosomal membrane that causes the 
release of lysosomal contents into the cytosol and increase 
in cytosolic acidity [6]. Massive LMP induces necrotic cell 
death, while partial and selective LMP lead to apoptotic 
cell death [7]. Several papers have reported that tumor cell 
lysosomes are more fragile than normal lysosomes and are 
more susceptible to LMP [8]. Therefore, lysosomotropic 
agents induce LMP and result in lysosomal-dependent cell 
death, which may exert useful antitumor effects in apoptosis-
resistant cells.

In this study, we investigated whether arylquin 1 induces 
cell death and identified the molecular mechanism of 
arylquin 1-induced cell death in human renal carcinoma 
Caki cells.
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Materials and methods

Cell cultures and materials

American Type Culture Collection (Manassas, VA, USA) 
supplied all human cancer cells (renal carcinoma: Caki 
and ACHN, hepatocellular carcinoma: SK-Hep1, glioma: 
U87MG, breast carcinoma: MDA-MB-231) and normal 
mouse kidney cells (TCMK-1). Normal human kidney 
mesangial cells (MCs) were purchased from Lonza (Basel, 
Switzerland). Cells were grown in Dulbecco’s Modified 
Eagle Medium supplemented with 10% fetal bovine serum 
and 100 μg/mL gentamycin. R&D system (Minneapolis, 
MN, USA) supplied z-VAD-fmk, and Calbiochem (San 
Diego, CA, USA) supplied necrostatin-1 and N-acetyl-
cysteine (NAC). Enzo Life Sciences (Plymouth Meeting, 
PA, USA) supplied pepstatin A, PD98059, and SP600125, 
and Cayman Chemical (Ann Arbor, MI, USA) supplied 
E64D. Santa Cruz Biotechnology supplied anti-apoptosis-
inducing factor (AIF) (1:700, sc-5586), anti-cathepsin D 
(1:1000, sc-6486), anti-HSP70 (1:1000, sc-24), anti-Par-4 
(1:1000, sc-1807), and anti-Lamp1 (1:700, sc-5570) anti-
bodies (Dallas, TX, USA). Sigma Chemical Co. supplied 
anti-actin (1:10,000, A5441) antibody, glutathione ethyl 
ester (GEE), and arylquin 1 (St. Louis, MO, USA).

Cell viability assay

We performed an XTT assay to measure cell viability 
(WelCount™ Cell Viability Assay Kit, WelGENE, Daegu, 
Korea). After arylquin 1 treatment, 20 μL of XTT solution 
(1 mg/mL), containing phenazine methosulfate, was added 
to each well for 3 h and measured using a microtiter plate 
reader (Tecan Sunrise, Research Triangle Park, NC) at 
450 nm.

Small interfering RNA

Santa Cruz Biotechnology supplied small interfering RNA 
(siRNA) (Par-4 and AIF) (Dallas, TX, USA), and Bioneer 
supplied GFP (control) siRNA (Daejeon, Korea). We used 
 Lipofectamine® RNAiMAX Reagent (Invitrogen, Carlsbad, 
CA, USA) to transfect siRNA oligonucleotides.

Western blot analysis

Whole cell lysates were obtained as described previously 
using modified radioimmunoprecipitation assay lysis buffer 
[9]. Whole cell lysates were centrifuged at 13,000×g for 
15 min at 4 °C, and the supernatant was collected into new 
tubes. Proteins were separated using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis and transferred to an 
Immobilon-P membrane. After blocking using 5% skimmed 
milk in tris-buffered saline with Tween 20, specific proteins 
were detected using enhanced chemiluminescence.

Measurement of reactive oxygen species

We used 2′,7′-dichlorodihydrofluorescein diacetate 
 (H2DCFDA) to detect intracellular reactive oxygen spe-
cies (ROS) [10]. After treatment, cells were stained with 
 H2DCFDA for 10 min, and then washed with phosphate-
buffered saline (PBS) twice. Fluorescence of cells in PBS 
was measured using a flow cytometer (BD Biosciences, San 
Jose, CA, USA).

Measurement of LMP

To monitor lysosomal destabilization, we used LysoTraker 
Red. Caki cells were treated with arylquin 1 for the indicated 
time periods; the cells were then incubated with 2.5 μM 
of LysoTracker Red (Molecular Probes Inc., Eugene, OR, 
USA) for 5 min at 37 °C. The cells were then trypsinized and 
resuspended in PBS, and fluorescence was measured at spe-
cific time intervals using a flow cytometer (BD Biosciences, 
San Diego, CA, USA).

Fractionation of cytosol and membrane extracts

Cells were washed with ice-cold PBS, resuspended in cyto-
sol extraction buffer (250 mM sucrose, 10 mM KCl, 1.5 mM 
 MgCl2, 1 mM EDTA, 1 mM EGTA, 20 mM HEPES) con-
taining 250 μg/mL digitonin, and left on ice for 10 min; 
lysate was then centrifuged at 13,000×g for 90 s. The super-
natant (cytosol) was transferred to a new tube, and pellets 
(membrane fraction) were suspended with lysis buffer. 
Lysates were centrifuged at 13,000×g at 4 °C for 15 min to 
obtain the supernatant fractions that were collected as the 
membrane extract.

Stable transfection in Caki cells

pEGFP-HSP70 was a gift from Lois Greene (Addgene plas-
mid # 15215) [11]. The Caki cells were transfected in a sta-
ble manner with the pEGFP-HSP70 using Lipofectamine™ 
2000 as prescribed by the manufacturer (Invitrogen, Carls-
bad, CA, USA). After 48 h of incubation, transfected cells 
were selected in primary cell culture medium containing 
700 μg/mL G418 (Invitrogen, Carlsbad, CA, USA). After 2 
or 3 weeks, single independent clones were randomly iso-
lated, and each individual clone was plated separately. After 
clonal expansion, cells from each independent clone were 
tested for HSP70 expression by immunoblotting.
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Statistical analysis

The data were analyzed using one-way analysis of variance 
and post hoc comparisons (Student–Newman–Keuls) using 
the Statistical Package for Social Sciences 22.0 software 
(SPSS Inc., Chicago, IL, USA). The p values < 0.05 were 
considered significant.

Results

Effect of arylquin 1 on cell death in various cancer 
cells

Arylquin 1 was identified as a potent Par-4 secretagogue. 
We examined whether arylquin 1 induces cell death in mul-
tiple types of cancer cells. Arylquin 1 induced cell body 
shrinkage and cell detachment (Fig. 1a) and decreased cell 
viability in a dose-dependent manner (Fig. 1b). However, 
arylquin 1 had no effect on cell viability in normal cells 

[normal mouse kidney cells (TCMK-1) and normal human 
kidney MCs] (Fig. 1c, d). We chose the 2 μM arylquin 1, 
which causes cell death of 25–35% to identify the cell 
death mechanisms. Next, to investigate whether arylquin 
1-induced cell death is involved in apoptosis or necrop-
tosis, we used z-VAD-fmk (pan-caspase inhibitor) and 
necrostation-1 (a selective inhibitor of necroptosis). Both 
inhibitors did not affect arylquin 1-induced morphologi-
cal changes (cell body shrinkage and cell detachment) 
and reduction in cell viability (Fig. 2a, b). Pan-caspase 
inhibitor, z-VAD-fmk, did not block caspase-independent 
apoptosis. AIF is a critical regulator of caspase-independ-
ent apoptosis [12, 13]. Knock-down of AIF expression by 
siRNA did not confer morphological changes and cyto-
toxicity in arylquin 1-treated cells (Fig. 2c, d). Arylquin 1 
binds vimentin, displaces Par-4 from vimentin for secre-
tion, and triggers apoptosis of diverse cancer cells, but not 
normal cells [1]. Interestingly, we found that knock-down 
of Par-4 expression using siRNA had no effect on cyto-
toxicity in arylquin 1-treated cells (Fig. 2e). Therefore, 

Fig. 1  Arylquin 1 induces cell death in various cancer cells. a–d 
Cells were treated with the indicated concentrations of arylquin 1 for 
24 h. Cell morphology was examined using interference light micros-
copy (a, c). Cell viability was determined using the XTT assay (b, d). 

The values in b, d represent the mean ± SEM from three independent 
samples. *p < 0.05 compared to the control. SEM standard error of 
the mean
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these results indicate that arylquin 1 induces caspase- and 
Par-4-independent non-apoptotic cell death.

Influence of ROS signaling and paraptosis 
on arylquin 1‑induced cell death

We investigated whether ROS signaling is involved in 
arylquin 1-induced cell death. Arylquin 1 transiently induced 
ROS generation and then gradually decreased until 2 h in 
Caki cells (Fig. 3a). Pretreatment with ROS scavengers 
(NAC and GEE) did not block arylquin 1-induced morpho-
logical changes and cytotoxicity (Fig. 3b). Therefore, these 
results indicate that ROS signaling is not associated with 
arylquin 1-induced cell death. Paraptosis is a non-apoptotic 
cell death mode that is characterized by dilation of the 
endoplasmic reticulum and/or mitochondria [14]; protein 
synthesis and MAP kinases, including ERK and JNK, are 
associated with paraptosis [14, 15]. Pretreatment with pro-
tein MAP kinase inhibitors [MEK inhibitor (PD98059) and 
JNK inhibitor (SP600125)] did not affect arylquin 1-induced 

morphological changes and cytotoxicity (Fig. 3c, d). Taken 
together, these results indicate that paraptosis may not play 
a role in arylquin 1-induced cell death.

Effect of arylquin 1 on LMP

LMP can trigger lysosomal cell death such as non-pro-
grammed necrosis, lysosomal apoptosis, or cell death with 
apoptosis-like features [16]. First, we examined whether 
arylquin 1 induces LMP. Arylquin 1 markedly induced loss 
of lysosomal membrane integrity and released cathepsin D 
into the cytosol (Fig. 4a, b). In addition, inhibitors of cath-
epsins (pepstatin A and E64D) markedly inhibited arylquin 
1-induced cytotoxicity (Fig. 4c), suggesting that the cell 
death effects of arylquin 1 depend on the cytosolic release of 
lysosomal cathepsins. Nylandsted et al. reported that HSP70 
could inhibit LMP [17]. Overexpression of HSP70 inhibited 
the induction of morphological changes (cell body shrinkage 
and cell detachment) and reduction in cell viability (Fig. 4d, 

Fig. 2  Arylquin 1-induced cell death is independent of caspase, AIF, 
and Par-4. a, b Caki cells were pretreated with 20  μM z-VAD and 
60 μM necrostatin-2 for 30 min, and then treated with 2 μM arylquin 
1 for 24  h. c, d Caki cells were transiently transfected with control 
siRNA (siCont) and AIF siRNA (siAIF). After 24 h, Caki cells were 
treated with 2 μM arylquin 1 for 24 h. e Caki cells were transiently 
transfected with control siRNA (siCont) and Par-4 siRNA (siPar-4). 

After 24  h, Caki cells were treated with 2  μM arylquin 1 for 24  h. 
The cell morphology was examined using interference light micros-
copy (a, c). Cell viability was determined using the XTT assay (b, 
d, e). The protein expression levels of AIF, Par-4, and actin were 
determined by western blotting. The values in b, d, e represent the 
mean ± SEM from three independent samples. *p < 0.05 compared to 
the control
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e). Taken together, these results indicate that LMP may play 
a role in arylquin 1-induced cell death.

Discussion

In this study, we identified that arylquin 1, a Par-4 secre-
tagogue, induces LMP-mediated non-apoptotic cell death 
in various cancer cells. A previous study identified the 
potent cytotoxic activity of arylquin 1 through Par-4 secre-
tion, which induces caspase-dependent apoptosis in a panel 
of cancer cell lines. In the present study, we identified 
that arylquin 1 specifically induced LMP and that it was 
associated with arylquin 1-mediated cell death. Arylquin 
1-induced cell death was not inhibited by apoptosis inhibi-
tors (z-VAD), necroptosis inhibitors (necrostatin-1), and 
paraptosis inhibitors. Interestingly, HSP70 overexpression 
and cathepsin inhibitors attenuated arylquin 1-induced cell 
death. Our results suggest that arylquin 1 induces LMP-
dependent non-apoptotic cell death (Fig. 4f).

Low concentrations of arylquin 1 (500 nM) did not induce 
cell death in normal cells and cancer cells, except for PC3 
cells [1]. However, arylquin 1 (500 nM) induced cell death 
in cancer cells when it was co-cultured with normal cells 
and cancer cells. Arylquin 1 induced paracrine apoptosis 
in cancer cells through Par-4 secreted by normal cells [1]. 
The localization of Par-4 showed different biological effects 
on cells. Intracellular Par-4 plays a role in the inhibition of 
pro-survival pathways [18] and activation of Fas-mediated 
apoptosis [4]. Interestingly, extracellular (secreted) Par-4 
acts via the paracrine system, which binds to cell surface 
GRP78, leading to activation of the extrinsic apoptotic 
pathway [5]. Importantly, arylquin 1-induced cell death 
did not correlate with Par-4 expression/secretion in the pre-
sent study because knock-down of Par-4 by siRNA did not 
affect cytotoxicity in arylquin 1-treated cells (Fig. 2e). We 
explored whether arylquin 1 directly induced cell death in 
various cancer cells. Pan-caspase inhibitor z-VAD, necrop-
tosis inhibitors, paraptosis inhibitors, and knock-down of 
AIF by siRNA did not inhibit arylquin 1-induced cell death 
in human renal Caki cells (Figs. 2, 3). To clarify the role of 

Fig. 3  Reactive oxygen species and paraptosis are not involved in 
arylquin 1-induced cell death. a Caki cells were treated with 2  μM 
arylquin 1 for the indicated time periods. After treatment, cells were 
stained with  H2DCFDA dye. Fluorescence was detected using flow 
cytometry. b Caki cells were pretreated with 5 mM NAC and 2 mM 
GEE for 30 min, and then cells were treated with 2 μM arylquin 1 for 
24 h. Cell viability was determined using the XTT assay. c, d Caki 

cells were pretreated with 50  μM PD98059 and 10  μM SP600125 
for 30 min, and then added with the 2 μM arylquin 1 for 24 h. Cell 
morphology was examined using interference light microscopy (c). 
Cell viability was determined using the XTT assay (d). The values 
in a, b, d represent the mean ± SEM from three independent samples. 
*p < 0.05 compared to the control
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LMP in arylquin 1-induced cell death, lysosomal function 
was further assessed by measuring LMP. For the first time, 
we showed that arylquin 1 induced LMP, resulting in the 
release of the lysosomal enzyme cathepsin D in Caki cells 
(Fig. 4a, b). LMP can also be induced by various stimuli. 
ROS are one of the major triggers of LMP. Pretreatment 
with ROS scavengers did not block arylquin 1-induced cyto-
toxicity; thus, arylquin 1-induced ROS was not associated 
with arylquin 1-mediated cell death (Fig. 3b). It is difficult 
to determine the major source of LMP in arylquin 1-treated 
cells. Therefore, further investigation is required to under-
stand the exact mechanism of arylquin 1-induced cell death. 
In addition, it would be interesting to study how arylquin 1 
induces LMP independently via ROS function.

In conclusion, our results support that arylquin 1 
induces non-apoptotic cell death through the induction of 
LMP in human renal carcinoma cells.
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