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The cellular function of SCAP in metabolic
signaling
Sun Hee Lee1, Jae-Ho Lee1 and Seung-Soon Im 1

Abstract
Sterol regulatory element binding protein (SREBP) cleavage activating protein (SCAP) is a key regulator of SREBP
maturation. SCAP induces translocation of SREBP from the endoplasmic reticulum to the Golgi apparatus, allowing it to
regulate cellular triglyceride and cholesterol levels. Previous studies have shown that suppression of SREBP activation
in SCAP conditional knockout mice reduced the accumulation of intracellular triglycerides, which eventually causes the
development of metabolic diseases such as atherosclerosis, diabetes, hepatic steatosis, and insulin resistance. However,
despite the significance of SCAP as a regulator of SREBP, its function has not been thoroughly discussed. In this review,
we have summarized the function of SCAP and its regulatory proteins. Furthermore, we discuss recent studies
regarding SCAP as a possible therapeutic target for hypertriglyceridemia and hyperlipidemia.

Introduction
Sterol regulatory element binding protein (SREBP)

cleavage-activating protein (SCAP) plays an important
role in regulating triglyceride and cholesterol levels in the
body1. SCAP is an endoplasmic reticulum (ER) sterol-
sensing protein that chaperones SREBP-1 and SREBP-2
from the ER to the Golgi apparatus2. In the Golgi, two
proteases, site-1 protease (S1P) and site-2 protease (S2P)
release the N-terminus of SREBP in a two-step proteolytic
process, thereby allowing its entry into the nucleus3.
However, cholesterol buildup in ER membranes prevents
the exit of SCAP/SREBP complexes, subsequently abort-
ing the proteolytic processing of SREBPs and leading to a
decrease in the transcription of target genes4. Although
SCAP plays an important role in the regulation of SREBP
activity, intracellular fatty acid homeostasis and choles-
terol synthesis, studies on SCAP are insufficient, and few
review articles are available. Therefore, this review will
discuss the various roles of SCAP in lipogenesis and the
inflammatory response as well as newly discovered
antagonists of SCAP as putative therapeutic targets for
hypertriglyceridemia and hypercholesterolemia.

Molecular features of SCAP
SCAP (≈140 kDa) is a polytopic membrane protein

composed of 1276 amino acids and can be divided into
two functional regions5: the transmembrane N-terminal
region and a soluble C-terminal domain that consists of
multiple copies of a WD40 repeat motif to aid
protein–protein interactions (Fig. 1a)6. The former region
is composed of approximately 735 amino acids and
functions to mediate membrane attachment5. It contains
eight transmembrane helicases (TMs) organized into
eight α-helices separated by hydrophilic loops7,8. These
TMs are linked by four small and three large hydrophilic
loops9. Two large rings (loops 1 and 7) are in the ER
lumen, while the other large rings (loop 6) face the cytosol
to combine with the coat protein II (COPII) protein to
move towards the Golgi10. Cholesterol binding to loop 1
changes the composition of loop 6 to exclude COPII
binding and prevent the exit of SCAP from the ER9. The
latter domain, containing approximately 540 amino acids,
extends into the cytosol and includes at least four WD
repeat sequences that mediate its binding to SREBPs7.
The SCAP protein forms a homotetramer with its mem-
brane region to form a stable complex with SREBF1/
SREBP1 or SREBF2/SREBP2 through its C-terminal
cytoplasmic domain11. The translocation machinery of
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SCAP containing SREBP is regulated by the intracellular
sterol concentration.
At high sterol concentrations, SCAP forms a ternary

complex with insulin-induced gene (INSIG) via its
transmembrane domains and interacts with the Sec23/24
complex in a SAR1-GTP-dependent manner through an
ER export signal in its third cytoplasmic loop. Cholesterol
buildup in ER membranes exceeding a threshold of 4–5%
of the total lipid levels causes sterol binding to SCAP,
which triggers a conformational change that, in turn,
causes SCAP to bind to insulin-induced gene (INSIG)
proteins (Fig. 1b)12,13. The addition of sterols to either
intact cells or isolated membranes triggers SCAP binding

to INSIGs3. The importance and role of INSIG were first
discovered when the membrane domain of SCAP was
overexpressed in cells via transfection8. Under these
conditions, endogenous INSIGs became saturated, and
sterols no longer prevented transport from the ER to
Golgi14. When INSIGs bind SCAP, which is mediated by
helices 2-6, binding of the Sec23/24-Sar1 complex is
prohibited, consequently preventing SCAP from binding
SREBP, resulting in suppression of movement from the
ER3. Loop 6 of the N-terminal regions of SCAP facing the
cytosol contains the hexapeptide sequence methionine-
glutamic acid-leucine-alanine-aspartic acid-leucine
(MELADL), which acts as the binding site for COPII
proteins. The basic functional units of COPII coat pro-
teins are Sar1, Sec23/24 and Sec13/3115. When sterols
such as cholesterol and 25-hydroxycholesterol are used to
treat cells, the lateral movement of SREBPs into COPII-
coated vesicles is obstructed on ER membranes, thereby
preventing SREBP maturation to suppress cholesterol
synthesis16. To understand the molecular mechanisms by
which sterols block the binding of COPII proteins to the
SCAP–SREBP complex, however, it is necessary to
establish an in vitro system in which this binding can be
blocked by the addition of sterols to isolated membranes
rather than to pre-incubated cells16. The feasibility of this
assay is reinforced by findings that demonstrate the
requirement of INSIGs, resident proteins of the ER that
function as anchors, for sterol-mediated inhibition of
SCAP/SREBP transport17. Otherwise, under sterol-
depleted conditions, the SCAP/SREBP complex exits the
ER by budding from the ER membranes18. SCAP mediates
this exit using the general mechanisms defined for yeast
and mammalian membrane proteins that move from the
ER to the Golgi19.

Roles of SCAP in lipid metabolism
SREBPs are transcription factors involved in regulating

the synthesis and uptake of fatty acids and cholesterol
through activating their processing mechanism by SCAP
in mammalian cells (Fig. 2)20. In these cells, the synthesis
of cholesterol and other lipids is governed by the lateral
transfer of a membrane-embedded protein complex into
coated vesicles, which then move from the ER to the
Golgi21. Upon entering the nucleus, the NH2-terminal
domains of SREBPs activate the transcription of several
genes that encode proteins involved in cholesterol
synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-CoA synthase
[HMG-CoA synthase], HMG-CoA reductase, farnesyl
diphosphate synthase, squalene synthase, and others),
cholesterol uptake (low-density lipoprotein receptor
[LDLR]), fatty acid synthesis (acetyl-CoA carboxylase,
fatty acid synthase, and stearoyl-CoA desaturase), and
triglyceride synthesis (glycerol-3-phosphate acyltransfer-
ase)2. Sterols hinder the proteolytic cleavage of SREBP
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Fig. 1 Schematic model of the domain organization and
processing mechanism of SCAP. a SCAP proteins consist of an
amino-terminal domain of eight transmembrane helices and a
carboxyl-terminal WD40 domain. Transmembrane helices 2-6 of SCAP
constitute a sterol-sensing domain. b When mammalian cells are
deprived of cholesterol, SCAP escorts SREBPs in COPII vesicles from
the ER to the Golgi. Two Golgi proteases (S1P and S2P) then
sequentially cleave SREBPs. The NH2-terminal region of SREBPs moves
to the nucleus and activates the transcription of target genes. To date,
SREBPs are known to directly enhance the transcription of more than
30 genes needed for the uptake and synthesis of cholesterol, fatty
acids, triglycerides, and phospholipids. Despite acting in diverse
biosynthetic pathways, the activity of each SREBP isoform is regulated
by sterols and SCAP. COPII, coat protein II; ER, endoplasmic reticulum;
INSIG, insulin-induced gene; S1P, site-1 protease; S2P, site-2 protease;
SCAP, SREBP cleavage-activating protein; SRE, sterol regulatory
element; SREBP, Sterol regulatory element-binding protein.
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precursors, resulting in downregulated transcription of
these genes7. Then, it allows cells to maintain a constant
membrane composition despite large changes in choles-
terol demand22.
INSIG1 and INSIG2 mediate the feedback control of

lipid synthesis by sterol-dependent binding to SCAP23,24.
The role of SCAP and INSIGs in activating SREBPs has
been demonstrated in previous studies25. Briefly, the
SCAP pathway plays a crucial role in feedback regulation
of lipid metabolism and may be involved in the develop-
ment of obesity. In a previous study, liver-specific loss of
SCAP in high-fat diet-fed obese mice inhibited hepatic de
novo lipogenesis and prevented hepatosteatosis, demon-
strating the singularly important role for SREBPs relative
to other nutritionally stimulated lipogenic factors26. An
abnormal increase in de novo lipogenesis has been sug-
gested to contribute to the pathogenesis of non‐alcoholic
fatty liver disease27, a highly prevalent metabolic disease
that is linked to the development of type 2 diabetes
mellitus28.

The roles of SCAP in inflammation
Cholesterol is an essential lipid in various biological

processes, and the pivotal role of SCAP as a cholesterol

sensor in the regulation of intracellular cholesterol
homeostasis is well established8,29. Cholesterol deposition
in dendritic cells stimulates the development of auto-
immunity, possibly at the transcriptional level, through
the nucleotide-binding oligomerization domain, leucine
rich repeat and pyrin domain containing protein 3
(NLRP3) inflammasome30,31. The SCAP-SREBP2 complex
promotes NLRP3 inflammasome activation, which is
mainly dependent on its ER-to-Golgi translocation rather
than an effect on cholesterol homeostasis. Mechan-
istically, NLRP3 associates with the SCAP-SREBP2 com-
plex to form a ternary complex, which then translocates
to the Golgi apparatus adjacent to a mitochondrial cluster
for optimal inflammasome assembly32. In addition, SCAP-
SREBP2 plays a role as a signaling center that integrates
the inflammatory response and cholesterol metabolism in
macrophages32. Ouyang et al. reported that the over-
expression of SCAP induced cholesterol synthesis, while
its knockdown reduced lipid accumulation in THP-1
human macrophages. Moreover, the overexpression of
SCAP increased the levels of tumor necrosis factor α
(TNFα), interleukin (IL)-1β and Monocyte Chemoat-
tractant Protein-1 (MCP-1) production33. SCAP dys-
function in THP-1 human macrophages was found to
affect the expression of inflammatory cytokines and lipid
metabolism when the loss of SCAP significantly reduced
expression levels of the TNFα, IL-1β and MCP-1 genes.
However, a controversial study demonstrated that dys-

functional SCAP stimulates an inflammatory response in
THP-1 cells34. Suppression of the intracellular cholesterol
content in THP-1 macrophages did not affect the
expression of inflammatory cytokines, suggesting that the
SCAP-mediated inflammatory response was independent
of the regulation of cholesterol synthesis33. Furthermore,
in a recent study regarding the molecular mechanisms of
crosstalk between the inflammatory response and dysli-
pidemia, the loss of SCAP attenuated lipopolysaccharide-
stimulated IκB phosphorylation in human macrophages
and decreased the level of p65 in the nucleus, suggesting
that SCAP dysfunction stimulates the inflammatory
response by activating the NF-κB signaling pathway33.
These results indicated that the function of SCAP in
inflammation is independent of its role in lipid
metabolism.
Inflammation disrupts the feedback regulation of LDLR

to stimulate foam cell formation in macrophages35. SCAP
recycling is a key process in the feedback regulation of
LDLR and HMG-CoA reductase by controlling SCAP
glycosylation in the Golgi36. In macrophages treated with
inflammatory cytokines, mRNA and protein expression
levels of mannosidase II were increased by accumulating
lipid droplets and induced activation of the SREBP2/
LDLR pathway37. SCAP glycosylation may prevent the
degradation of SCAP and prolong its half-life, thereby
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Fig. 2 The function of SREBP-SCAP in lipid metabolism. Activation
of SCAP–SREBP as the master regulator of lipid metabolism stimulates
the transcription of enzymes required for de novo lipogenesis and
receptors that mediate the uptake of fatty acids released by lipolysis.
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facilitating increased SCAP recycling and activating the
SREBP2/LDLR pathway.
The role of SCAP/SREBPs in the innate immune system

in the context of viral, but not bacterial stimuli, was
previously studied using lysozyme 2-Cre-mediated selec-
tive deletion of SCAP in macrophages (LysM-SCAP−/−

mice)38. LysM-SCAP−/− mice were reported to be resis-
tant to respiratory infection with MHV-68 and

demonstrated increased expression of interferon-
stimulated genes (ISGs) in the lung. As expected, cho-
lesterol and fatty acid synthesis were reduced in SCAP-
deficient macrophages. In cultured cells in which cho-
lesterol synthesis was inhibited due to SCAP deficiency,
interferon signaling was improved, and the levels of the
ISGs interferon β (IFNβ) 1, myxovirus resistance (Mx)1,
Mx2, and chemokine (C-C motif) ligand 2 (Ccl2) were
dramatically increased38. Conversely, IFNβ down-
regulated the intracellular synthesis of cholesterol in
macrophages39. The connection between IFNβ signaling
and SCAP was further investigated using in vivo siRNAs
targeting SCAP to reduce its level in the liver and leu-
kocyte cells40. Compared to LysM-SCAP−/− mice, an
animal model treated with SCAP siRNAs was more vul-
nerable to viral infection and contained decreased plasma
levels of IFNβ38. SCAP interference suppressed the
expression of the ISGs, IFNα4, IFNβ1, and C-X-C motif
chemokine 10 in virus-exposed macrophages41.
In the study on SREBP function in the adaptive immune

system, SCAP was selectively deleted in T cells using Cd4-
Cre (Cd4-SCAP−/− mice)42. T cells derived from Cd4-
SCAP−/− mice failed to increase their levels of cholesterol
and FAs after mitogen stimulation compared to wild-type
mice41. Mitogen-stimulated SCAP-deficient T cells failed
to enter the S phase of the cell cycle and thus could not
proliferate. This defect was prevented by the addition of
exogenous cholesterol41,43.

Synthetic antagonists of SCAP
To date, several drugs that inhibit lipid and cholesterol

synthesis have been developed44–46. Among them, fatos-
tatin, betulin and xanthohumol suppress SCAP/SREBP
translocation47. The small synthetic molecule 125B11,
named fatostatin, is an organic antagonist of SCAP (Fig.
3a). By binding to SCAP48, fatostatin inhibits the dis-
sociation of SCAP from INSIGs, thereby restricting the
translocation of SREBPs to the ER and subsequently
reducing lipogenesis and fat accumulation in obese
mice48–50. In a previous study, fatostatin was one of the
compounds that prevented insulin-induced fat production
in the library of 10,000 compounds51. To obtain infor-
mation about the specific molecular pathways affected by
fatostatin, DU145 cells were treated with fatostatin, and
extracted mRNA samples were analyzed by Affymetrix
DNA microarray mapping of 33,000 genes48. Among the
reduced genes, the ratios of genes associated with SCAP at
high levels were analyzed. Using modified fatostatin
derivatives, fatostatin was found to interact with ER pro-
teins, and the direct interaction between SCAP and
fatostatin was confirmed through binding analysis.
Kamisuki et al. demonstrated that fatostatin directly
interacts with an NH2-terminal fragment of SCAP (amino
acids 1-448) including its sterol-binding domain48.

Fatostatin structure

Betulin structure

Xanthohumol structure

a
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c

Fig. 3 Small-molecule inhibitors of the SCAP-SREBP complex. a
Fatostatin is a chemical inhibitor of the SREBP pathway that directly
binds SCAP and blocks its ER-to-Golgi transport. b Betulin enhances
the binding of SCAP with INSIGs, thereby promoting the retention of
SREBPs in the ER. c Xanthohumol, a prenylated flavonoid in hops, is an
antagonist of SREBP.
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Furthermore, previous studies have suggested that fatos-
tatin prevents insulin-induced adipogenesis of 3T3-L1
cells51 and inhibits glucose-mediated activation of TGF-β
in primary rat mesangial cells by inhibiting SCAP
activity34.
Similarly, betulin binds SCAP and enhances its inter-

action with INSIGs to suppress SCAP/SREBP transloca-
tion (Fig. 3b)44. To identify small-molecule inhibitors of
the SREBP pathway, various compounds were used to
treat Huh7 cells44. Interestingly, betulin efficiently
decreased the promoter activity of target genes. Further-
more, betulin stimulated the interaction between SCAP
and INSIG-1, demonstrating its mechanism of action.
Betulin reduces the activity of genes related to cholesterol
and fatty acid biosynthesis and prevents the build-up of
intracellular lipids. In diet-induced obese mice, betulin
increased insulin sensitivity and reduced cholesterol and
triglyceride levels44.
Another novel SCAP/SREBP inhibitor is xanthohumol,

a prenylated flavonoid extracted from hops (Fig. 3c)49,52.
To identify xanthohumol as a new SCAP/SREBP-inactive
agent, numerous food ingredients were screened46. Xan-
thohumol was found to inhibit SREBP activity in Huh7
cells. In addition, in diet-induced obese mice, dietary
xanthohumol reduced SCAP/SREBP target gene expres-
sion in the liver, thereby reducing the mature form of liver
SREBP-1, which inhibited the development of obesity and
hepatic steatosis. Xanthohumol inhibits triglyceride
synthesis and apolipoprotein B secretion associated with
the inactivation of diacylglycerol acyltransferase 1 and
microsomal triglyceride transfer protein45. Xanthohumol
interacts with Sec23/24 and blocks sorting of the SCAP/
SREBP complex into COPII vesicles, thereby suppressing
the ER-to-Golgi translocation of the complex46. Dietary
xanthohumol inhibits the maturation of SREBP and
transcription of its target genes46. Xanthohumol con-
tributes to the amelioration of diet-induced obesity and
fatty liver53. However, putative drugs that directly target
SCAP have been still discovered.

Concluding remarks
SCAP, a regulator of SREBP, controls the intracellular

biosynthesis of cholesterol, fatty acids and triglycerides.
SCAP-mediated hyperlipidemia and hypertriglyceridemia
are directly related to metabolic diseases such as arterio-
sclerosis, obesity, and type II diabetes. These metabolic
diseases secondary to high-calorie diets and hyperlipide-
mia are becoming a global problem. Therefore, SCAP
presents a promising target for pharmacologic suppres-
sion in the treatment of metabolic diseases.
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