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Dear Sir:

The accurate prediction of functional recovery after a stroke is 
essential for post-discharge treatment planning and resource 
utilization. Recently, machine learning (ML) algorithms with 
baseline clinical variables have demonstrated better perfor-
mance for predicting the functional outcome of ischemic 
stroke compared with preexisting scoring systems developed by 
conventional statistics.1,2 However, most studies compared 
model performance by area under curve (AUC) only, and ML 
and conventional statistical approaches were not sufficiently 
evaluated in terms of the reliability and clinical utility.3 We 
aimed to compare the performance of the ML with that of the 
conventional logistic regression (LR) model by evaluating accu-
racy, reliability, and clinical utility using AUC comparison, cali-
bration, and decision curve analysis to predict the outcome of 

a stroke using KOrean Stroke Neuroimaging Initiative (KOSNI) 
database.

Using clinical variables measurable at admission (Supple-
mentary methods 1), we used various ML algorithms including 
deep learning (DL), support vector machine (SVM), random for-
est (RF), XGboost (XGB), and conventional LR models for pre-
dicting 3-month modified Rankin Scale (mRS) >2 or 1 (Supple-
mentary methods 2). Receiver operating characteristic (ROC) 
curve analysis was performed to evaluate the sensitivity and 
specificity of each model across each decision threshold. Cali-
bration was evaluated using a reliability diagram and expected 
calibration error (ECE) to assess the reliability of estimates be-
tween the predicted and actual outcomes.4 The decision curve 
analysis was constructed to assess the clinical utility of various 
developed models (Supplementary methods 3).5 

Six thousand seven hundred thirty-one patients included 
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from 10 tertiary stroke centers in South Korea. This study was 
approved by the Institutional Review Boards of all participating 
institutions and comprehensive written informed consent was 
obtained from patients enrolled in the prospective study. Four 
thousand seven hundred nine (70%) of the datasets from the 
former part in the order of admission date were used for train-
ing, whereas the remaining 2,019 (30%) from the latter were 
used as a test set for evaluating the final performance. The 
baseline characteristics stratified by the outcomes were sum-
marized in Supplementary Table 1.

When the predictive ability was compared with the LR model 
(AUC of the ROC curve: 0.860 for predicting mRS >2; 0.831 for 
predicting mRS >1), DL achieved AUC of 0.864 for predicting 
mRS >2 (P=0.11) and 0.834 for predicting mRS >1 (P=0.06), 
which was not statistically different. The AUC of SVM, RF, and 
XGB were 0.871 (P<0.001), 0.870 (P=0.01), and 0.871 (P<0.01) 
for mRS >2, 0.838 (P<0.001), 0.844 (P<0.001), and 0.843 
(P<0.001) for mRS >1 respectively, which demonstrated better 
performance than the LR model (Figure 1). The detailed confu-
sion matrix and accuracy are described in Supplementary Table 
2. In the reliability diagram, the ECE values of SVM was the 
lowest for predicting both mRS >2 (0.020) and mRS >1 (0.037), 
suggesting that the SVM model was the most calibrated (Fig-
ure 2). The decision curve analysis indicated that the level of 
clinical benefit throughout the risk thresholds were similar for 

various ML and LR models (Figure 2).
Our study shows that ML models had better discriminated 

power evaluated by AUC and reliability in predicting clinical 
outcome after a stroke than conventional LR models. It should 
be noted that, however, both ML and LR models demonstrated 
moderate-to-good performances, and ML model did not out-
perform LR models in terms of clinical utility. 

This study has the advantage that we evaluated reliability 
and clinical utility of the models in addition to discriminated 
power comparison. The assessment of the agreement between 
the predicted and actual outcomes on the calibration plot is a 
requisite for model validation.6 Also clinical net benefit needs 
to be evaluated using decision curve analysis.7 The results indi-
cate ML was also comparable or superior to LR in terms of reli-
ability and clinical net benefit. 

ML is effective in dealing with wide data where the number 
of variables per study subjects is relatively large and interac-
tions between variables exist.8 Introducing mixed-media data 
including image (computer tomography, magnetic resonance 
imaging), biosignal data acquired from continuous monitoring 
(blood pressure, heart rate, electrocardiography, and electroen-
cephalography) in the analysis in addition to clinical variables 
with numeric, symbolic features may enable us to develop 
more accurate predictive ML model.9 Training to predict an 
outcome with strong signal-to-noise ratio rather than an out-
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Figure 1. Receiver operating characteristic curve of classifiers to predict modified Rankin Scale (mRS) >2 (A) and mRS >1 (B). The P-value was calculated us-
ing DeLong’s test for the curve of logistic regression (LR) and the machine learning model. AUC, area under curve; DL, deep learning; SVM, support vector ma-
chine; RF, random forest; XGB, XGBoost. 
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come of poor signal-to-noise ratio such as clinical outcome 
prediction may also improve performance power of ML.3 

The limitation of our study is that we only use baseline clini-
cal variables and treatment-related factors were not included 
for model construction. Variables associated with acute stroke 
management to prevent stroke progression or recurrence and 
patient’s will for active rehabilitation could have a significant 
impact on functional recovery.

In conclusion, our study revealed that ML algorithms using 
baseline clinical parameters had better accuracy, reliability, and 
similar clinical net benefits to the traditional LR models in pre-
dicting functional recovery after an acute ischemic stroke. 

Supplementary materials

Supplementary materials related to this article can be found 
online at https://doi.org/10.5853/jos.2020.02537.
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Supplementary Table 1. Characteristics of patients based on outcomes 

Characteristic
Total

(n=6,728)
3-month mRS: 0–2 

(n=4,850)
3-month mRS: 3–6 

(n=1,878)
P* NA†

Age (yr) 66.8±12.7 64.6±12.5 72.8±11.3 <0.001 0;1

Male sex 4,074 (60.6) 3,147 (64.9) 927 (49.4) <0.001 0;0

Hypertension 4,434 (65.9) 3,074 (63.4) 1,360 (72.5) <0.001 3;1

Diabetes 2,275 (33.8) 1,501 (31.0) 774 (41.2) <0.001 5;1

Hyperlipidemia 2,658 (39.5) 1,931 (39.8) 727 (38.7) 0.417 4;1

Current smoker 2,370 (35.5) 1,836 (38.1) 534 (28.7) <0.001 27;16

Previous stroke including TIA 938 (14.0) 590 (12.2) 348 (18.6) <0.001 6;4

BMI (kg/m2) 23.9±3.4 24.1±3.4 23.2±3.5 <0.001 31;29

Initial systolic BP (mm Hg) 147.3±26.8 147.6±26.7 146.7±27.2 0.266 10;9

Initial diastolic BP (mm Hg) 86.7±15.7 87.2±15.7 85.3±15.5 <0.001 11;6

Hematocrit (%) 40.4±5.1 41.0±4.9 39.0±5.6 <0.001 23;12

Hemoglobin (g/dL) 13.8±2.0 14.0±1.9 13.3±2.1 <0.001 5;4

Initial glucose (mg/dL) 148.3±72.1 145.3±68.4 156.2±80.6 <0.001 4;3

Creatinine (mg/dL) 1.0±0.9 1.0±0.9 1.0±1.0 0.004 7;6

Total cholesterol (mg/dL) 177.6±43.9 178.2±42.8 176.0±46.4 0.069 31;28

HDL-C (mg/dL) 45.7±12.6 45.6±12.5 46.1±13.0 0.126 79;61

LDL-C (mg/dL) 112.8±41.2 113.4±41.5 111.2±40.3 0.040 44;44

Admission NIHSS 3 (1–5) 2 (1–4) 6 (4–12) <0.001 11;9

Pre-onset mRS 0 (0–0) 0 (0–0) 0 (0–2) <0.001 33;20

Duration between onset and admission (hr) 12.0±6.6 12.3±6.5 11.3±6.8 <0.001 0;0

High risk of cardiac embolic sources 1,175 (17.6) 730 (15.2) 445 (23.9) <0.001 39;19

TOAST classification

Large-artery atherosclerosis 1,766 (27.0) 1,192 (25.4) 574 (31.1) <0.001 154;33

Cardioembolism 1,258 (19.2) 793 (16.9) 465 (25.2)

Small-vessel occlusion 1,835 (28.1) 1,484 (31.6) 351 (19.0)

Other determined etiology 371 (5.7) 304 (6.5) 67 (3.6)

Undetermined etiology 1,311 (20.0) 923 (19.7) 388 (21.0)

Values are presented as mean±standard deviation, number (%), or median (interquartile range). 
mRS, modified Rankin Scale; NA, not available; TIA, transient ischemic attack; BMI, body mass index; BP, blood pressure; HDL-C, high-density lipoprotein cho-
lesterol; LDL-C, low-density lipoprotein cholesterol; NIHSS, National Institutes of Health Stroke Scale; TOAST, trial of ORG 10172 in acute stroke treatment.
*P-values were calculated using t-test for continuous variables and chi-square test for categorical variables; †The column titled “NA” represents the number of 
missing values in the groups of 3-month mRS 0–2 and 3–6.
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Supplementary Table 2. Confusion matrix and accuracy

Variable True positive* False negative* False positive* True negative* Accuracy (%)†

Classification of 3-month mRS >2

Logistic regression 405 (20.1) 108 (5.3) 352 (17.4) 1,154 (57.2) 77.2

Deep neural network 383 (19.0) 130 (6.4) 258 (12.8) 1,248 (61.8) 80.8

Support vector machine 393 (19.5) 120 (5.9) 293 (14.5) 1,213 (60.1) 79.5

Random forest 386 (19.1) 127 (6.3) 248 (12.3) 1,258 (62.3) 81.4

XGBoost 397 (19.7) 116 (5.7) 279 (13.8) 1,227 (60.8) 80.4

Classification of 3-month mRS >1

Logistic regression 590 (29.2) 206 (10.2) 281 (13.9) 942 (46.7) 75.9

Deep neural network 592 (29.3) 204 (10.1) 269 (13.3) 954 (47.3) 76.6

Support vector machine 559 (27.7) 237 (11.7) 223 (11.0) 1,000 (49.5) 77.2

Random forest 615 (30.5) 181 (9.0) 280 (13.9) 943 (46.7) 77.2

XGBoost 596 (29.5) 200 (9.9) 265 (13.1) 958 (47.4) 77.0

mRS, modified Rankin Scale.
*The value represents frequency in the test set (n=2,019) and its percentage is given in parentheses; †The accuracy (percentage) is calculated at optimal 
threshold maximizing Youden index. 
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Supplementary methods 1. Selection of 
variables which were used as input for 
model

The input features for predictive models included only clinical 
variables measurable at admission. List of the variables and de-
tailed counts of missing variables are listed in Supplementary 
Table 1. The missing values were substituted by Multivariate 
Imputation by Chained Equations (MICE).1,2 In addition, predic-
tors were excluded if they were found to have multicollinearity 
by a variance inflation factor before model development. Full 
lists of the variables which were used as input for model are as 
follows: age, sex, hypertension, diabetes, high risk of cardiac 
embolic sources, hyperlipidemia, current smoker, previous 
stroke including transient ischemic attack, initial systolic blood 
pressure (BP), initial diastolic BP, hematocrit, initial glucose, 
total cholesterol, high-density lipoprotein cholesterol, National 
Institutes of Health Stroke Scale (NIHSS) at admission, dura-
tion between onset and admission, body mass index, and trial 
of ORG 10172 in acute stroke treatment (TOAST) classification.

Supplementary methods 2. 
Developments of model

Predictive models were constructed using logistic regression 
(LR) and machine learning (ML) algorithms including deep 
learning (DL), radial-kernel support vector machine, random 
forest, and XGBoost. Multiple LR analyses were performed with 
stepwise model selection using the Akaike information criterion 
(AIC). The DL model used in this study had the structure of a 
deep feed-forward neural network, also known as the multi-
layer perceptron. The targeted encoding scheme was used to 
convert a categorical variable into binary features, and stan-
dardization was employed to normalize continuous variables 
when constructing ML models except for random forest and 
XGBoost.3 As the performance of models derived from the 
same algorithms can vary according to the settings of the vari-
ous hyperparameters, we tuned them by searching the best 
sets using 3-fold cross-validation and a random search strate-
gy. Cross-entropy which is weighted with class frequency was 
used as a loss function. In a post-processing, temperature scal-
ing and isotonic regression was applied to help the neural net-
work and the other ML models to calibrate, respectively.4,5 The 
models and strategies were implemented on Python 3.7.3 with 
the Scikit-learn and Skorch library.6,7 

Supplementary methods 3. Evaluation 
of reliability and clinical benefit

We used expected calibration error (ECE) for quantitative as-
sessment of calibration. ECE is the average of all gaps between 
the actual and predicted probabilities in each bin, as depicted 
in a reliability diagram.8 More precisely,

actual(Bm)-predicted(Bm)|,ECE=Σ M
m=1

|Bm| |
n

where actual(Bm) is the observed frequency (probability) of 
the favorable outcome in the mth bin and predicted(Bm) is the 
average of the predicted probabilities in the mth bin. If the 
predictive model is perfectly calibrated, predicted probability is 
equal to actual probability, resulting ECE value becomes zero. If 
the model is overconfident, the predicted probability will be 
out of the actual probability, resulting ECE value becomes 
large. In this study, each bin has the same number of samples; 
i.e., 10-quantile binning. We did not perform an additional sta-
tistical test, Hosmer-Lemeshow test, to assess agreement be-
tween actual and predicted probabilities as Moons et al.9 were 
recommended.

We constructed decision curve analysis to assess the clinical 
utility of different decision tools, which shows net benefit 
across probability thresholds.10 When none of the diagnosis or 
treatment strategy would apply (none-strategy), it has no ben-
efit (e.g., early detection of disease) and no cost or harms (e.g., 
superfluous exposure to radiation in person without disease).11 
On the other hand, for instance, some discrimination allows 
the population to have more benefits than a case that all the 
patients are diagnosed with some disease (all-strategy).
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