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Simple Summary: Alzheimer’s disease and coronary heart disease are two ever-increasing major
health concerns worldwide. Scientific studies revealed a link between Alzheimer’s disease and
atherosclerosis, a major causality of coronary heart disease. Herbal medicine has been widely
prescribed to treat Alzheimer’s disease and atherosclerosis. In the current study, we explored
the possible therapeutic effect of Tongqiaohuoxue, a herbal medicine developed during the Qing
dynasty of China for the prevention and treatment of cardiovascular disease, on Alzheimer’s
disease and atherosclerosis. We discovered Tongqiaohuoxue showed therapeutic effects not only on
atherosclerosis but also on Alzheimer’s disease. Tongqiaohuoxue treatment into the animal model
of Alzheimer’s disease and atherosclerosis attenuated atherosclerotic plaque and brain amyloid
formations, abnormalities that are characteristic of coronary heart disease and Alzheimer’s disease,
respectively. Based on these findings, Tongqiaohuxue showed promising therapeutic effects for the
treatment of patients with both Alzheimer’s disease and coronary heart disease.

Abstract: Atherosclerosis is closely associated with Alzheimer’s disease (AD). Tongqiaohuoxue
decoction (THD) is a classical herbal prescription in traditional Chinese medicine widely used for the
prevention and treatment of cerebrovascular disease. This study aimed to explore the therapeutic
effects of THD on atherosclerosis and AD. Eight-week-old C57BL6/J wild-type and ApoE-deficient
(ApoE-/-) mice were fed a high-fat and high-cholesterol diet for eight weeks, followed by oral
phosphate-buffered saline vehicle or THD treatment for eight weeks further. In ApoE-/- mice, THD
attenuated lipid deposition in the aorta and the brain, and abrogated atherosclerotic changes without
affecting serum lipid profiles while decreasing amyloid plaque formation. In vitro assays undertaken
to understand THD’s effects on lipid clearance in the aorta and brain vessels revealed that THD
treatment inhibited the lipid uptake, stimulated by oxidized low-density lipoprotein, resulted in
decreased endothelial cell activation through reduction in intercellular adhesion molecule-1, vascular
cell adhesion molecule-1, and monocyte chemoattractant protein-1 levels. Serum analysis revealed
inhibitory effects of THD on resistin production, which has important roles in the development of
both atherosclerosis and AD. In conclusion, the current study demonstrates beneficial effects of THD
on the development and progression of atherosclerosis, and a possible protective role against AD.
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1. Introduction

Increasing evidence suggests a link between Alzheimer’s disease (AD), vascular risk factors,
and atherosclerosis in elderly patients [1]. Atherosclerosis has been suggested to play a role in cognitive
deterioration in the elderly [2,3], and systemic atherosclerosis treatment could thus potentially remediate
AD [4].

In particular, apoprotein E (ApoE) is a polymorphic protein whose primary functions are to
transport lipids and to participate in lipoprotein and cholesterol metabolism; it has been reported as a
risk factor for both atherosclerosis and AD [5]. The e4 variant of the ApoE gene exhibits as a modest
genetic risk factor for atherosclerosis [6] and is the most important genetic risk factor for sporadic AD
in the general population [7]. Intriguingly, a recent study revealed the complement-regulating function
of ApoE, directly linking ApoE to the pathogenesis of AD [8].

Tongqiaohuoxue decoction (THD; known as Tonggyuhwalhyeol-tang in Korea) was developed
during the Qing dynasty of China (A.D. 1830). It is widely used in traditional East Asian medicine,
particularly in China, Japan, and Korea, for the prevention and treatment of cerebrovascular disease [9].
The evidence indicated that THD protected neuronal cells from glutamate-induced toxicity in vitro [9,10]
and ameliorated learning and memory defects in rats with vascular dementia [11]. In addition, a
recent study demonstrated the efficacy and functional mechanism of THD in mice with high-fat
diet-induced obesity, showing metabolic dysregulation, inflammation, and a prothrombotic state, as an
early vascular model [12]

Given the involvement of ApoE in both atherosclerosis and AD, and the aforementioned evidence
of neuronal and/or vascular protective actions of THD, we hypothesized that THD has a therapeutic
effect on AD and atherosclerosis. Therefore, in the current study, we aimed to assess the efficacy of
THD in the treatment of atherosclerosis and explore its use as a therapeutic drug in the prevention and
treatment of ApoE-related brain disease, especially AD, using ApoE-deficient mice fed with a high-fat
and high-cholesterol (HFHC) diet.

2. Materials and Methods

2.1. Chemicals and Reagents

We used 11 standard reference compounds for quality assessment of THD—gallic acid (99.5%),
amygdalin (99.0%), albiflorin (99.8%), paeoniflorin (99.4%), ferulic acid (98.0%), safflomin A
(99.7%), benzoic acid (99.9%), benzoylpaeoniflorin (98.0%), 6-gingerol (99.3%), costunolide (98.0%),
and dehydrocostus lactone (98.0%) (Merck KGaA, Darmstadt, Germany; Wako Chemicals, Osaka, Japan;
Chem Faces Biochemical Co., Ltd., Wuhan, China; Shanghai Sunny Biotech Co., Ltd., Shanghai, China).
High-performance liquid chromatography (HPLC)-grade solvents (methanol, acetonitrile, and water)
and ACS reagent (formic acid for HPLC, ≥98.0%) were purchased from J.T. Baker (Phillipsburg, NJ,
USA), and Merck KGaA (Darmstadt, Germany), respectively. Donepizil hydrochloride was purchased
from Merck KGaA (Darmstadt, Germany).

2.2. HPLC Analysis of THD

Simultaneous determination of the 11 marker components for THD quality control was performed
using the LC-20A Prominence HPLC system (Shimadzu Co., Kyoto, Japan) coupled with a photo-diode
array (PDA) detector and Lab Solution software (version 5.53, SP3, Kyoto, Japan). Analyte separation
was carried out using the Sun Fire C18 analytical column (4.6 × 250 mm, 5 µm; Milford, MA, USA),
constantly maintained at 40 ◦C. The mobile phase for the efficient separation and analysis of the
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marker components in the THD sample consisted of distilled water (A) and acetonitrile (B), both
containing 0.1% (v/v) formic acid. The gradient eluting conditions were as follows: 0–30 min, 5–60%
B; 30–40 min, 60–100% B; 40–45 min, 100% B; 45–50 min, 100–5% B. For the analysis, 200 mg of the
lyophilized THD sample was dissolved in 20 mL of distilled water, and the solution was extracted
using an ultrasonicator (Branson 8510E-DTH, Denbury, CT, USA) for 60 min. The extracted solution
was filtered using a 0.2-µm membrane filter (PALL Life Sciences, Ann Arbor, MI, USA) before sample
injection for HPLC analysis.

2.3. THD Preparation

All herbal plants were purchased from Omniherb (Daegu, Korea) and THD was prepared as
previously described (Kim et al., 2016). In brief, 216 g of a mixture of eight dried plants [16 g Paeonia
obovata Maxim, 16 g Ligusticum officinale (Makino) Kitag., 48 g Prunus persica (L.) Batsch, 48 g Carthamus
tinctorius L., 12 g Allium fistulosum L., 8 g Ziziphus jujuba var. inermis (Bunge) Rehder, 48 g Zingiber
officinale Roscoe, and 20 g Aucklandia costus Falc.] was boiled in distilled water for 2 h at 100 ◦C, followed
by filtration through a 0.2-µm membrane filter. The filtrates were then freeze-dried and stored at −70
◦C. The yield was 20.02%. The THD extract was dissolved in drinking water for oral administration.
A voucher specimen (# BS-7) was deposited at the Korea Institute of Oriental Medicine and a list of
the full taxonomic names of all species used in this study is presented in Table S1 (Supplementary
Materials).

2.4. Animals

All experimental procedures were approved by the experimental Animal Care Committee at
the Keimyung University, School of Medicine (KM-2018-09) and were performed according to their
guidelines. Male ApoE-deficient mice (ApoE-/-; C57BL/6J background, 6-week-old) and C57BL/6J
wild-type (WT) mice were purchased from The Jackson Laboratory (Sacramento, CA, USA). Both types
of mice were fed a high fat, high cholesterol (HFHC) diet (D12109C, Research Diets, New Brunswick,
NJ, USA) for 8 weeks. The ApoE-/- mice were then randomly divided into two groups [control (n = 10)
and THD-treated (n = 10)] and received either daily oral phosphate-buffered saline (PBS) or THD
(100 mg/kg) treatment for additional 8 weeks. Mice were sacrificed at the end of the experimental
period. Serum samples were harvested and centrifuged at 2000× g for 10 min. Brain and aortic tissues
were fixed and processed for histological analyses. The remaining tissues were quickly frozen in liquid
nitrogen and stored at −80 ◦C for further analysis.

2.5. Evaluation of Atherosclerosis

Atherosclerotic lesions and lipid deposition in the aorta were analyzed. Briefly, to obtain a flat
preparation, the fixed aorta was cut longitudinally from the arch to the iliac bifurcation. The aorta was
then stained with oil red O (ORO; 0.5% w/v in isobutanol), followed by washing. The aortic tissues
were examined under a light microscope (Leica, Morrisville, NC, USA). The root of the aorta was
stained with hematoxylin and eosin (H&E). Similarly, brain tissues were embedded and frozen in
optimal cutting temperature (OCT) compound at −80 ◦C. Twenty-micrometer mouse whole-brain
coronal sections were prepared using a MEV cryotome (Slee medical GmbH, Mainz, Germany) and
stained using ORO.

2.6. Lipid Profiles

Blood samples were harvested into tubes and centrifuged at 1000× g force for 10 min to obtain
sera. Total cholesterol, low-density lipoprotein (LDL)-cholesterol, and high-density lipoprotein
(HDL)-cholesterol levels in the serum were determined using kits from BioVision Ltd. (Milpitas, CA,
USA), in accordance with the manufacturer’s instructions. The triglyceride levels were determined
using a Triglyceride Colorimetric Assay Kit (Cayman Chemical, Ann Arbor, MI, USA). All experimental
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procedures were executed according to the manufacturer’s instructions. The values of the absorbance
were determined using an ELISA microplate reader (Biochrom, Cambridge, UK).

2.7. Cell Culture

Human THP-1 monocyte cell line (ATCC® TIB-202TM) was obtained from ATCC (Manassas,
VA, USA). Cells were maintained in RPMI-1640 medium supplemented with 10% heat-inactivated
fetal bovine serum (GIBCO, Thermo Fisher Scientific Inc., Waltham, MA, USA), 100 U/mL penicillin,
and 100 µg/mL streptomycin (GIBCO, Thermo Fisher Scientific Inc., Waltham, MA, USA). Cells
were cultured in 5% CO2-humidified atmosphere at 37 ◦C and passaged twice a week. THP-1
cells were differentiated by addition of phorbol myristate acetate (Sigma-Aldrich, St. Louis, MO,
USA) to the culture medium at a final concentration of 100 nM for 24 h. Human umbilical vein
endothelial cells (HUVECs) were purchased from LONZA Biologics (LONZA Biologics, Cambridge,
UK), and maintained in Endothelial Basal Medium-2 supplemented with 2% FBS and growth factors.
Cells were incubated in a humidified, 37 ◦C incubator under 5% CO2. Cell passages between 3 and 5
were used in the present study.

2.8. LDL Isolation and Oxidation

LDL was isolated from voluntary human subjects recruited from Keimyung University Dongsan
medical center from all of whom informed consents were obtained. All procedures were approved
by the ethics committee of Keimyung University, School of Medicine (KM-2018-09). Blood samples
were collected into sterile EDTA tubes and the plasma was separated by centrifugation at 2000× g
for 20 min. LDL was isolated by sequential ultracentrifugation at a final density of 1.019–1.063 g/mL
with potassium bromide in EDTA-saline, followed by dialysis in 1 mM EDTA buffer (pH 8.0) before
oxidation. The isolated LDL was oxidized by incubation of 0.2 mg of LDL protein/mL for 4 h at 37 ◦C
with 5 µM CuSO4 (Sigma-Aldrich, St. Louis, MO, USA) in PBS (pH 7.4). The oxidized LDL (oxLDL)
was then dialyzed for 36 h at 4 ◦C in 0.15 M NaCl solution containing 0.01% EDTA buffer (pH 7.0).

2.9. Lipid Uptake Assay

THP-1 cells (3.5 × 105) were seeded on rounded cover slips in Costar® 24-well tissue culture
plates (Corning, Corning, NY, USA) and treated with phorbol 12-myristate 13-acetate (PMA, 100 nM;
Sigma) in growth medium. After differentiation, the cells were incubated with oxLDL (200 µg/mL) for
24 h. Lipid uptake by macrophages was quantified by ORO staining.

2.10. ORO Staining

THP-1 cells were fixed with 4% paraformaldehyde (PFA; Fujifilm Wako Chemicals, USA, Richmond,
VA, USA) for 1 h. A stock solution of ORO (0.5% in isopropanol) was diluted and filtered (60% stock
solution and 40% distilled water). Cover slips were stained with ORO for 20 min and counterstained
with Mayer’s hematoxylin (Dako North America Inc., Carpinteria, CA, USA) for 1 min and then dried
and mounted using an aqueous mounting medium. Positively stained (red) cells were identified
as macrophage-derived foam cells, which were observed under a light microscope (Leica, Wetzler,
Germany).

2.11. Monocyte Adhesion to Endothelial Cells

THP-1 cells were labeled with the fluorescent molecule BCECF-AM (5 µmol/L, Abcam, UK) for
30 min at 37 ◦C, followed by washing twice with phosphate-buffered saline (PBS) and resuspension
in RPMI-1640 medium. HUVECs were seeded in an eight-well chamber (Thermo Fisher Scientific,
USA) and were pre-treated with 100 µg/mL of THD for 1 h. The confluent HUVEC monolayer was
then stimulated with 100 µg/mL of oxLDL and incubated with BCECF-AM-labeled THP-1 cells (2 ×
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105/well) in RPMI-1640 medium containing 10% FBS at 37 ◦C for 30 min. Unbound monocytes were
subsequently removed by washing twice with warm PBS.

2.12. Quantitative Real-Time PCR

Total RNA was isolated from cells using RNeasy kit (Qiagen, Cologne, Germany). Reverse
transcription was performed to yield cDNA using the High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Foster City, CA, USA). The RNA (1 µg) was performed using Sso Advanced
Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) on CFX Connect Real-Time System
(Bio-rad, Hercules, CA, USA). GAPDH was used as an internal control.

2.13. Analysis of Adipokine, BACE1 and AChE

The plasma adipokines levels were analyzed using the Bio-Plex Pro Mouse Diabetes Set
immunoassay kit (Bio-Rad Laboratories, Hercules, CA, USA). Inhibition of AD related enzyme
including ß-secretase and acetylcholinesterase was evaluated using SensoLyte® 520 BACE1 assay kit
(AnaSpec, Fremont, CA, USA) and AChE assay kit (ab138871, abcam, Cambridge, UK) respectively,
according to the manufacturer’s instructions.

2.14. Immunohistochemistry

Congo red staining was performed to detect Aβ aggregation. Briefly, after the −80 ◦C incubation,
slides were fixed with 4% paraformaldehyde for 10 min and then washed under tap water. The sections
were stained with Congo red (1% w/v), differentiated with alkaline alcohol (1% potassium hydroxide
in 80% ethanol), and counterstained with hematoxylin for 4 min before they were dehydrated and
mounted. Plaques were observed under a light microscope.

2.15. Statistical Analysis

All data were analyzed using Prism software, version 8.0 (GraphPad Software, San Diego, CA,
USA). Values are presented as mean ± standard deviation (S.D.) Statistical significance was determined
based on p-values < 0.05 obtained from one-way ANOVA with Tukey’s post- hoc tests.

3. Results

3.1. Chemical Components in THD

Eleven constituents—gallic acid, albiflorin, paeoniflorin, benzoic acid, and benzoylpaeoniflorin
from Paeoniae radix; ferulic acid from Cnidii rhizoma and Allii fistulosi bulbus; amygdalin from Persicae
semen; safflomin A from Carthami flos; 6-gingerol from Zingiberis rhizoma recens; and costunolide and
dehydrocostus lactone from Aucklandiae radix—were determined as marker components for quality
control of the THD sample. Simultaneous analysis of these marker analytes was carried out using the
HPLC–PDA method.

Using this optimized analytical method, all marker analytes were eluted within 40 min with a
resolution >2.3 (Figure 1). In all analytes, the coefficient of determination (r2) of the regression equation
for quantification was 0.9999 and 1.000, suggesting very good linearity at the tested concentration
levels (Supplementary Materials, Table S2). The amounts of the eleven marker components ranged
from 0.08 to 7.44 mg/lyophilized g (Supplementary Materials, Table S3). Details regarding chemical
components in THD are mentioned in Supplementary results.
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Figure 1. HPLC chromatograms of the standard mixture (A) and THD sample (B) at UV detection
wavelengths of 214 nm (I), 220 nm (II), 230 nm (III), 270 nm (IV), 280 nm (V), 320 nm (VI), and 400 nm (VII).
Gallic acid (1), amygdalin (2), albiflorin (3), paeoniflorin (4), ferulic acid (5), safflomin A (6), benzoic acid (7),
benzoylpaeoniflorin (8), 6-gingerol (9), costunolide (10), and dehydrocostus lactone (11).

3.2. Reduction of Atherogenic Plaque Formation with THD Treatment in ApoE-/- Mice

Plaque formation is one of the most important phenotypic characteristics of atherosclerosis.
The ApoE-/- mice fed a HFHC diet showed more atherosclerotic Oil red O staining (ORO)-positive
plaques in aortic regions than did the WT-HFHC control mice (Figure 2A). In contrast, treatment with
THD significantly reduced aortic wall plaque deposits in the ApoE-/- mice to levels close to those of the
WT-HFHC control mice (p < 0.001). Lipid profile analysis showed no difference in the levels of total
cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol,
and triglycerides between ApoE-/- mice with and without THD treatment (Figure 2B).

We next examined H&E staining for atherosclerotic microanatomical changes in all experimental
aortic tissues (Figure 2C). ApoE-/- mice fed with HFHC exhibited increased foam cells and plaque
formation blocking the lumen of the aortic vessels. THD treatment attenuated the deposition of
foam cells, plaque formation, and macrophage infiltration to the adventitia of the aorta of ApoE-/-
HFHC mice.
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Figure 2. THD attenuates atherosclerotic changes in ApoE-/- mice. (A). Upper panel; Oil red O
staining of the aorta. Magnification, ×4. Lower panel; Quantification of the Oil red O-stained area.
(B) Serum lipid profiling. (C) Hematoxylin-eosin (H and E) staining of aortic roots. Magnification,
×10. WT-HFHC, wild type–high fat high cholesterol; KO-HFHC, ApoE-/- high fat high cholesterol;
KO-HFHC-THD, ApoE-/- high fat high cholesterol–tongqiaohuoxue decoction. Arrows show: fatty
streaks, Arrow heads show: foam cells, ** p < 0.001 vs. KO-HFHC. p value was obtained from one-way
ANOVA with Tukey’s post- hoc tests.

3.3. Attenuation of HFHC-Induced Lipid Deposition and amyloid-beta (Aβ) Plaque Formation in the Brains of
ApoE-/- Mice

Given the pathophysiological role of ApoE in atherosclerosis and AD, we next investigated
the blood–cerebrospinal fluid (CSF) barrier of the choroid plexus (ChP) region in ApoE-/- mice to
determine the neuroprotective effects of THD. HFHC appeared to stimulate deposition of lipids in
the ChP region of ApoE-/- mice, whereas the effect was attenuated with THD treatment (Figure 3A).
We next examined Aβ accumulation using Congo red staining. As shown in Figure 3B, ApoE-/- mice
fed with HFHC showed increased deposition of Aβ in the pars compacta of the substantia nigra
region, whereas treatment with THD showed a substantially lower accumulation (Figure 3B). We also
validated inhibitory effect of THD on the Aβ accumulation via thioflavin-S immunofluorescence and
β-amyloid immunohistochemistry staining (Figure 3C,D).

In addition, THD inhibited the activation of AD related enzyme including β-secretase (BACE 1)
and acetylcholinesterase (AchE), which are required for the production of neurotoxic Aβ and the
promotion of Aβ fibril formation, respectively [13]. THD decreased the levels of BACE 1 in a
dose-dependent manner. In particular, 500 µg/mL (p = 0.006) and 1000 µg/mL (p = 0.0001) of THD
resulted in significantly decreased compared to controls, and had a similar inhibitory effect compared
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to 2.5 µM of BACE inhibitor (Figure 3E). Moreover, 5, 50, 500 and 1000 µg/mL (p = 0.0002) of THD
significantly inhibited AchE activity compared to vehicle control, but it had no similar effect compared
to 10uM of Donepezil (Figure 3E).

Figure 3. THD attenuates lipid accumulation and amyloid plaque formation in the brain of ApoE-/-
mice. (A) Left panel; Oil red O staining of the brain, Right panel; Quantification of the Oil red O stained
area. (B) Left panel; Congo red staining of the brain, Right panel; Quantification of the Congo red
stained area. (C) Left panel; Thioflavin-S (Thio-S) staining of the brain, Right panel; Quantification
of the Thio-S stained area Scale bars = 20 µm). (D) Left panel; β-amyloid staining of the brain,
Right panel; Quantification of the β-amyloid stained area. (E) Effect of THD on ß-secretase (BACE1)
acetylcholinesterase (AChE) activity. Asterisk indicates positive staining for oil red O in (A) and Congo
red in (B). Data in (E) are expressed as percentages of the corresponding vehicle control (mean ± SD),
n = 4. * p < 0.01, ** p < 0.001, vs. the corresponding control. # p < 0.01, ## p < 0.001 vs. the corresponding
inhibitor. p value was obtained from one-way ANOVA with Tukey’s post- hoc tests. WT-HFHC,
wild type–high fat high cholesterol; KO-HFHC, ApoE-/- high fat high cholesterol; KO-HFHC-THD,
ApoE-/- high fat high cholesterol–tongqiaohuoxue decoction; ChP, choroid plexus; V, ventricle; Dpz,
donepezil hydrochloride.
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3.4. Attenuation of Lipid Uptake in Monocytes and Inhibition of Endothelial Cell Activation

Activation of damaged endothelial cells is considered the priming event leading to formation
of atherosclerotic plaques. Therefore, we used human umbilical vein endothelial cells (HUVEC) and
THP-1 human monocytic cells to investigate the effect of THD on the activation of endothelial cells and
the resultant clearance of lipid deposits in the aorta and brain vessels. The lipid uptake assay revealed
that incubation of THP-1 cells with oxidized low-density lipoprotein (oxLDL) increased the number
of cytosolic lipid droplets, while treatment with THD resulted in a clear reversal of the increased
oxLDL uptake (Figure 4A). Adhesion assay analysis also showed decreased adhesion of THP-1 cells to
HUVECs, indicating decreased activation of endothelial cells (Figure 4B).

Figure 4. THD inhibits endothelial cell activation. (A) THP-1 cells were differentiated into macrophages and
incubated with oxLDL (100 µg/mL) for 24 h, followed by Oil red O staining (n = 3). (B) oxLDL-stimulated
HUVECs were incubated with fluorescently labeled THP-1 cells, followed by removal of unbound THP-1 cells
(n = 3). (C) HUVECs were activated by oxLDL (100 µg/mL) treatment, and ICAM-1, VCAM-1, and MCP-1
expression levels were determined by qRT-PCR (left panel) and western blot (right panel) (n = 3). THD,
Tongqiaohuoxue decoction; oxLDL, oxidized low-density lipoprotein; CTL, control; ICAM-1, intercellular
adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; MCP-1, monocyte chemoattractant
protein-1. * p < 0.01 vs. corresponding control. p value was obtained from one-way ANOVA with Tukey’s
post- hoc tests.
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To further validate an inhibitory effect of THD on endothelial cells activation, HUVECs
were incubated with oxLDL (Figure 4C). Treatment with oxLDL increased intercellular adhesion
molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), and monocyte chemoattractant
protein-1(MCP-1) levels. However, THD mitigated the oxLDL-induced activation of HUVECs through
downregulation of ICAM-1, VCAM-1, and MCP-1.

3.5. Reduction in Serum Resistin in ApoE-/- Mice and Resistin Expression of Human Monocyte

We next determined the serum levels of adipokines such as leptin, PAI-1, and resistin as contributing
factors for damaged endothelial cells (Figure 5A–C). The levels of leptin, a prototype adipokine, were
decreased in ApoE-/- mice, and THD treatment did not affect its levels in serum (Figure 5A). However,
the increased serum levels of PAI-1 and resistin in ApoE-/- mice were decreased with THD treatment
(Figure 5B,C).

Figure 5. THD decreases serum levels of PAI-1 and resistin. The plasma levels of leptin (A), PAI-1
(B), and resistin (C) were analyzed by immunoassay analysis. WT-HFHC, wild type–high fat high
cholesterol; KO-HFHC, ApoE-/- high fat high cholesterol; KO-HFHC-THD, ApoE-/- high fat high
cholesterol–tongqiaohuoxue decoction. * p < 0.001 vs. KO-HFHC.

In particular, human resistin is known to be an inflammatory marker of atherosclerosis and AD,
dominantly expressed in macrophages [14] and leading to endothelial dysfunction through adhesion
molecules. Thus, we assessed the effect of THD on the expression of resistin in the human macrophage
cell line THP-1. Consistent with its inhibitory effect in ApoE-/- mice, THD inhibited the mRNA
and protein expression levels of resistin in THP-1 cells (Figure 6A,B). Moreover, THD decreased the
expression of resistin-induced ICAM-1 in HUVECs.

Figure 6. THD inhibits resistin expression and resistin-induced ICAM expression. THP-1 cells were
differentiated, and the mRNA (A) and protein (B) expression levels of resistin were determined (n = 3).
(C) HUVECs were activated by resistin treatment, and ICAM-1 expression levels were evaluated (n = 3).
THD, Tongqiaohuoxue decoction; ICAM-1, intercellular adhesion molecule-1. * p < 0.001 vs. control.

4. Discussion

In this study, we found that THD exerts therapeutic effects on both atherosclerosis and AD
in HFHC-fed ApoE-/- mice. THD attenuated plaque formation and decreased lipid deposits in
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atherosclerotic arteries through inhibition of endothelial activation. It also decreased lipid deposition
and plaque formation in the brains of ApoE-/- mice, suggesting a therapeutic effect on AD. Moreover,
we observed that THD reduced the serum levels of resistin, a hormone known to be strongly linked to
both atherosclerosis and AD.

Endothelial dysfunction, also known as endothelial activation, is considered to be the initiation
process and an early marker of atherosclerosis [15]. The expression of adhesion molecules, such as
ICAM (intercellular adhesion molecule) and VCAM (vascular cell adhesion molecule) is upregulated
in activated endothelial cells, facilitating interactions with monocytes and leading to monocyte
extravasation [16]. Our results support the theory that endothelial dysfunction and atherosclerosis
may be involved in the pathogenesis of AD [17,18].

We verified the presence of the targeted 11 herbal compounds in our THD samples. Several
have been shown to be active compounds that exert therapeutic effects on atherosclerosis. For
example, amygdalin regulates the formation of atherosclerosis and stabilizes plaques by suppressing
inflammatory responses and promoting the immune-modulatory function of T-regulatory cells [19].
Paeoniflorin suppresses the expression of ICAM-1 in lipopolysaccharide-treated U937 cells and
HUVECs stimulated with tumor necrosis factor α [20]. In line with these results, we observed that
THD reduces oxLDL-induced lipid deposits in and monocyte adhesion to HUVECs, indicating an
inhibitory action on oxLDL-induced endothelial dysfunction. Furthermore, we validated this inhibitory
action in endothelial cells by demonstrating decreased expression of ICAM-1, VCAM-1, and MCP-1 in
THD-treated HUVECs.

ApoE is strongly associated with a high risk of atherosclerosis, the leading cause of cardiovascular
disease characterized by lipid plaque formation in large vessels [21]. Human ApoE has three common
isoforms: APOE2, APOE3, and APOE4. Individuals with the APOE4 allele show increased susceptibility
to late-onset AD [22,23]. Moreover, APOE4 is closely associated with the integrity of tight junctions in
a blood–brain barrier (BBB) mouse model, and ApoE deficiency in mice leads to BBB leakage [24].

Li et al. [25] reported that THD reduces the opening of tight junctions and decreases the permeability
of the BBB by upregulating the expression of ZO-1, occludin, and claudin-5. In particular, the authors
suggested that muscone, ligustilide, and safflomin A, which can pass through the BBB and are detectable
in CSF, are the main active ingredients of THD that may attenuate the damaged BBB. In this study,
safflomin A was also detected as the most abundant active compound in THD. However, to date, no
published reports have examined whether THD is associated with the regulation of lipid deposition in
the brain.

In the current study, we first assessed lipid deposition in the ChP, the region of the primary
intracranial neuroimmunological interface that establishes the blood–CSF barrier. The ChP constitutes
a major barrier to the penetration of blood-borne leukocytes into the central nervous system; this role
may be compromised by lipid deposition in inflammatory and degenerative brain diseases [26–30].
In line with a previous report [8], we observed increased depositions of lipid and amyloid plaque
formation in the ChP region in ApoE-/- mice. We also found that THD abrogates HFHC-induced
amyloid plaque formation and its related enzymes, and lipid deposition in the ChP, unravelling the
inhibitory effect of THD on lipid deposition-related brain abnormalities. In addition, these results may
be associated with a protective effect of BBB and suppression of lipid uptake by monocytes (Figure 7).

Notably, in addition to the decreased production of PAI-1, we showed that THD decreases serum
resistin levels not only in ApoE-/- mice but also in THP-1 cells. The major secretion origin and function
of resistin differ between mouse and human. In rodents, resistin is secreted from mature adipocytes
and involved in obesity-related diseases. In contrast, human resistin is primarily secreted from
monocytic cells, thus recruiting other immune cells and activating the secretion of pro-inflammatory
factors [31]. Increasing evidence links human resistin to inflammation and atherogenesis [32,33]. Here,
we also validated that resistin induces the expression of ICAM-1 in HUVECs, and that THD exerts
its anti-atherosclerotic effects by regulating resistin both in a rodent model and in a human cell line.
Considering that resistin is a hormone with important roles both in AD [34] and in atherosclerosis [33]
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these results support a therapeutic effect of THD on both diseases (Figure 7). In addition, multi-cohort
and clinical studies have reported that resistin is associated with an increased risk of AD [35–37].

Figure 7. THD ameliorates endothelial activation possibly via inhibition of resistin. THD also
decreases the accumulation of amyloid plaque possibly via inhibition of ß-secretase (BACE 1) and
acetylcholinesterase (Ach) activities.

5. Conclusions

Here, we uncovered the evidence of novel anti-inflammatory functions of THD in the development
and progression of AD and atherosclerosis. However, further studies are needed to determine the
bioactive compounds and their underlying molecular mechanisms in exerting the THD effects
on AD and atherosclerosis, in order to reduce overcome the limitation of natural crude extracts.
Notwithstanding, our results support the need for further investigations into the mechanisms and
potential clinical applications of THD in the treatment of AD and atherosclerosis. In addition, this
preliminary study highlights the potential benefits of THD, possibly via inhibition of resistin-mediated
activation of endothelial cells and BACE1 and AChE-mediated accumulation of amyloid plaques, for
both conditions.
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