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Flavonoids against the Warburg phenotype—concepts of predictive,
preventive and personalised medicine to cut the Gordian knot
of cancer cell metabolism
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Abstract
The Warburg effect is characterised by increased glucose uptake and lactate secretion in cancer cells resulting from metabolic
transformation in tumour tissue. The corresponding molecular pathways switch from oxidative phosphorylation to aerobic
glycolysis, due to changes in glucose degradation mechanisms known as the ‘Warburg reprogramming’ of cancer cells. Key
glycolytic enzymes, glucose transporters and transcription factors involved in the Warburg transformation are frequently dysreg-
ulated during carcinogenesis considered as promising diagnostic and prognostic markers as well as treatment targets. Flavonoids
are molecules with pleiotropic activities. The metabolism-regulating anticancer effects of flavonoids are broadly demonstrated in
preclinical studies. Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2,
HK2, GLUT1 and HIF-1. The correspondingmolecular mechanisms and clinical relevance of ‘anti-Warburg’ effects of flavonoids
are discussed in this review article. The most prominent examples are provided for the potential application of targeted ‘anti-
Warburg’ measures in cancer management. Individualised profiling and patient stratification are presented as powerful tools for
implementing targeted ‘anti-Warburg’ measures in the context of predictive, preventive and personalised medicine.
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Introduction

Despite significant progress in the therapy of oncological
diseases in the twenty-first century, cancer remains a lead-
ing cause of death globally [1]. The association of neoplas-
tic transformation with alterations at the metabolic level
has been studied for almost a century. Malignant cells
show profound alterations in their metabolic pathways
changing the intra- and extracellular biochemistry that is
associated with increased proliferation and angiogenesis
[2]. Metabolic reprogramming leads to the switch from
oxidative phosphorylation to aerobic glycolysis that repre-
sents a well-recognised signature of cancer energy metab-
olism associated with diminished drug-mediated apoptosis
or chemo/radio-resistance of tumour cells [3, 4]. Like an
orchestra, the enzymes that contribute to glycolysis repre-
sent individual players closely cooperating in the glucose
degradation cascade. Specific differences in their enzymat-
ic activities or expression rates act as prognostic bio-
markers in cancer. The multi-omics (epigenomics, proteo-
mics, transcriptomics, metabolomics) approach introduces
novel challenges to the detection of individual signatures
directly connected to cancer development as a conse-
quence of metabolic disequilibrium of tumour cells [5, 6].
Acquired data from the multi-omic technologies is appli-
cable in the novel clinical trend focused on predictive, pre-
ventive and personalised (3P) medicine strategies consid-
ered as the medicine of the future [5, 7]. During the last
decade, increasing interest is recorded in targeting of es-
sential steps of aerobic glycolysis as a promising approach
to anticancer research [8]. To this end, several enzymatic
inhibitors aimed at essential components of glucose metab-
olism have been tested in clinical trials. However, their
application in routine clinical practice remains is not yet
established [4, 9]. Increased aerobic glycolysis promotes
the growth of various cancers; therefore, it is necessary to
develop new therapeutic approaches to prevent metabolic
reprogramming in cells [10]. Since ancient times, humans
have been looking for therapeutic drugs against their dis-
eases in nature [11]. Long-lasting investigations of medic-
inal plants led to the discoveries of numerous bioactive

compounds that are now defined as phytochemicals [12].
Naturally occurring phytochemicals are promising agents
against the initiation, promotion and progression of cancer
with multiple mechanisms of action [13, 14]. Flavonoids,
which represent a broad class of bioactive compounds in
plants, are found in various functional foods. Recent evi-
dence suggests beneficial functions of flavonoids in human
health. The regular consumption of flavonoids is associat-
ed with the prevention of numerous chronic diseases in-
cluding cancer [15]. Flavonoids inhibit carcinogenesis
through multiple pathways [16, 17]. Amongst these, the
modulation of cellular energy metabolism represents an
extraordinarily interesting topic in the field of anticancer
research. As mentioned above, there is a need to identify
novel therapeutic approaches, and flavonoids could act as
promising metabolism-regulating agents in suppressing
malignant transformations of cells.

Aim of the study

This paper focuses on the anticancer potential of flavonoids—
specifically, those related to the suppression of the Warburg
effect in cancer cells. Firstly, this review discusses fundamen-
tal aspects of the Warburg effect, glycolytic enzymes and
molecular pathways directly regulating cancer energy metab-
olism. The core of our article summarises experimental studies
evaluating the anticancer effects of flavonoids via modulation
of essential steps and compartments of glycolysis. The bene-
ficial role of flavonoids in cancer metabolism is well-
documented in preclinical research; in this review, we empha-
sise the need for targeted clinical cancer research on the effects
of flavonoids in cellular metabolic reprograming.

Data sources

Data were obtained from the English-language biomedicine
literature by the use of ‘flavonoids’ or ‘polyphenols’ or ‘can-
cer’ or ‘Warburg effect’ and ‘glycolysis’ as either a keyword
or medical subject heading (MeSH) term in searches of the
PubMed database (years 2015–2020).
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Fundamental aspects of cancer metabolism

The cross-connection between cancer and altered metabolism
is well characterised in cancer research. Almost 100 years ago,
Otto Heinrich Warburg and colleagues observed that mole-
cules of glucose undergo predominantly aerobic glycolysis
in tumours, even under normoxic conditions, to support rapid
cell division. In contrast, normal cells primarily utilise oxida-
tive phosphorylation to generate adenosine triphosphate
(ATP) in the presence of oxygen. The observation mentioned
above became known as ‘the Warburg effect’ [18]. Glucose
metabolism represents an enzymatic cascade consisting of two
phases: the investment phase and the payoff phase, which
involve several enzymes (Fig. 1).

The above pathway illustrates the metabolism of glucose
under aerobic conditions in normal cells (Fig. 1). Conversely,
in cancer cells, pyruvate is transformed into lactate by lactate
dehydrogenase A (LDHA) and the yield of ATP is far lower,
as only two ATP molecules are released per molecule of glu-
cose through glycolysis [21, 22]. Although glycolysis is less
efficient than oxidative phosphorylation in generating ATP, it
produces energy more rapidly per unit of glucose [23]. An
initial hypothesis predicted mitochondrial defects in cancer
cells (i.e. lack of oxidative phosphorylation) and, thus, postu-
lated aerobic glycolysis as the necessary way to produce ATP
[24]. However, the rate of glucose uptake in cancer cells is
dramatically elevated and lactate is created even in the pres-
ence of functional mitochondria [25]. Moreover, defective
mitochondria are rather rare, and tumour cells maintain the
ability of oxidative phosphorylation [26]. Proliferating cells
are constantly supplied with glucose and various nutrients.
Additionally, these cells require high ATP/ADP, NAD+/
NADH and NADP+/NADPH ratios [25, 27]. Any imbalance
between these molecules leads to the suppression of prolifer-
ation. Therefore, oxidative phosphorylation is not suitable for
the maintenance of the above-mentioned ratios; however, for
biosynthetic purposes, it produces ATP, while NAD+/NADH
and NADP+/NADPH are under-dimensioned [28]. The pref-
erence of aerobic glycolysis to oxidative phosphorylation in
cancer cells is linked to external conditions such as low extra-
cellular pH and hypoxia [29]. Moreover, the abnormalities in
signalling pathways as consequences of certain genetic aber-
rations promote cancer-associated glycolysis [30]. Thus, the
determination of the cancer metabolism phenotype
characterised by increased glycolytic activity is controlled by
intrinsic alterations as well as external responses of the cell to
the tumour microenvironment [31].

Molecular view into the Warburg effect

Recent advances in the fields of genetics and molecular biol-
ogy can shed light on the principles and mechanisms of

aerobic glycolysis in tumours. Disequilibrium in the PI3K
signalling pathway is frequently detected in various cancers
[32–35]. These aberrations of PI3K support the biological
processes such as proliferation and invasion via modification
of glucose metabolism. Evidence suggests that mutation in
PIK3CA promotes glycolysis in cervical cancer cells [36].
Akt1, the downstream effector of PI3K, is a major player in
cancer. Akt1 stimulates various intracellular events associated
with elevated levels of glycolysis including translocation, sta-
bility and overexpression of glucose transporters (GLUT1, 2
and 4) [37–39], or negatively via suppression of forkhead box
subfamily O1 (FOXO1) acting as a repressor of glycolysis.
Akt1 activates mTOR which plays a crucial role in protein
synthesis and cell proliferation. Moreover, mTOR is essential
for glucose uptake, lipid biosynthesis and glycolysis [40]. In
addition, mTOR induces hypoxia-inducible factor-1 (HIF-1)
activity, even under normoxic conditions resulting in aerobic
glycolysis [41]. HIF-1 can also be activated by the loss of von
Hippel–Lindau (pVHL) regulation either as a direct or indirect
consequence of mutations of succinate dehydrogenase (SDH)
or fumarate hydratase (FH) [42]. The transcription factor c-
Myc is an oncogene modulating various intracellular process-
es, including proliferation and growth. In addition, it has been
suggested that c-Myc and HIF-1 cooperate in the regulation of
glycolysis [43]. Oncoprotein c-Myc is associated with in-
creased expression of GLUT genes [44] or enzymes such as
LDHA [45] and PDK1 [46]. In contrast to Akt1, which is
connected to enhanced proliferation and aerobic glycolysis
via activation of mTOR, AMP-activated kinase (AMPK) sup-
presses mTOR signalling [47] that depends on the AMP/ATP
ratio in the cell. When the AMP/ATP ratio is low, AMPK
phosphorylates enzymes responsible for the generation of
ATP via oxidative phosphorylation [48]. Activation of
AMPK is mediated via liver kinase B1 (LBK1) which sup-
ports the maintenance of an intracellular energy balance and
negatively regulates the Warburg effect. Dysfunction of the
LBK1/AMPK pathway is defined as a hallmark of cancer
progression [49].

P53 is a well-known tumour suppressor with a crucial role
in stress stimuli responses and in the initiation of cell cycle
arrest, senescence or apoptosis [9, 36]. Importantly, p53 neg-
atively regulates aerobic glycolysis by promoting TP53-
induced glycolysis and apoptosis regulator (TIGAR) affecting
glycolysis enzymes and synthesis of cytochrome oxidase 2
(SCO2) which participates in mitochondrial metabolism un-
der normoxia [50, 51]. Recent evidence suggests that the tran-
scription factor sine oculis homeobox 1 (SIX 1) contributes to
the control of many glycolytic enzymes associated with tu-
mour metabolism [52]. The transcription factor OCT1 is fre-
quently upregulated in cancer. Recent experimental studies
have demonstrated its role in the silencing of oxidative phos-
phorylation and switching to aerobic glycolysis [53].
Additionally, an oncogenic transcription factor, Yin Yang 1
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(YY1), promotes aerobic glycolysis via upregulation of
GLUT3 [54].

Pyruvate kinase plays an essential role in the transforma-
tion of normal glucose metabolism into the aerobic glycolytic

phenotype responsible for transforming PEP into pyruvate
and production of ATP. In mammals, four isoforms of pyru-
vate kinase, namely PKL, PKR, PKM1 and PKM2, exist [55].
The PKM1 isoform has greater enzymatic efficiency than the

Fig. 1 Metabolism of glucose. The investment phase begins with the first
enzyme, hexokinase (HK), which adds a phosphate group to glucose
leading to the generation of glucose-6-phosphate (G6P). In the next
step, phosphoglucose isomerase (PGI) modifies G6P into fructose-6-
phosphate (F6P). The enzyme phosphofructokinase (PFK1) transforms
F6P into fructose-1,6-bisphosphate (FBP). FBP is further lysed into
dihydroxyacetone (DHAP) and glyceraldehyde 3-phosphate (G3P) by
fructose-bisphosphate aldolase (aldolase). The enzyme triosephosphate
isomerase (TPI) converts DHAP into G3P. The payoff phase begins
with the metabolisation of G3P into 1,3-bisphosphoglycerate (1,3BGP)
by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Next,

phosphoglycerate kinase (PGK) converts 1,3BGP into 3-
phosphoglycerate (3PG). Phosphoglycerate mutase (PGM) generates 2-
phosphoglycerate (2PG) from the 3PG, and 2PG then converts enolase
into phosphoenolpyruvate (PEP). Pyruvate kinase (PK) catalyses the final
step, in which PEP is transformed into pyruvate [19, 20]. Subsequently,
pyruvate undergoes oxidative phosphorylation in mitochondria resulting
in the generation of 36 molecules of ATP from the tricarboxylic acid
cycle (TCA). ATP, adenosine triphosphate; ADP, adenosine
diphosphate; NAD+, nicotinamide adenine dinucleotide (oxidised
form); NADH, nicotinamide adenine dinucleotide (reduced form)
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PKM2 form. Paradoxically, the less efficient M2 form is pre-
ferred in tumours due to its promotion of c-Myc [56].
Oncoprotein c-Myc affects the splicing of PK mRNA by up-
regulating polypyrimidine tract binding protein (PTB) and
heterogeneous nuclear ribonucleoproteins (hnRNPs) A1 and
A2 leading to the predominant production of PKM2 [57]. Less
efficient PKM2 is advantageous for cell proliferation as it
allows for entering carbohydrate metabolites of glycolysis into
alternative pathways to produce the macromolecules and
NADPH necessary for tumour growth [58].

Epigenetic regulation of the Warburg effect

Based on current research, epigenetic alterations such asmeth-
ylation of DNA, histone modifications or miRNA expression
manifest tight cross-connections that modulate cancer metab-
olism. All enzymes and proteins that participate in glycolysis
can be post-transcriptionally regulated by miRNAs. Glucose
transporters, as mentioned above, are associated with glucose
uptake in cells and their upregulation is a hallmark of the
Warburg phenotype in cancer cells. Many experimental stud-
ies suggest an association between miRNA deregulation and
GLUT1 activity including upregulation of miR-150 [59],
miR-522-3p [60] and miR-10a [61], whereas expression rates
of miR-340 [62], miR-218 [63] and miR-200c [64] are
reduced.

The glycolytic enzymeHK2 is upregulated in cancer. MiR-
143 has been shown to repress HK2 in colon cancer cells [65].
On the other hand, overexpression of miR-155 is correlated
with the upregulation of HK2 in lung cancer cells [66]. PKM2
is also overexpressed in cancer metabolism. Current evidence
indicates tumour-suppressive functions of miR-148a and
miR-326 in the downregulation of PKM2 in thyroid cancer
cells [67]. In addition, miRNA-let-7a downregulates PKM2 in
cervical cancer cells [68]. Expression of small non-coding
RNAs miR-1 and miRNA-133b can suppress the expression
of PKM2 via interaction with PKTB1 and can also regulate
the splicing of PKM2 [69]. Interestingly, miRNAs control
cancer metabolism indirectly via regulation of long non-
coding RNA. MiR-586 can form a competing endogenous
RNA model with LncRNA-MIF and thus suppress glycolysis
via degradation of c-Myc by Fbcw7 (E3 ligase for c-Myc)
[70].

Methylation, another regulatory mechanism affecting gene
expression, is also involved in the Warburg effect. Intragenic
methylation mediated by binding of the protein BORIS leads
to an alternative splicing of PKM resulting in the predominant
generation of PKM2 and consequent development of cancer-
related glycolysis [71]. Furthermore, overexpression of HK2
mediated by hypomethylation occurs in glioblastoma
multiforme [72].

Likewise, epigenetic changes regulated by histone modifi-
cations also participate in the interplay between metabolism

and cancer. Overproduction of lactate is a fundamental char-
acteristic of the transformation of pyruvate into lactate. An
interesting way of how lactate promotes cancer phenotypes
in non-metabolic roles is demonstrated by lactylation of his-
tones in macrophage leading to the expression of genes such
as Arg1, which are involved in the M2-like polarisation of
tumour-associated macrophages [73]. Moreover, the
monoubiquitinating of histone H2B (H2Bub1) negatively reg-
ulates the Warburg effect. Recent evidence shows a cross-
connection between elevated levels of PKM2 and decreases
in H2Bub1 that indicate the oncogenic function of PKM2 via
its control of histone modifications [74]. Figure 2 summarises
the molecular mechanisms characteristic for cancer
metabolism.

Tumour microenvironment in the regulation of
aerobic glycolysis

In contrast to genetic alterations associated with the transfor-
mation of metabolic pathways and consequent aerobic glycol-
ysis, the tumourigenic microenvironment of theWarburg phe-
notype gives selective advantages in the growth and prolifer-
ation of tumour cells via several distinct mechanisms.
Elevated glucose intake and consequent promotion of glucose
metabolism increase the acidity of the microenvironment.
Accumulation of lactate as the final product of aerobic glycol-
ysis and the need of neutral pH for cell maintenance lead to its
secretion via monocarboxylate transporters (MCT) together
with H+ ions into extracellular space [75]. Increased microen-
vironmental acidity has multiple benefits for tumour cell pro-
liferation and invasion [76]. Extracellular lactate activates
growth factors including vascular endothelial growth factor
(VEGF), tumour growth factor β (TGF β) and cytokine inter-
leukin 1 (IL-1) [77]. Moreover, acidic tumour microenviron-
ment promotes the activation of proteinases such as matrix
metalloproteinase 9 (MMP-9) and enhances the invasiveness
of cancer [78]. Low pH in the tumour region affects immune
cells and immune responses [79]. Lactic acid, secreted by
cancer cells, contributes to M2-macrophage polarisation
[80]. Tumour-derived lactate is an intrinsic inflammatory fac-
tor associated with the promotion of chronic inflammatory
responses through IL-17, which is secreted by T cells and
macrophages [81, 82]. Although extracellular lactate does
not modify the differentiation of monocytes into dendritic
cells (DCs), it alters the antigen presentation process mediated
by DCs and regulates the optimal functionality of DCs [83].

Despite progress in cancer-related research, multiple chal-
lenges including the repression of aerobic glycolysis in carci-
nogenesis still exist. Up to now, several glycolytic inhibitors,
which contribute to the blockade of essential enzymes in glu-
cose metabolism, have been tested against tumours in preclin-
ical and clinical trials (Table 1).

381EPMA Journal (2020) 11:377–398



Flavonoids regulating glucose metabolism

Plant-derived secondary metabolites, known as phyto-
chemicals, exert numerous beneficial effects on human
health. Many pre/clinical studies have suggested their an-
ticancer functions at the epigenetic and proteomic levels
of action [99–105]. The broad spectrum of salubrious
properties and the enormous diversity within the classifi-
cation predetermine phytonutrients for further analysis of
their role in the regulation of tumourigenesis. Flavonoids
represent a diverse group of phytochemicals (Fig. 3) that
exhibit antioxidative, antiangiogenic and overall

antineoplastic efficacy [14, 106]. Switching from oxida-
tive phosphorylation to aerobic glycolysis, even under
normoxic conditions, is associated with cancer transfor-
mation [107]. There is increasing evidence for the impor-
tance of flavonoids in modulating carcinogenic pathways
associated with glucose metabolism. Flavonoids target the
regulation of the activity of certain enzymes involved in
aerobic glycolysis, expression of transporters responsible
for glucose uptake, modulation of HIF-1 under normoxic
conditions and many other parameters within the Warburg
phenotype. Flavonoids thus represent a potential therapeu-
tic approach for oncology-related research.

Fig. 2 Molecular mechanisms contributing to the Warburg effect in
cancer cells. 6GP, glucose-6-phosphate; 6FP, fructose-6-phosphate;
FBP, fructose-1,6-bisphosphate; DHAP, dihydroxyacetone; G3P,
glyceraldehyde 3-phosphate; 1,3BGP, 1,3-bisphosphoglycerate; 3PG, 3-
p h o s p h o g l y c e r a t e ; 2 PG , 2 - p h o s p h o g l y c e r a t e ; P E P ,
phosphoenolpyruvate; HK2, hexokinase 2; PGI, phosphoglucose

isomerase; PFK1, phosphofructokinase; TPI, triosephosphate isomerase;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK,
phosphoglycerate kinase; PGM, phosphoglycerate mutase; PKM2,
pyruvate kinase 2; LDH, lactate dehydrogenase; TCA, tricarboxylic
acid cycle
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PKM2

As described above, PKM2 supports metabolic alterations as-
sociated with the switch from benign phenotype to the

malignant one [108]. Naturally occurring flavonoids are sug-
gested as efficient regulators of aerobic glycolysis via modu-
lation of PKM2 activity. Apigenin (AP), a common dietary
flavonoid found in vegetables, exerts various benefits,

Fig. 3 Structures of the main
subgroups of flavonoids

Table 1 Selected inhibitors of glycolysis

Target Agent Cancer References

PKM2 TLN-232/CAP-232 Renal, melanoma [84, 85]

HK2 2-Deoxyglucose Prostate [86, 87]

3-Bromopyruvate Colorectal, breast, hepatocellular [84, 88, 89]

LDHA FX 11 Lymphoma, pancreatic [90]

Oxamate Nasopharyngeal [91]

PDH CPI-613 Small cell lung, pancreatic [92, 93]

PDK Dichloroacetate Breast [94, 95]

PFKFB3 3PO Bladder, tongue [96, 97]

GLUT1/3 STF-31 Renal [98]

PKM2, pyruvate kinase muscle isoform 2; HK2, hexokinase 2; LDHA, lactate dehydrogenase A; PDH, pyruvate dehydrogenase; PDK, pyruvate
dehydrogenase kinase; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; GLUT1/3, glucose transporter 1/3
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including anti-inflammatory, antiviral and antioxidant effects
[109]. Moreover, AP is an anticancer agent inhibiting several
molecular pathways of tumour development [110]. Regarding
glucose metabolism, this secondary metabolite blocked gly-
colysis through regulation of PKM2 activity and expression in
a colon cancer cell line (HCT116). Additionally, AP is
regarded as a potential allosteric inhibitor of PKM2. AP could
maintain a low PKM2/PKM1 ratio as a consequence of inhi-
bition of the β-catenin/c-Myc/PTBP1 pathway [111].
Similarly, proanthocyanidin B2 (PB2) affected the activity
of PKM2 in several hepatocellular cancer cell lines (HCC-
LM3, Bel-7402, SMMC-7721, Huh-7 and HepG2).
Experimental data demonstrated decreased levels of PKM2
mediated by PB2 via an inhibition of nuclear translocation
and expression of the analysed enzyme due to the disruption
of an interaction between PKM/HSP90/Hif-1α in HCC cells
[112]. Additionally, epigallocatechin-3-gallate (EGCG), a fla-
vonoid found in green tea, demonstrated anticancer activity in
many experimental studies [113–116]. Wei et al. tested the
effects of EGCG (concentrations of 2, 4 and 8 μM) in a breast
cancer cell line (4T1) focusing on glucose metabolism in vitro.
At its highest concentration, EGCG significantly decreased
the enzymatic activity and mRNA level of pyruvate kinase
[117].

The inhibitory effects of several polyphenols on cancer
were analysed by an evaluation of PKM2 enzymatic activity
in vitro. Amongst these polyphenols, (±)-taxifolin (TAX),
neoeriocitrin (NEO), fisetin (FIS), (−)-catechin gallate (CG)
and (−)-epicatechin (EP) exerted the greatest inhibitory effi-
cacy on PKM2 activity [118]. Moreover, quercetin (QUE), a
plant flavonol, significantly decreased the level of glycolysis-
related proteins including PKM2. Similarly, western blotting
documented a decrease in PKM2 level through modulation of
the Akt–mTOR pathway in vivo [119]. Additionally, QUE
reduced the level of PKM2 in the colon mucosa of F344 rats
in the study pointing to a chemopreventive role of the flavo-
noid [120]. Shikonin (SHI) is a natural flavonoid occurring in
Lithospermum erythrorhizon. Chen et al. investigated the an-
ticancer activity of SHI and its analogue alkannin against
drug-sensitive and resistant cancer cells (MCF-7, MCF-7/
Adr,MCF-7/Bcl-xL,MCF-7/Bcl-2 and A549) via PKM2 sup-
pression and consequent inhibition of glycolysis. The results
showed that both tested compounds repressed PKM2 activity
without affecting other PKM isoforms [121]. Finally, SHI
suppressed tumour growth in mice with implanted B16 mela-
noma cells by reducing PKM2-mediated aerobic glycolysis
[122].

HK2

Hexokinase (HK) is the enzyme responsible for the phosphor-
ylation of hexoses, which is the first irreversible step of gly-
colysis [123]. HK (primarily HK2) is often overexpressed in

many types of cancer and may represent a potential molecular
target for therapy using flavonoids [124–127]. Xanthohumol
(XA), a flavonoid isolated from Humulus lupulus, suppressed
the growth and proliferation of many tumours in preclinical
studies [128–131]. Recently, a study evaluated the impact of
XA on colorectal cancer progression via the downregulation
of HK2-mediated glycolysis. XA inhibited HK2 and glycoly-
sis through the suppression of EGFR–Akt signalling colon
cancer cell lines (HCT116, HT29, SW620) in vitro and in a
murine xenograft model in vivo [132]. As was demonstrated
earlier, QUE exerted many anticancer effects in vivo and
in vitro, even in the regulation of glucose metabolism, which
leads to neoplastic transformation [133]. QUE reduced the
level of HK2 and suppressed Akt/mTOR signalling in hepa-
tocellular cancer lines (SMMG-7721, BEL-7402) in vitro.
Additionally, QUE significantly decreased the level of HK2
and tumour growth in vivo [134].Moreover, EGCG inhibited
several essential enzymes that contribute to cancer metabo-
lism. Amongst them, the enzymatic activity as well as the
protein level of HK2 was significantly reduced in 4T1 cell
line [117].

In addition to natural flavonoids and their roles in the che-
mopreventive and therapeutic aspects of cancer research, syn-
thetic metabolites with broad anticancer properties have been
reported [135]. The metabolic impact and biological activity
of a set of new 3′,4′,5′-trimethoxy flavonoid salicylate deriv-
atives were observed in the colorectal cancer cell line
(HCT116). A synthetic compound, 10v, demonstrated cyto-
toxic potency against cancer cells. Results from western blot-
ting suggested that 10v could inhibit cancer transformation
and progression via downregulation of HK2 [136]. Another
synthetic flavonoid, GL-V9, was tested against breast cancer
cell lines (MCF-7 and MDA-MB-231). GL-V9 inhibited the
expression of HK2 in both cell lines. Moreover, it promoted
the dissociation of HK2 from a voltage-dependent anion-se-
lective channel (VDAC) in the mitochondrial outer membrane
resulting in suppression of the glycolytic pathway and conse-
quent mitochondria-mediated apoptosis [137]. Additionally,
Zhou et al. studied the cytotoxic activity of the synthetic fla-
vonoid FV-429 against MDA-MB-231 cells. In a similar fash-
ion as GL-V9, FV-429 triggered the apoptosis and inhibited
glycolysis via dissociation of HK2 from VDAC in the mito-
chondrial membrane [138]. Moreover, the antineoplastic ef-
fects of the synthetic flavonoid Gen-27, mediated by the sup-
pression of HK2, were observed in the MDA-MB-231 cell
line. Application of Gen-27 to breast cancer cells led to a
decrease in HK2 expression and the dissociation of HK2 from
VDAC [139].

The antitumour and metabolic effects of phytochemicals
are also mediated by the modulation of epigenetic machinery
such as miRNAs. An individual miRNA can regulate the ex-
pression of multiple genes directly linked to glycolysis.
Therefore, miRNAs are possible targets for cancer prevention
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and therapy. The flavonoid astralangin (ASG) occurs in many
traditional medicinal plants. ASG inhibited glycolysis and
proliferation in hepatocellular cancer in vitro and in vivo.
Experimentally, ASG reduced the expression of HK2 by up-
regulating miR-125b in HepG2 HCC and Huh-7 cells. In ad-
dition, in vivo experiment using Huh-7 xenografts in nude
mice and H22 cells transplanted in Kunming mice demon-
strated a tumour-suppressive effect of AGS. Tumour growth
reduction was associated with higher expression of miR-125b
which correlated with decreasing HK2 expression observed in
tumour tissue [140].

Additional glycolytic enzymes

Glycolysis, as the main metabolic cascade contributing to car-
bohydrate degradation, involves numerous enzymes with spe-
cific roles in the metabolic pathway [141]. Alterations of the
essential enzymes PKM2 and HK2 participate in the Warburg
phenotype of cancer cells. Aerobic glycolysis is a complex
cascade involving other enzymes; specific changes in their
enzymatic activity and/or expression rate promote
tumourigenesis [142]. Naturally occurring flavonoids can sup-
press these changes. LDH catalyses the conversion of pyru-
vate into lactate. An elevated level of LDH is a biomarker of
poor prognosis in cancer [143]. One possible means of cancer
suppression is the application of synthetic or natural inhibi-
tors. Morin (MO), a flavonoid isolated from the Moraceae
family, inhibited the enzymatic activity of LDH. MO modu-
lated the conformation and inhibited the catalytic activity of
LDH [144]. Furthermore, QUE effectively suppressed cancer
growth and proliferation in MCF-7 and MDA-MB-231 cells
and decreased the level of glycolysis-related enzymes includ-
ing LDHA [119]. Additionally, luteolin-7-O-β-D-glucoside
(LU-7OβD), a flavonoid from Phlomis curdica, inhibited an
isoform of human LDH. This property could be applied to
improve anticancer treatment via the inhibition of the key
glycolytic enzyme by luteolin [145]. Application of the poly-
phenol EGCG reduced the activity of LDH and PFK in 4T1
cells [117]. Furthermore, rats fed with QUE (10 g/kg diet for
11 weeks) exhibited enhanced cellular mechanisms involved
in the prevention of carcinogenesis, while a transcriptome
analysis showed downregulation of the oncogenic mitogen-
activated protein kinase (MAPK). QUE also downregulated
glycolytic enzymes including aldolase, GAPDH and α-
enolase [120].

GLUTs

Glucose transporters are essential proteins that regulate glyco-
lytic flux in the cell. Many oncogenic pathways are connected
to the regulation of GLUT [146]. Flavonoids can modulate
these pathways thus influencing glucose metabolism in tu-
mours. Genistein (GE), phloretin (PH), daidzein and AP were

tested against prostate cancer androgen-sensitive (LNCaP)
and androgen-insensitive (PC-3) cell lines. Glucose intake
was measured using nonradiolabeled 2-deoxyglucose.
GLUT1 and GLUT4 levels were evaluated by western blot
and immunocytochemistry. Amongst the four flavonoids, AP
and PH were the most efficient in regulating the level of
GLUTs and glucose intake in prostate cancer cells [147].
Furthermore, AP has also been found to reduce glucose trans-
port by downregulating GLUT1 at the mRNA and protein
levels in the pancreatic cancer cell lines CD18 and S2-013
[148]. Hesperetin (HES) is a citrus flavonoid reported to re-
duce cholesterol in plasma [149, 150]. Yang et al. observed a
metabolic impact of HES on breast cancer cells MDA-MB-
231. Their data indicated a decrease in glucose intake due to
GLUT1 downregulation. Moreover, HES reduced insulin-
stimulated glucose uptake by impairing the cell membrane
translocation of GLUT4 [151]. Kaempferol (KAE;
tetrahydroxy flavone) is found in various plants and exerts
wide anticancer properties [152]. Azavedo et al. studied alter-
ations in the uptake of 3H-deoxy-D-glucose, a glucose ana-
logue, in MCF-7 cells after treatment with myricetin, chrysin,
KAE, resveratrol, genistein and XA. Amongst these flavo-
noids, KAE was found to be the most effective inhibitor of
glucose analogue uptake. Long-term KAE exposure also
inhibited the 3H-deoxy-D-glucose uptake via downregulation
of GLUT1 mRNA level in MCF-7 cells [153]. Another study
utilised 3H-deoxy-D-glucose to estimate a glucose uptake in
MCF-7 and MDA-MB-231 cells treated with QUE and
EGCG. Both polyphenols affected glucose intake via direct
and competitive inhibition of GLUT1 and thus suppressed the
glucose metabolism [154]. In addition, EGCG demonstrated
anticancer efficacy against 4T1 via reduction of GLUT1 ex-
pression [117]. Furthermore, QUE blocked an intake of glu-
cose in MCF-7 and MDA-MB-231 through inhibition of
GLUT1 activity as a consequence of the regulatory effect of
QUE on the protein level of the glucose transporter [119].
Silibinin (SI), a naturally occurring flavone, is a major com-
ponent of silymarin isolated from Sylibum marianum. SI
inhibited GLUT4 in non-tumour CHO cells. Therefore, mod-
ulation of glucose transport via SI is a potential chemopreven-
tive approach that could be applied also in cancer cells [155].

HIF-1

HIF-1 is a transcription factor associatedwith the regulation of
many pivotal pathways in healthy cells, and its alterations
caused by genetic, epigenetic or intra/extracellular stimulation
lead to cell transformation into the cancer phenotype. Elevated
expression of HIF-1 promotes tumour-associated angiogene-
sis, proliferation and progression through the modulation of
glycolytic cascades [156]. Current evidence suggests that fla-
vonoids may play a considerable role in cancer treatment and
have multiple potential targets in tumourigenesis, including
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HIF-1 [157]. Baicalein (BA; 5,6,7-trihydroxyflavone), a fla-
vonoid isolated from Scutellaria baicalensis, exerts strong
anticancer activity on various tumours [158–160]. A recent
study evaluated the impact of BA on glycolysis-related
chemoresistance to 5-fluorouracil in gastric cancer cells
(AGS). BA increased the sensitivity of AGS cells to 5-
fluorouracil therapy. The administration of this flavonoid led
to the inhibition of hypoxia-induced Akt phosphorylation as a
consequence of the improvement of PTEN accumulation as-
sociated with decreasing HIF-1α expression. Since BA sup-
pressed glycolysis via PTEN/Akt/HIF-1α, it is a possible ther-
apeutic sensitiser against gastric cancer [161]. Interestingly,
other studies confirmed the inhibitory effects of flavonoids
on HIF-1 in the regulation of glucose metabolism. For in-
stance, methylalpinumisoflavon (MF), a flavonoid isolated
from Lonchocarpus glabrescens, contributed to the regulation
of glycolysis in vitro. MF demonstrated strong cytotoxic ef-
fects on T47D cells and also suppressed HIF-1 activation and
its target genes including CDKN1A, VEGF and GLUT-1 in
cancer cells [162]. Moreover, oroxylin A (OX-A), a bioactive
compound occurring in traditional Chinese medicinal plants,
was tested against MDA-MB-231 cells. OX-A administration
correlated with the inhibition of cancer-related glycolysis via
Sirtuin-3 mediated destabilisation of HIF-1α controlling ex-
pression of glucose degradation enzymes [163]. Furthermore,
EGCG reduced the expression of HIF-1α and enzymes related
to glycolysis in T47D cells [117]. Interestingly, resveratrol
(RES) reduced glucose uptake and glycolysis in the Lewis
lung carcinoma (LLC), breast T47D and colon HT-29 cancer
cell lines. Measurements of cellular uptake of the glucose
analogue 18F-fluorodeoxyglucose (18F-FDG) during RES
exposure indicated that RES repressed intracellular reactive
oxidative species (ROS) and thereby decreased HIF-1α accu-
mulation, reduced GLUT-1 expression and caused glycolytic
flux [164]. Table 2 summarises the results of experimental
studies investigating the effects of flavonoids on the critical
components of glycolysis. Figure 4 is an overview of the
flavonoids used as repressors of cancer-related metabolism.

The Warburg effect from a clinical
perspective: status quo

Investigating how anticancer therapies may target the
Warburg effect has been of great interest since it was first
described a century ago. During the last two decades, recent
advances in this field have provided valuable knowledge re-
garding personalised detection and treatment of cancer. An
example of its utilisation in cancer detection, treatment re-
sponse and surveillance is positron emission tomography
(PET-CT) imaging. As described by Croteau et al. [165] by
assessing oxygen consumption and mechanisms of energy
substrate consumption, through 18F-FDG uptake, this imaging

modality has proven its great value for comprehensive man-
agement of cancers. After introduction of PET-CT imaging,
innovative treatments have been developed to deliver more
precise and directed radiotherapy fields, particularly in the
setting of Hodgkin lymphoma. According to Girinsky et al.
[166], historic radiation fields encompassed significant por-
tions of healthy tissue, whereas modern radiation therapy
techniques are able to limit radiation fields to focus on tu-
mours identified by pre-treatment PET-CT, decreasing toxic-
ities without compromising oncologic outcomes. For certain
cancers, PET-CT is also utilised to evaluate treatment re-
sponse after administration of chemotherapy [167]. This
opens a new perspective for glucose-targeted drug therapies
[168].

A parasitic effect, known as the ‘reverse Warburg effect’,
by which tumour cells trigger a positive growth factor feed-
back from surrounding stromal cells after the ‘classical’
Warburg effect, was demonstrated in triple-negative breast
cancer and is related to poor prognosis [169]. Based on these
findings, clinical trials to assess the benefit of FDA-approved
drugs such as metformin, hydroxychloroquine and N-acetyl-
cysteine have been initiated due to their postulated property of
blocking this particular pathway. Blocking a Warburg effect
can be traced by PET-CT to assess treatment response [170].
Although an increased risk of aggressive BC specifically for
young patients is well known amongst practitioners [171], the
mechanisms for this phenomenon were unclear. The discov-
ery made by Olga Golubnitschaja and colleagues described
young patients with Flammer syndrome (FS) phenotype
representing a specific group of risk predisposed to aggressive
metastasing breast cancer, due to systemic vasoconstriction
and tissue hypoperfusion [172–174] tightly linked to the sys-
temic hypoxic–ischemic effects and Warburg transformation.

The Warburg effect also plays a role in novel methods for
detection and treatment of prostate cancer. The employment
of natural 1,4-naphtoquinone and its derivate 6-O-(1,4-
naphtaquinone-2-yl)-D-glucose may improve selectivity in
the Warburg effect blockade [175]. Further, clinical experi-
ences with peroxisome proliferator-activated receptor ligands
(PPAR ligands), which directly block the Warburg effect,
yielded discordant results in terms of PSA control in 2 con-
secutive phase II trials [176, 177]. Although early develop-
ment of prostate cancer in younger patients is recorded [178],
current standard screening measures do not include patients
under 45–50 years [179]. While strategies for early screening
are currently under investigation, already available informa-
tion points at metabolomics and radiomics to improve early
diagnosis and personalised treatment opportunities [5]. The
introduction of 68Ga prostate-specific membrane antigen
PET-CT (PSMA-PET) and molecule dosage as the prostate
cancer antigen 3 (PCA3), both with high selectivity for diag-
nosis and staging, has provided new options for individualised
treatment planning, based on a patient’s risk profile
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Table 2 Flavonoids in the Warburg phenotype

Component of glycolysis Flavonoid Cancer
type/model

Study design Mechanism of action References

PKM2 AP CC HCT116 ↓ PKM2 expression [111]
PB2 HC HCC-LM3, Bel-7402,

SMMC-7721, Huh-7
and HepG2

↓ PKM2 expression [112]

EGCG BC T47D ↓ PKM2 expression
↓ PKM2 activity

[117]

TAX, NEO, FIS, CG,
EP

Only enzyme activity
evaluated in vitro

↓ PKM2 activity [118]

QUE BC MCF-7, MDA-MB-231;
BALB/c nude mice

↓ PKM2 level [119]

Colon mucosa
(chemopreventive model)

F344 rats

↓ PKM2 level [120]

SHI BC, LC MCF-7, MCF-7/Adr,
MCF-7/Bcl-xL,
MCF-7/Bcl-2,
and A549

↓ PKM2 activity [121]

ME B16-melanoma xenografts ↓ PKM2 level/activity [122]
HK2 XA CC HCT116, HT29, SW620;

HCT116, HT29
xenografts

↓ HK2 expression [132]

QUE HC SMMG-7721, BEL-7402
SMMC-7721 xenografts

↓ HK2 level [134]

EGCG BC T47D ↓ HK2 activity [117]
10v CC HCT116 ↓ HK2 level [136]
GL-V9 BC MCF-7, MDA-MB-231 ↓ HK2 expression [137]
FV-429 BC MDA-MB-231 ↓ HK2 level/activity [138]
Gen-27 BC MDA-MB-231 ↓ HK2 expression [139]
ASG HC HepG2, Huh-7

H22, Huh-7 xenografts
↓ HK2 expression [140]

LDH MO Only enzyme activity
evaluated in vitro

↓ LDH enzymatic activity [144]

QUE BC MCF-7, MDA-MB-231 ↓ LDH level [119]
LU-7OβD Only enzyme activity evaluated in vitro ↓ LDH enzymatic activity [145]

LDH, PFK EGCG BC T47D ↓ LDH, PFK levels/activities [117]
Aldolase,

GAPDH,a-enolase
QUE Colon mucosa

(chemopreventive model)
F344 rats

↓ aldolase, GAPDH, and a-enolase
levels

[120]

GLUTs AP, PH PC LNCaP, PC-3 ↓ GLUT1/GLUT4 expression [147]
AP PC CD18, S2–013 ↓ GLUT1 level [148]
HES BC MDA-MB-231 ↓ GLUT1 level

↓ GLUT4 translocation
[151]

KAE BC MCF-7 ↓ GLUT1 level [153]
QUE, EGCG BC MCF-7, MDA-MB-231 ↓ GLUT1 activity [154]
EGCG BC 4T1 ↓ GLUT1 expression [117]
QUE BC MCF-7, MDA-MB-231 ↓ GLUT1 activity [119]
SI Non-tumour CHO ↓ GLUT4 activity [155]

HIF-1 BA GC AGS ↓ HIF-1 expression [161]
MF BC T47D ↓ HIF-1 activity [162]
OX-A BC MDA-MB-231 → HIF-1 destabilisation [163]
EGCG BC T47D ↓ HIF-1 expression [117]
RES LC, BC, CC LLC, T47D, HT-29 ↓ HIF-1 level [164]

Explanatory notes: ↓ decrease, reduction, suppression;→ induction

PKM2, pyruvate kinase muscle isoform 2; HK2, hexokinase 2; LDH, lactated hydrogenase; PFK, phosphofructokinase; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase,GLUTs, glucose transporters;HIF-1, hypoxia-inducible factor 1; AP, apigenin; PB2, proanthocyanidin B2; EGCG, epigallo-
catechin-3-gallate; TAX, taxifolin; NEO, neoeriocitrin; FIS, fisetin; CG, catechin gallate; EP, epicatechin; QUE, quercetin; SHI, shikonin; XA,
xantohumol; ASG, astralangin; MO, morin; LU-7OβD, luteolin-7-O-β-D-glucoside; PH, phloretin; HES, hesperitin; KAE, kaempferol; SI, silibinin;
BA, baicalein;MF, methylalpinumisoflavon; OX-A, oroxylin A; RES, resveratrol; CC, colon cancer; HC, hepatocellular cancer; BC, breast cancer; LC,
lung cancer; ME, melanoma; PC, prostate cancer; GC, gastric cancer
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[180–182]. Regarding metastatic disease, Radium-223 has a
demonstrated effect on bony metastasis [183]. Its high selec-
tivity for osteoblastic regions with high metabolic activity
exemplifies how ‘anti-Warburg’ measures could play an ad-
vantageous role in targeted cancer treatment.

The ‘anti-Warburg’ approach, as described in this paper, is
currently considered as being synergistic to comprehensive
conventional therapies [184, 185]. Contextually, combined
targeted therapies are strongly recommended for the cancer
treatment setting.

Individualised patient profiling as a powerful
instrument for implementing targeted
‘anti-Warburg’ measures in the context of 3P
medicine

Below, the most prominent examples are briefly summarised
for the application of targeted ‘anti-Warburg’ measures
categorised as three levels of prevention and according to
patient stratification based on the individualised profiling.
For more information, corresponding literature sources are
provided.

Targeted ‘anti-Warburg’ measures potentially
effective for primary prevention in stratified groups
of individuals with modifiable risk factors and
reversible damage to health

A. Individuals demonstrating systemic hypoxic–ischemic
lesions, due to disturbed microcirculation such as the
following:

– Otherwise healthy individuals with Flammer syndrome
phenotype who are typically affected by primary vascular
dysregulation [186]; Flammer syndrome phenotype with
predisposition to related pathologies can be diagnosed
applying specialised questionnaires [172, 187, 188].

– Otherwise healthy individuals demonstrating disturbed mi-
crocirculation secondary to modifiable health condition such
as low physical activity, due to sedentary lifestyle [189, 190],
in overweight and obese individuals [191] who are per evi-
dence at higher risk to develop cancer [192] compared to the
general population, as well as in underweight individuals
(malnutrition, dietary restrictions, anorexic condition), due
to restricted energy resources, upregulation of HIF-1 [193]
and potentially insufficient repair capacity [194].

Fig. 4 The role of flavonoids in
the regulation of glucose
metabolism in cancer. AP,
apigenin; PB2, proanthocyanidin
B2; EGCG, epigallocatechin-3-
gallate; TAX, taxifolin; NEO,
neoeriocitrin; FIS, fisetin; CG,
catechin gallate; EP, epicatechin;
QUE, quercetin; SHI, shikonin;
XA, xantohumol; ASG,
astralangin; MO, morin; LU-
7OβD, luteolin-7-O-β-D-
glucoside; PH, phloretin; HES,
hesperitin; KAE, kaempferol; SI,
silibinin; BA, baicalein; MF,
methylalpinumisoflavon; OX-A,
oroxylin A; RES, resveratrol;
OXPHOS, oxidative
phosphorylation; TCA,
tricarboxylic acid cycle; ATP,
adenosine triphosphate
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B. Excessive stress exposure and accelerated ageing
processes—both linked to preventable risk factors

Excessive stress exposure at an individual level might be
linked to systemic vasoconstriction with consequent hypoxic–
ischemic lesions and imbalanced damage-to-repair capacity
that can be detected by ‘comet assay analysis’ [195, 196]
and preventable accelerated ageing processes (e.g. in smokers
and ageing population) [190]—all risk factors associated with
cancer development and progression involving preventable
contribution of Warburg effects [197].

C. Chronic inflammation and healing impairments

Chronic inflammation and healing impairments frequently
resulting from disturbed microcirculation are well-
acknowledged risks of cancer development and progression.
Both chronic inflammation and healing impairment may oc-
cur to individuals in suboptimal health conditions [187, 194,
198]. Individualised patient profiling is the best instrument to
detect cancer predisposition at a reversible stage of damage
[199].

Targeted ‘anti-Warburg’ measures potentially
effective for secondary prevention in stratified
patient groups with non-modifiable risk factors

A. Genetic predisposition to cancer

Genetic component plays a role in the Warburg effect as
the central contributor to the cancer progression machinery
[200]. Both inborn and acquired genetic alterations are in-
volved in Warburg phenomenon influencing its severity
[201]. Therefore, both genotyping and phenotyping are im-
portant for considering individualised ‘anti-Warburg’ treat-
ment options.

B. Mitochondrial dysfunction

Although clarity is still needed, whether dysfunctional mi-
tochondria are primary or secondary in Warburg effect [24],
there is a consensus that mitochondrial dysfunction is central
for cancerous transformation. Consequently, early detection
of mitochondrial impairments is highly predictive for preven-
tive ‘anti-Warburg’ treatments.

C. Benign tumours diagnosed

Benign tissue transformation is an acknowledged risk fac-
tor for a malignant development, for example, in breast cancer
aetiology [202]. Considering benign tumours as potential can-
cer pre-stages, ‘anti-Warburg’ measures might be effective to
prevent cancer development.

D. Clinically manifested relevant co-morbidities

As prominent examples, cardiovascular dysfunction and
metabolic syndrome both linked to impaired circulation
resulting in systemic hypoxic–ischemic lesions can be consid-
ered. To this end, patients with diabetic history are of in-
creased cancer risk with poorer outcomes compared to non-
diabetic patients [203]. Contextually, ‘anti-Warburg’ treat-
ments have a potential to significantly improve individual
outcomes in diabetic patients and patients with cardiovascular
pathologies [204–207].

Targeted ‘anti-Warburg’ measures potentially
effective for tertiary prevention in stratified patient
groups

A. Clinically manifested aggressive cancer subtypes with
high metastatic potential

The incidence of aggressive breast cancer sub-types such
as triple-negative metastasing tumours diagnosed in young
females with normal and low BMI [6] is permanently increas-
ing worldwide presenting a significant challenge for
healthcare. Although their aetiology is still poorly understood,
clear indications have been provided recently for the charac-
teristic phenotype linked to the primary vascular dysregulation
and some other signs and symptoms of Flammer syndrome
[173, 174, 208]. The situation is particularly dramatic in the
case of aggressive metastasing breast cancer, if diagnosed
during pregnancy [209] (note: the publication was selected
by Springer-Nature (2018) in the category ‘Medicine and
Public Health’ as an article with a potential to change the
world) [210]. In this group, an effective targeted chemopre-
vention adapted to the clinical situation is of great importance
[211].

B. Palliative medical approach

Despite significant progress in early diagnostics and
screening programmes during the last two decades, a large
portion of malignancies are still diagnosed at advanced stages
resulting in palliative approach only possible. This is particu-
larly true for the liver malignancies, since almost all solid
tumours are metastasing to the liver [212]. To this end, effec-
tive palliative approaches demonstrate a great capacity to turn
liver malignancies into chronic health condition, if patient-
tai lored treatment algori thms are appl ied [213] .
Contextually, ‘anti-Warburg’ measures utilising flavonoids
and genoprotective strategies [196] might be helpful in
stabilising health condition of patients undergoing selective
internal radiation therapy (SIRT) or trans-arterial chemo-em-
bolisation (TACE).
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Conclusion and expert recommendations

The rapid rise in cancer incidence and mortality is a global
challenge [214]. Oncogenesis is a complex, multistage pro-
cess including initiation, promotion and progression [215], as
well as metabolic changes. It is well established that the in-
crease of glucose uptake and lactate secretion due to metabolic
changes in malignant cells constitutes the Warburg effect, an
essential step of carcinogenesis [2]. Alterations in glucose
metabolism associated with dramatically increased prolifera-
tion activity, progression and development of chemo-/
radioresistance represent an important hallmark of malignan-
cy [216]. Due to metabolic reprogramming, cancer cells ex-
hibit increased levels of glucose uptake. This phenomenon is
widely used for diagnostic and prognostic imaging of tumours
using glucose analogues [217]. For many decades, PET dem-
onstrates a non-invasive imaging method for evaluation of
metabolic or functional changes in normal tissue as well as
during disease conditions [218]. 18F-fluorodeoxyglucose (18F-
FDG) is a glucose analogue that is widely used in combination
with PET as a diagnostic tool for various types of cancer in
clinical practice [219]. Consequently, FDG-PET is a clinically
used technique for tumour imaging via increasing glucose
uptake [220]. Further, magnetic resonance spectroscopy
(MRS) utilising hyperpolarised 13C-pyruvate demonstrates
great clinical utility, e.g. for prostate cancer patients. This
technique is able to precisely delineate cancer relative to sur-
rounding healthy tissue based on metabolic alteration in the
cell [221]. Continuous progress in imaging techniques associ-
ated with specific cancer metabolism provides new opportu-
nities for improving diagnostic procedures and individual pa-
tient outcomes [222].

Therapeutic strategies focused on specific cancer metabo-
lism linked to theWarburg effect are currently under extensive
consideration [174, 175]. To this end, naturally occurring bio-
active compounds of plants demonstrate clinically relevant
beneficial effects against cancer development and progression
[223–230]. The combination use of phytochemicals and
chemotherapeutical drugs may represent an optimal modality
for anticancer therapy [231]. In this regard, the application of
plant-derived natural substances as anticancer agents specifi-
cally against the Warburg phenotype is a promising strategy.

Flavonoids may modulate almost all key processes in-
volved in carcinogenesis including apoptosis [232], prolifera-
tion [233], angiogenesis and metastatic progression [234,
235]. Their anticancer effects are directly associated with
modulating energy and glucose metabolism, regulating spe-
cific enzymes of aerobic glycolysis and transporters required
for glucose intake, which amongst others are involved in the
Warburg effects characteristic for the cancerous cell transfor-
mation [111, 112, 117–122, 132, 134, 136–140, 144, 145,
147, 148, 151, 153–155, 161–164]. Still, in-depth analysis is
essential to stratify individuals and patients for targeted

application of flavonoids considering ‘anti-Warburg’ effects
at the level of primary, secondary and tertiary prevention. To
this end, individualised patient profiling is a powerful instru-
ment for implementing targeted ‘anti-Warburg’ measures in
the context of predictive, preventive and personalised medi-
cine, which natural substances demonstrate a great potential to
contribute to [236].
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