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Alzheimer’s disease (AD) is the most common cause of dementia. Despite this, clear

pathophysiology for AD has not been confirmed, and effective treatments are still not

available. As AD results in a complex disease process for cognitive decline, various

theories have been suggested as the cause of AD. Recently, cerebral small vessel

disease (SVD) has been suggested to contribute to the pathogenesis of AD, as well

as contributing to vascular dementia. Cerebral SVD refers to a varied group of diseases

that affect cerebral small arteries and microvessels. These can be seen as white matter

hyperintensities, cerebral microbleeds, and lacunes on magnetic resonance imaging.

Data from epidemiological and clinical-pathological studies have found evidence of the

relationship between cerebral SVD and AD. This review aims to discuss the complex

relationship between cerebral SVD and AD. Recent reports that evaluate the association

between these diseases will be reviewed.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for about 60%
of all dementia cases (1). As AD results in a complex disease process for cognitive decline,
various theories have been suggested as the cause of AD in many epidemiological, biochemical,
genetic, and animal studies. The main hypothesis, to date, is the amyloid-β (Aβ) cascade
hypothesis, which is that Aβ is the most important factor in the pathogenesis of AD (2). Along
with the Aβ cascade hypothesis, another major theory is the tau hypothesis, in which the
abnormal phosphorylation of tau protein results in paired helical filament tau and neurofibrillary
tangles, causing neurodegeneration (3). However, the clear pathophysiology for AD, detailing the
contributions of cerebral Aβ accumulation and abnormal phosphorylation of tau protein has not
been confirmed, and effective treatments are still not available (4).

Cerebral small vessel disease (SVD) refers to a varied group of diseases that affect the cerebral
small arteries and microvessels. These can be seen as white matter hyperintensities (WMHs),
cerebral microbleeds (CMBs), and lacunes on magnetic resonance imaging (MRI) (5). Cerebral
SVD is the most common pathological neurological process and has an important role in dementia
as well as strokes (5). Since the causes of AD were first explored, studies have focused on the
relationship between AD and cerebral SVD (6, 7). Recently, it has been hypothesized that cerebral
SVD contributes to the pathogenesis of both AD and vascular dementia (8, 9). AD has similar
risk factors to cerebral SVD, such as hypertension and diabetes (10) as well as pathophysiological
mechanisms such as oxidative stress, inflammation, mitochondrial disruption, and metabolic
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dysfunction (11). For these reasons, the clinical differentiation of
AD from vascular cognitive impairment or vascular dementia can
be unclear.

Data from epidemiological and clinical-pathological studies
have supported a relationship between cerebral SVD and AD,
although the role of cerebral SVD in causing AD is still unclear.
This review aims to discuss the complex relationship between AD
and cerebral SVD. Recent reports that evaluate the association
between these diseases will be reviewed. The direction of future
research will be also presented by exploring the underlying
mechanism of cerebral SVD on AD development and hypotheses
will be suggested.

REVIEW OF THE LITERATURE

By searching the PubMed database (1982–2020), 1,335
potentially relevant studies were identified. The following
combinations of keywords were searched: “cerebral small vessel
disease” or “white matter hyperintensities” or “microbleed” or
“lacunes” and “AD.” A study was selected from the initial search
if it described at least one case of cerebral SVD and evaluated
the relationships between cerebral SVD and AD. Studies on
the relationship between cerebral SVD and broad spectrum of
dementia, or studies mainly dealing with vascular dementia
or neurodegenerative diseases other than AD, studies written
in languages other than English, duplicate studies, and review
articles were excluded. A total of 81 studies were selected for
inclusion by reviewing the titles and abstracts of identified
articles (Figure 1).

FIGURE 1 | Flow diagram showing the inclusion and exclusion of relevant studies.

CEREBRAL SMALL VESSEL DISEASE

Cerebral SVD refers to a varied group of diseases that involve
the small (40∼250µm) perforating arterioles, capillaries, and
venules of the brain, causing various lesions that can be seen on
pathological examination or brain imaging (12). Cerebral SVD
is typically seen as WMHs, CMBs, lacunes, dilated perivascular
spaces, and microinfarcts on MRI (5). WMHs are usually seen
as bilateral, mostly symmetrical hyperintensities on T2 MRI
in older individuals (5). Pathological studies have shown that
WMHs are accompanied by vessel wall thickening, enlargement
of perivascular spaces, a decrease in vascular density, and an
increase in vessel tortuosity. WMHs are further characterized
by demyelination, gliosis, fiber loss, and decreased number
of oligodendrocytes (13, 14). The mechanisms for developing
WMHs are presumed to be chronic ischemia, blood-brain barrier
(BBB) breakdown, dysfunction of oligodendrocyte precursor
cells, and venous collagenosis (13, 15, 16). CMBs are usually
seen as small areas (<10mm in diameter) of the signal void
with associated blooming on the T2 MRI (5). CMBs have also
been known to be associated with various degrees of gliosis
and tissue loss (13). Histopathological studies have shown that
most CMBs have parenchymal micro-hemorrhages with vessel
wall disruption, but some only have vasculopathy, such as vessel
wall dissection, microaneurysms, and vessel wall thickening,
without hemorrhage (17). A lacune is a round, ∼3–15mm sized,
fluid-filled cavity caused by an acute cerebral infarction or a
cerebral hemorrhage in subcortical regions within the territory
of a perforating arteriole (5). It is usually seen as a central
cerebrospinal fluid (CSF)-like hypointensity with a surrounding
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rim of hyperintensity on a fluid-attenuated inversion recovery
(FLAIR) MRI (5). Histopathological studies have shown that the
lacune is an irregularly shaped cystic cavity with surrounding
mild axonal loss and minimal gliosis (13).

Historically, cerebral SVD has been shown to be related to
age-related changes and was thought to be a slowly progressing
disease that affected the frontal–subcortical networks, which
lead to corresponding frontal symptoms (18). However, this
concept of cerebral SVD has evolved because it became clear
the spectrum of cognitive symptoms attributable to cerebral SVD
is more diverse than that of the classic concept which includes
loss of executive control, and decreased speed of behavioral
performance. In addition to the classic concept, it includes
deficits in language, memory, attention, and visuospatial abilities
(13, 19). Recent studies on brain connectomics and functional
neuroanatomy have resulted in a better understanding of the
mechanism for cerebral SVD in developing the broad spectrum
of cognitive symptoms by disrupting the structural or functional
connected cerebral networks (13). The structural network was
disrupted due to decreases in the number, strength and efficiency
of connections in patients with cerebral SVD (20, 21). It has
been reported that the degree of brain network disruption is
associated with the severity of cerebral SVD, such as WMH
volume, number of CMBs, and the number of lacunes (21).
Also, the disruption of the structural network in functional
neuroimaging studies has shown the disruption of functional
connectivity across distributed networks in patients with cerebral
SVD (13, 21). The disruption of functional connectivity by
cerebral SVD affects the default mode, dorsal attention and
frontoparietal networks, resulting in decreased attention and
impaired executive functions (22). Patients with cerebral SVD
have a lesser degree and later onset of memory impairment
compared with AD patients (13). In the context of the functional
connectivity disrupted by cerebral SVD, memory impairment has
been explained to be a result of impaired executive function,
leading to working memory deficits, in turn affecting memory
function (23). However, as the relationship between cerebral SVD
and AD pathology has been reported (6, 8), cerebral SVD seems
to have a direct and synergistic effect on memory function in
AD patients.

RELATIONSHIP BETWEEN AD RISK AND
CEREBRAL SVD

Several studies have evaluated the associations between
AD risk and cerebral SVD, including WMHs, CMBs, and
lacunes. Although the relationship between WMHs and AD is
controversial, most of the studies showed that cerebral SVD
had a predictive effect on AD risk in older individuals. The
Cardiovascular Health Study Cognition Study, which contained
3,375 participants, reported that a significantly increased risk
of AD [HR = 1.5 (1.17–1.99)] was observed in individuals
with higher grades of WMH over 8 years (24). Hertze et al.
(25) reported that the presence of pathologic tau and WMHs
in MCI patients was associated with an increased risk of

developing AD dementia. This result suggests that while WMHs
independently induce cognitive impairment, such impairments
are synergistically exacerbated in the presence of pathologic
tau. A 3 years follow-up study with 169 MCI patients reported
that patients with higher volumes of WMHs in the parietal
lobe had more advanced AD progression than those with
lower WMH volumes [HR = 1.07(0.99–1.16)] (26). Also, a
study by the Clinical Research Center for Dementia of South
Korea using 622 participants with MCI reported that severe
periventricular WMHs predicted incident all-cause dementia
[HR = 2.22 (1.43–3.43)] and AD [HR 1.86 (1.12–3.07)] (27).
A longitudinal study with MCI patients from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) showed that patients
whose symptoms progressed from MCI to AD dementia
exhibited increased WMH burden faster than those with stable
cognitive function (28). A recent longitudinal study with 2,626
initially cognitively normal subjects showed that high WMH
burden was associated with an increased risk of developing
AD in a 5 years follow-up period [HR = 1.75 (1.37–2.01)]
(29). Furthermore, a recent cohort study with 575 cognitively
unimpaired participants revealed that WMH burden was
associated with AD risk factors, including cardiovascular risk,
age, hypertension, hypercholesterolemia and body mass index,
suggesting that control of modifiable risk factors could have a
significant impact on AD development (30). However, other
studies could not find any significant relationship between
WMHs and the prevalence of AD (31–33).

In evaluating the associations between AD risk and CMBs,
most studies have failed to find a significant relationship between
AD risk and CMBs. A longitudinal study with 729 Japanese
participants with vascular risk factors showed that overall CMBs
were significantly related to the risk of all-cause dementia [HR
= 2.72(1.45–4.93)], but not significantly related with AD risk
(34). A meta-analysis of 3 studies on CMBs and AD risk
also revealed no significant effect of CMBs on AD incidence
using random-effect models (11). In evaluating the associations
between AD risk and lacunes, the results of several studies
conflict. The Cardiovascular Health Study with 5,888 adults
showed a significant relationship between lacunes and the
progression of AD [OR = 2.7 (1.0, 7.1)] (32). Contrastingly, two
longitudinal studies (34, 35) and three cross-sectional studies
(36–38) did not show any significant correlation between lacunes
and AD risk. A meta-analysis of these six studies showed that
lacunes significantly increased the risk of AD [OR = 1.203
(1.014–1.428)] (11).

Studies evaluating the associations between cerebral SVD
and AD risk based on the clinical AD diagnosis with a
cognitive function test usually show contradictory results,
because cognitive function can be substantially affected by
several factors, such as neurodegenerative disease, genetics,
physical activity, education level, alcohol abuse, diabetes and
cardiovascular disease (39). To clarify the effects of cerebral
SVD on the development of AD, longitudinal studies that
evaluate pathological changes, such as tau protein or Aβ plaque
deposition, rather than studies based on the diagnosis of clinical
dementia, are needed.
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GENETIC CONTRIBUTIONS TO BOTH AD
AND CEREBRAL SMALL VESSEL DISEASE

Genetics affect AD risk. Familial autosomal-dominant genes
(PSEN1, PSEN2), and amyloid precursor protein (APP) gene have
been reported as being associated with early-onset AD (40). In
addition, there are several genetic markers that influence both
AD and cerebral SVD. It is unknown whether these genes cause
development of cerebral SVD and indirectly affect AD, or directly
affect both SVD and AD. The ε4 allele of the apolipoprotein
E (APOE) gene is a risk factor for both AD and cerebral
SVD. The APOE protein performs several functions, and is
critically involved in the development of a number of metabolic,
cardiovascular, and neurodegenerative diseases. APOE enables
lipid transport by acting as a major cholesterol carrier; one of
its primary functions is to help the binding of lipoproteins or
lipid complexes to surface receptors of cells in plasma (41).
It has three major isoforms (APOE ε2, APOE ε3, and APOE
ε4) with different effects on lipid and neuronal homeostasis. In
Caucasian populations, individuals with the APOE ε4 allele were
reported to have a 10-fold higher risk of developing AD than
those without the APOE ε4 allele (42). APOE is involved in the
breakdown and tau-mediated neurodegeneration of cerebral Aβ

plaques. APOE ε4 does not efficiently perform a breakdown of
Aβ plaques, and is less efficient than other alleles in maintaining
cerebral homeostasis of lipid transport, synaptic integrity, glucose
metabolism, and cerebrovascular function (43). Also, the APOE
ε4 genotype was associated with microstructural abnormalities
of the white matter in late middle-aged adults (44). Studies
using MRI have shown that APOE ε4 is associated with an
increase in WMH volumes (45, 46). In developing cerebral
SVD, the expression of APOE ε4, but not of APOE ε2 or of
APOE ε3, leads to BBB breakdown through the activation of
an NF-kB/matrix metalloproteinase 9 pathway in pericytes (47).
This causes cerebral SVD, allowing neurotoxic proteins from
the blood to accumulate in the neuron. However, it is not clear
whether APOE directly affects AD pathology or indirectly affects
AD pathology through cerebral SVD.

Another genetic marker has been reported to be related to
both the risk of AD and cerebral SVD. A study using a Dutch
family-based cohort reported that the presence of APOE ε4,
as well as SORL1, was associated with cerebral SVD and AD
(48). The SORL1 gene regulates APP processing, and SORL1
deficiency leads to increased levels of Aβ and enhances amyloid
pathology in the brain (49). A recent meta-analysis study using
the genomic-relatedness-matrix restricted maximum likelihood
method found evidence of a shared genetic contribution between
AD and cerebral SVD (50). They reported that one particular
region on chromosome 17, that encompassed three genes
(ICT1/KCTD2/ATP5H) was associated with both diseases. A
pathway analysis identified four associated pathways involving
cholesterol transport [gene ontology (GO)/phospholipid efflux,
GO/cholesterol efflux, and GO/reverse cholesterol transport]
and immune response (GO/negative regulation of nuclear factor
kappa B transcription factor activity). Also, two polymorphisms
(rs1801133 and rs1801131) in the methylenetetrahydrofolate
reductase gene have been reported to correlate with elevated

levels of plasma homocysteine as well as being associated with
AD and vascular contributions to cognitive impairment (51). A
recent study comparing 96 Caucasian cerebral SVD patients with
368 healthy controls reported a burden of truncation mutations
in APP-Aß degradation genes (EPHA1 p.M900V and p.V160A
and CD33 p.A14V). These genes were related with cerebral Aß
accumulation, which has a protective effect on cerebral SVD (52).

RELATIONSHIP BETWEEN AD
BIOMARKERS AND CEREBRAL SVD

As cognitive function can be substantially affected by several
factors, including AD pathology, contribution to cognitive
impairment by cerebral SVD could be under- or overestimated
depending on the cognitive reserve of each individual (39). For
this reason, there is no linear correlation between AD pathology
and cognitive impairment (53). It seems that cerebral SVD
independently induces cognitive impairment with concurrent,
synergistic exacerbation by AD pathology, resulting in MCI to
dementia (25). Thus, the utilization of biological AD markers
in place of its syndromal definition would be beneficial for
evaluating the effect of cerebral SVD on AD development.
The biomarkers that can be detected and quantified in AD
are cerebral Aβ plaques, pathologic tau, and neurodegeneration
(54). The biomarkers of cerebral Aβ plaques are low CSF
Aβ42 and cortical amyloid positron emission tomography
(PET) ligand binding (55). Biomarkers of pathologic tau are
elevated CSF phosphorylated tau (p-tau) and cortical tau PET
ligand binding (56). Biomarkers of neurodegeneration are
cerebral hypometabolism on 18F-fluorodeoxyglucose (FDG) PET,
and atrophy on MRI (57). The results of studies regarding
relationships between AD biomarkers, including cerebral Aβ

plaques, pathologic tau, and neurodegeneration, and cerebral
SVD, are summarized in Table 1.

Cerebral Aβ plaques and pathologic tau indicate
specific neuropathologic changes that define AD, whereas
neurodegeneration is not specific to AD (54). CSF and plasma
Aβ levels or Aβ PET imaging with 11C-PIB, 18F-florbetapir,
18F-florbetaben, or 18F-flutemetamol have been used for
measuring cerebral Aβ pathology. Several cross-sectional
or longitudinal studies have shown an association between
WMHs and Aβ plaques. A study using the memory clinic-based
Amsterdam Dementia Cohort reported associations of WMHs
and CBMs with CSF Aβ42 (58). Two other CSF analysis studies
showed that a higher WMH burden correlated with lower
levels of Aβ in the CSF (59, 60). A study with CSF markers
in AD patients showed that patients with cortical microbleeds
had lower levels of CSF Aβ40 and Aβ42 than those without
microbleeds after adjusting age, sex, APOE ε4 presence, and
WMH burden (61). A study using specific enzyme-linked
immunosorbent assays reported that WMHs were significantly
associated with plasma Aβ40 and Aβ42 levels in an AD and
MCI population (62). A study with immunohistochemistry
also showed a positive correlation between the cerebral Aβ

burden at autopsy and the WMH volume score in T2 MRI in a
cohort of older adults (6). Furthermore, a study with Aβ PET
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TABLE 1 | Relationship between AD biomarkers and cerebral SVD.

Participants

(clinical diagnosis, n)

Study design Type of SVD AD biomarkers Relationship References

50 subjects (CU = 50) Cross-sectional WMHs Neurofibrillary

tanglea
Positiveb (6)

83 subjects (AD = 34, MCI = 30, CU = 19) Cross-sectional WMHs Cortical Aβc Positive (8)

83 subjects (AD = 34, MCI = 30, CU = 19) Cross-sectional WMHs Cortical

metabolismd

Negativee (9)

197 subjects (MCI = 159, CU = 38) Cross-sectional WMHs CSF p-tau Negative (25)

184 subjects (unknown) Cross-sectional WMHs Cortical Aβ Positive (53)

914 subjects (AD = 547; SCI = 337; VD = 30) Cross-sectional WMHs CSF Aβ42 Negative (58)

826 subjects (AD = 110, MCI = 195, SCI = 165,

CU = 267, PD = 89)

Cross-sectional WMHs CSF Aβ40/CSF

Aβ42/Cortical Aβ

Negative/Negative/

Positive

(59)

Lacunes CSF Aβ40/CSF

Aβ42/Cortical Aβ

Nof/No/No

56 subjects (CU = 56) Cross-sectional WMHs CSF Aβ42 Positive (60)

88 subjects (AD = 88) Cross-sectional Microbleeds CSF Aβ40/CSF

Aβ42

Negative/Negative (61)

96 subjects (AD = 36, MCI = 18, CAA = 42) Cross-sectional WMHs plasma

Aβ40/plasma

Aβ42

Positive/No (62)

44 subjects (AD = 13, MCI = 17, CU = 14) Cross-sectional WMHs Cortical Aβ Positive (63)

subjects (AD = 51, MCI = 18, SCI = 1, CU = 12) Cross-sectional WMHs Neurofibrillary

tangle

Positive (64)

101 subjects (PPA = 82, CU = 19) Cross-sectional Microbleeds CSF p-tau/Aβ42

ratio

Positive (65)

200 subjects (SCI = 200) Cross-sectional Microbleeds Cortical Aβ Positive (66)

282 subjects (CU = 282) Cross-sectional WMHs Cortical Aβ Positive (67)

517 subjects (AD = 184, MCI = 118, SCI = 121,

others = 94)

Cross-sectional WMHs CSF Aβ42/CSF

p-tau

Positive/No (68)

62 subjects (MCI = 36, CU = 26) Cross-sectional WMHs CSF Aβ42 Positive (69)

159 subjects (CU = 159) Longitudinal WMHs Cortical Aβ Positive (70)

36 subjects (AD = 23, CU = 13) Cross-sectional WMHs cortical p-tau Positive (71)

70 subjects (CU = 70) Cross-sectional WMHs CSF Aβ42/CSF

p-tau

Negative/Positive (72)

424 subjects (MCI = 33, CU = 391) Cross-sectional WMHs Cortical

Aβ/Cortical tau

Positive/Negative (73)

2367 subjects (unknown) Cross-sectional WMHs Cortical atrophy Positive (74)

86 subjects (AD = 58, CU = 28) Cross-sectional WMHs Cortical atrophy Positive (75)

72 subjects (CU = 72) Cross-sectional WMHs Cortical

Aβ/Cortical

metabolism

Positive/Negative (76)

60 subjects (AD = 21, MCI = 23, CU = 16) Cross-sectional WMHs Cortical

metabolism

Negative (77)

819 subjects (AD = 193, MCI = 397, NC = 229) Longitudinal WMHs CSF Aβ42 No (78)

310 subjects (MCI = 310) Cross-sectional WMHs CSF Aβ42/CSF

t-tau

No/No (79)

334 subjects (MCI = 60, CU = 274) Longitudinal WMHs CSF Aβ42/CSF

p-tau

No/No (80)

AD, Alzheimer’s disease; SVD, small vessel disease; CU, cognitive unimpaired;WMHs, white matter hyperintensities; MCI, mild cognitive impairment; SCI, subjective cognitive impairment;

VD, vascular dementia; PD, Parkinson’s disease; PPA, primary progressive aphasia; CSF, cerebrospinal fluid.
aNeurofibrillary tangle at autopsy; bPositive relationship between Cerebral SVD and AD biomarker.; cCortical Aβ burden on amyloid PET image; dCortical glucose metabolism on 18F-FDG

PET image; eNegative relationship between Cerebral SVD and AD biomarker; fNo significant relationship between Cerebral SVD and AD biomarker.

imaging using information extracted from the ADNI database
showed that WMHs were more highly correlated with cerebral
Aβ burden than any of the standard AD imaging biomarkers

(53). A study using Aβ PET and functional MRI revealed
that whole-brain WMHs and cerebral Aβ deposition were
significantly higher in AD patients than in controls, showing that
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increased WMH burden disrupts the functional connectivity of
the prefrontal and temporal cortices (63). A Clinicopathological
study in the United States with 82 participants from the National
Alzheimer’s Coordinating Center’s Data Sets found a direct
association between total volume of WMH and increased risk
of exhibiting AD neuropathology (defined as frequent neuritic
plaques and Braak stage III-VI at autopsy) (64). In agreement
with these previous studies, our study group also found that
the high-WMHs group exhibited a greater cerebral Aβ burden
compared with the low-WMHs group and that the cerebral
Aβ burden was positively correlated with WMH burden (8).
In addition, one multicenter cohort study with CSF analysis
revealed that CMBs were more frequent in patients with AD
pathology than without AD pathology (65) and another study
with Aβ PET showed that parietal CMBs were associated with
cerebral Aβ burden (66). Although these findings suggest that
cerebral SVD may play a significant role in AD development,
there is still a possibility that cerebral Aβ deposition will cause
white matter alteration (67–69), due to the limitations of the
cross-sectional study design. A recent longitudinal study with
159 cognitively normal participants from the ADNI data set
showed that an increased baseline burden was associated with
faster cerebral Aβ accumulation in 2-years follow-up period,
suggesting WMH contributes to the development of AD (70).

Several studies have evaluated the relationship of cerebral
SVD with tau pathology, using CSF tau, immunohistochemistry
of phosphorylated tau, and tau PET imaging with 18F-AV
1451, 18F-FDDNP, or 18F-THK-523. The results of studies
on the association between cerebral SVD and tau pathology
are conflicting. An immunohistochemistry study reported that
cortical tau load at autopsy was associated with WMH burden
in 36 cerebral hemispheres (71). A recent study using diffusion
tensor imaging revealed a decrease in fractional anisotropy,
which is an index of the WMH burden, significantly correlated
with AD biomarkers, including CSF p-tau (72). Furthermore,
a longitudinal study of 197 patients for 5.7 years showed that
MCI patients with both pathological levels of phosphorylated
tau and WMHs at baseline progressed more rapidly toward
AD. This suggested that cerebral SVD and tau pathology likely
have independent but synergistic effects on the reduction of the
cognitive reserve capacity of the brain (25). However, another
recent studies with tau PET imaging revealed that WMHs were
not significantly associated with increased p-tau burden (73).

Neurodegeneration can result from many causes and is not
specific to AD. However, the combination of an MRI or 18F-
FDG PET study with AD biomarkers provides a much more
robust prediction of future cognitive decline than an abnormal
amyloid study alone (54). A large population-based study found
that WMHs contributed to brain atrophy patterns in regions
associated with AD (74). A study using MRI revealed an
interaction between medial temporal lobe atrophy and WMHs,
suggesting that cerebral SVD and AD pathology act in synergy
in AD (75). While cerebral atrophy on MRI likely reflects
cumulative loss and shrinkage of the neuropil, 18F-FDG PET
probably indicates both cumulative losses of the neuropil and
functional impairment of the neurons (81). Typical findings of
18F-FDG PET in AD patients are decreased glucose metabolism

in temporal and parietal cortices, posterior cingulate, and
precuneus (82), whereas more advanced AD results in decreased
glucose metabolism up to the frontal cortex (83). Our study
group reported thatWMH burden was negatively correlated with
regional glucose metabolism in the bilateral frontal, temporal,
and parietal cortices, and limbic lobes in patients with cognitive
impairment (9). The decreased cerebral glucose metabolism
by WMHs is known to be due to disruption of functional
connectivity. A study using the connectivity change score on
MRI also revealed that in cognitively unimpaired subjects, those
with more impaired connectivity of their gray matter due
to WMHs also had lower glucose metabolism (76). Another
cohort study revealed that disruption of limbic white matter
pathways caused decreased glucose metabolism in the parietal
and temporal cortices and posterior cingulate in patients with
cognitive impairments (77). These findings suggest that cerebral
SVD has a similar pattern of AD with decreased cerebral glucose
metabolism and may be a cause of cognitive impairment in AD.

Although most of the studies evaluating the relationship
have shown a significant relationship between cerebral SVD
and AD biomarkers, including cerebral Aβ, pathologic tau,
and neurodegeneration, the results of some studies have not
(78–80). The conflicting results regarding the relationship
between cerebral SVD and AD biomarkers can be explained
by studies not adjusting the gray matter volume or by the use
of different methods to measure cerebral SVD. Additionally,
various definitions of cerebral SVD may have led to conflicting
results (11).

MECHANISMS LINKING CEREBRAL SVD
TO AD

Although the underlying mechanism of cerebral SVD to induce
AD pathology is still unclear, it can be explained by chronic
cerebral hypoperfusion (CCH) or BBB disruption from the
cerebral SVD (84). Firstly, cerebral SVD restricts the vessel
lumen, causing CCH in white matter where collateral vessels do
not develop, resulting in ischemic damage. This leads to repetitive
and selective apoptosis of oligodendrocytes that are vulnerable
to ischemia and eventually to degeneration of myelinated fibers
(85). Thus, CCH causes neurodegeneration of white matter
through neuronal energy failure, which is further facilitated by
proinflammatory cytokines via the production of reactive oxygen
species and activated microglial cells (86, 87). Additionally, CCH
can accelerate cerebral Aβ deposition (88). Our study group
showed that CCH could aggravate the AD pathology, including
cerebral Aβ and p-tau, and selectively decrease the neuronal
activity of the limbic system in rats (89). Another study with
mice overexpressing a mutant form of the human APP revealed
that CCH by bilateral common carotid artery surgery increased
cerebral Aβ accumulation and promoted cognitive impairment
in combination with APP gene mutations (90). It seems that
CCH increases Aβ deposition by up-regulating APP processing
because overexpression of the β-secretase gene on the 2nd day
and overexpression of the APP gene on the 7th and 30th was
found after global cerebral ischemia in a longitudinal study
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with rats (91). Furthermore, CCH increases hypoxia-induced
factor-1 expression, which not only activates the promoter of
β-secretase but also increases the expression of β-secretase (92).
In a vicious circle, cerebral SVD promotes Aβ accumulation,
thereby promoting the restriction of small vessel lumen, resulting
in irreversible neuronal damage (61). It has also been reported
that CCH causes cognitive dysfunction by reducing protein
O-GlcNAcylation and promoting tau phosphorylation in the
mouse model (93).

Secondly, another possible mechanism to induce AD
pathology by cerebral SVD is BBB disruption. Several studies
using MRI and postmortem brain pathology have reported the
presence of BBB dysfunction in AD patients, suggesting that
BBB disruption could affect AD development independent of
cerebral Aβ pathology (94, 95). As cerebral Aβ is primarily
cleared by a vascular path in BBB, the disruption in neurovascular
integrity is thought to contribute to inducing AD pathology,
resulting in the onset and progression of cognitive decline (96). A
recent study using a CSF biomarker of BBB-associated capillary
mural cell pericytes, and which examined the regional BBB
permeability using dynamic MRI, showed that patients with
AD have BBB disruption combined with cerebral SVD in the
hippocampus, regardless of cerebral Aβ plaque and pathologic
tau, suggesting that BBB disruption is an early biomarker for
AD (97). Following BBB disruption, neurotoxic Aβ peptides
are released from the circulatory system, which eventually
exacerbates ischemic neurons leading to neuronal death (98). In
addition, the cerebral Aβ plaque narrows the small vessel lumen,
worsening ischemia, and causing secondary neuronal death (99).
This vicious cycle caused by this BBB disruption may cause a
loss of the neuronal network connectivity in combination with
CCH from cerebral SVD and may advance cognitive impairment
in AD.

FUTURE PROSPECTIVE

Many epidemiological, genetic, and clinical-pathological studies
support the association of cerebral SVD in developing AD.
However, the molecular mechanisms linking cerebral SVD to
AD pathogenesis are not fully understood. Some investigators
have hypothesized that the primary cause for developing AD
is cerebral SVD (8, 97, 98). Several clinical and animal studies
support this ischemic hypothesis on AD development in terms of
cerebral SVD, causing CCH. Normal aging decreases the cerebral
perfusion by about 20% when comparing 60-year-olds to those
that are 20 years old (100). In addition to decreased cerebral
perfusion in normal aging, additional decrease in cerebral
perfusion is more likely to damage neurons that are vulnerable
to ischemia (101). Studies using animal models have reported
that hippocampus is particularly vulnerable to ischemia (102). In
particular, CA1 was shown to be highly damaged after ischemia,
while CA3 and granule cells were conserved in studies using
rodent models (103). The selective injury of the hippocampus by
CCH would cause the disconnection of the hippocampal-cortical
network, thereby reducing the neuronal activity of the temporal
and parietal lobes, which in turn causes secondary neuronal

degeneration (104, 105). A study using a flow-enhanced signal
intensity technique of MRI showed that decreased perfusion
of the hippocampus was related with loss of spatial memory,
suggesting that CCH of the hippocampus is associated with
cognitive impairment in older individuals (100). After the
hippocampus is selectively damaged, the cerebral cortices, which
are functionally closely connected with the hippocampus, are
affected, and in turn the prion-like tau spreading is facilitated
by neural activity (106). In addition, cerebral SVD itself, which
occurs in white matter tracts, can contribute to cognitive
impairment, with several PET studies with 18F-FDG indicating
that secondary neuronal degeneration with disconnection is a
major factor in early posterior hypometabolism in AD (105,
107). The cingulum bundle, a prominent tract in white matter,
is disrupted by cerebral SVD, resulting in decreased glucose
metabolism in a large connected network, including the whole
memory circuit of Papez and the posterior association cortex
(104). A recent study with 503 subjects revealed that the
interaction between cerebral SVD and hippocampal volumes
explained the memory decline, suggesting memory impairment
is a heterogeneous condition with different pathologies (108).

However, there are some limitations to the ischemic
hypothesis on AD development. There is a lack of direct evidence
regarding the mechanisms that explain the development of AD
pathology by cerebral SVD. It is also unclear whether cerebral
SVD generates AD pathology directly or in combination with
other causes. In contrast, AD pathology may affect vascular and
endothelial function, which may contribute to the development
of cerebral SVD and, potentially, to failure of eliminating
abnormal neurotoxic proteins, such as Aβ and phosphorylated
tau, from the brain (109). Furthermore, the cause of cerebral
SVD has not yet been clarified. In addition to hypertension and
hypercholesterolemia, systemic diseases, such as disturbances of
the brain-gut-microbiota axis and chronic inflammation, which
have recently been reported as causes of AD, may contribute
to or worsen cerebral SVD development, and in turn affect
AD development (110, 111). Nevertheless, as described in this
review, recent studies on the relationship between cerebral
SVD and AD development further support the hypothesis that
cerebral SVD contributes to AD development. The mechanism
by which cerebral SVD affects AD development, along with other
complex causes, and how to prevent AD development or slow
AD progression by inhibiting this process should be studied in
the future.

CONCLUSION

In summary, there is substantial epidemiologic, genetic, and
clinical evidence regarding the association between cerebral SVD
and AD. Cerebral SVD may contribute to cognitive impairment
through cerebral Aβ accumulation and play a significant role in
AD development. Further investigation is required to understand
themechanistic pathways for the contribution of cerebral SVD on
the development of AD pathology. Further longitudinal studies
regarding cerebral SVD progression should result in new insights
regarding the etiology and treatment of AD.
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