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Abstract: β-hydroxybutyrate (β-OHB) has been shown to exert an anti-inflammatory activity.
Apolipoprotein-E (ApoE) is strongly associated with atherosclerosis and Alzheimer’s disease (AD).
This study aimed to explore the therapeutic effect of β-OHB in the brain and the aorta of high-fat
diet (HFD)-fed ApoE-deficient mice. We found in Apo-E deficient mice that β-OHB attenuated lipid
deposition in the choroid plexus (ChP) and decreased amyloid plaque in the substantia nigra pars
compacta. We also found decreased CD68-positive macroglia infiltration of the ChP in β-OHB-treated
ApoE-deficient mice. β-OHB treatment ameliorated IgG extravasation into the hippocampal region
of the brain. In vitro study using ChP mice cell line revealed that β-OHB attenuated oxidized
low-density lipoprotein-induced ApoE-specific differentially expressed inflammatory ChP genes.
Treatment with β-OHB reduced aortic plaque formation without affecting blood lipid profiles and
decreased serum production of resistin, a well-established risk factor for both AD and atherosclerosis.
Thus, the current study suggests and describes the therapeutic potential of β-OHB for the treatment
of AD and atherosclerosis.
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1. Introduction

World Alzheimer Report 2018 states that 50 million people worldwide are living with dementia,
and this number will more than triple to 152 million by 2050. The total estimated worldwide cost
of dementia in 2018 is one trillion US dollars, which is expected to rise to two trillion US dollars by
2030. Although the understanding of the neurobiology and pathogenesis of Alzheimer’s disease (AD),
the most common form of dementia, has recently been greatly increased, no curative, but only a few
symptomatic treatments, are currently available. Thus, parallel to the effort towards the development
of drugs for the treatment of AD, effort in developing preventive therapeutic strategies, such as
nutritional therapies and caloric restriction, have been extensively investigated and implemented [1].

Human apolipoprotein-E (ApoE) is a polymorphic multifunctional protein with isoforms of ApoE2,
ApoE3, and ApoE4, and is strongly implicated in two major inflammatory diseases, AD and atherosclerosis.
People with apoE4 allele are susceptible to late onset AD [2,3]. Atherosclerosis, characterized by lipid
plaque formation in the aorta, is the leading cause of cardiovascular disease [4]. Action mechanisms of
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ApoE include involvement of lipoprotein receptors, effects on cholesterol efflux, and maintenance of the
blood-brain barrier [5–7].

β-hydroxybutyrate (β-OHB) is a major component of ketone bodies. The efficacy of a ketogenic
diet in treating childhood refractory epilepsy and mild cognitive impairment that usually precedes the
onset of AD has been well established, and paved the way to evaluate the potential therapeutic effect
of β-OHB [8–11]. However, a common mode of action of β-OHB in AD and other neurodegenerative
diseases, as well as atherosclerosis, has yet to be fully elucidated.

Our data in the current study indicate that β-OHB delays the progression of AD by inhibiting lipid
accumulation and inflammatory reactions in the brain, and of atherosclerosis by decreasing plaque
formation in the aorta.

2. Materials and Methods

2.1. Materials and Reagents

β-hydroxybutyrate (β-OHB), Oil Red O (ORO), Congo red, and other chemicals were purchased
from Sigma Aldrich (St. Louis, MO, USA) unless otherwise specified. Anti-CD68 antibody (ab125212)
was purchased from Abcam (Cambridge, UK). Normal mouse IgG (sc-2025) antibody was purchased
from Santa Cruz Biotechnology (Dallas, TX, USA).

2.2. Animals

All experimental protocols and procedures were approved by and performed according to the
guidelines of the experimental Animal Care Committee at Keimyung University, School of Medicine
(KM-2018-09). Six-week-old male ApoE−/− (C57BL/6J background) and C57BL/6J mice were purchased
from the Jackson laboratory (Sacramento, CA, USA). Two weeks after acclimation, C57BL/6J mice were
fed normal chow diet (NCD, n = 10) and ApoE−/− high-fat diet (HFD, n = 20) for 8 weeks. Eight weeks
later, mice in the HFD group were randomly divided into two groups (n = 10 for each group), one
with phosphate buffered saline (PBS)-containing Alzet®osmotic minipumps (#1004, DURECT Corp.,
Cupertino, CA, USA), and the other with β-OHB (1.5 mmol/kg/day in PBS)-containing Alzet®osmotic
minipumps implanted subcutaneously onto the left flank. Four weeks after first implantation,
Alzet®were removed and newly prepared second Alzet®were implanted subcutaneously onto the
right flank. Mice were sacrificed four weeks after second implantation following a 12 h overnight
fasting. Serum was collected by centrifugation at 2000 g for 10 min. Aortic and whole brain tissues
were fixed and processed for histopathological analyses, and remaining tissues were quick frozen with
liquid nitrogen and stored at −80 ◦C until further analysis.

2.3. Cell Culture

ECPC4 cells (mouse choroid plexus cell line) were purchased from RIKEN cell bank (Tsukuba,
Japan) and cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 100 units/mL penicillin,
and 100 mg/mL streptomycin. Cells were maintained at 37 ◦C in a humidified atmosphere with
5% CO2.

2.4. Quantitative Real-Time PCR

Total RNA was isolated from the ECPC-4 cells with Trizol reagent (Invitrogen). Reverse transcription
was performed to yield cDNA using a GoTaq®PCR Core System (Promega, Korea). The RNA (1 mg)
was performed using SYBR green reagents (QPK-201, Toyobo, Japan) on a LightCycler® 96 Instrument
(Roche Diagnostics Corporation, Indianapolis, IN, USA). The β-actin was used as an internal control.
Data were analyzed using Light Cycler 96 Instrument software. Relative gene expression was calculated
using the 2 −∆∆Ct method [12].
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2.5. Immunohistochemistry

Congo red staining for Aβ aggregation was performed according to the established protocol [13].
Briefly, slides were removed from −80 ◦C storage, fixed with 4% paraformaldehyde for 10 min,
and washed in tap water. The sections were then stained with Congo red (1% w/v), differentiated with
alkaline alcohol (1% potassium hydroxide in 80% ethanol), and then counterstained with hematoxylin
for 4 min before they were dehydrated and mounted. Plaques were observed under a light microscope
and the total area (%) of Aβ plaques per section or per brain area were quantified using ImageJ. CD68
(diluted 1:500), normal mouse IgG (diluted 1:200) expressions in the mouse coronal sections were
determined by immunohistochemistry according to the previously described method [14]. The cryo-
sectioned slides were fixed with 4% paraformaldehyde, quenched with 0.3% H2O2 for 5 min, washed
with PBS 3 times, blocked with BSA (3% w/v in PBS), and then incubated overnight with an anti-CD68
primary antibody (1:1000). Subsequently, the stained sections were incubated with HRP conjugated
secondary antibody (1:200) for 1h and the immunocomplexes were visualized by 3,3-diaminobenzidine
(DAB) substrate, and all sections were counterstained with hematoxylin prior to mounting. The positive
signals were visualized by light microscope (Leica, CA, USA) and the stained area was quantified by
ImageJ software.

2.6. Immunofluoresence and Thioflavin-S Staining

Frozen sections were incubated in 0.3% Triton X-100 for 5 min and blocked by incubation in
blocking solution (3% bovine serum albumin, 0.05% Tween-20 in TBS) for 60 min. Sections were then
incubated overnight with AT8 (phosphor-tau at Ser 202/Thr 205, Thermo Fisher Scientific, Rockford,
IL, USA) at 4 ◦C. On the second day, sections were washed in 10 mM PBS, followed by incubation
with Alexa-568 conjugated goat anti- mouse IgG (diluted 1:500, Thermo Fisher Scientific) in blocking
solution for 1 h at room temperature. Sections were subsequently washed, for double labeling with AT8,
and stained with 0.3% thioflavin-S (Sigma-Aldrich) for 5 min. Stained sections were washed in 80%
ethanol twice for 3 min, mounted with aqueous mounting medium (Vector Laboratories, Burlingame,
CA, USA, H-5501), and then captured with confocal microscopy.

2.7. Oil Red O (ORO) Staining

Atherosclerotic lesions deposition in the aortic root was analyzed as described previously [15].
In brief, the fixed aorta was opened longitudinally from the arch to the iliac bifurcation to obtain a
flat preparation. The flattened aortic tissues were then stained with ORO (0.5% w/v in isobutanol) for
20 min. After washing, the stained lesion area was examined using a light microscope (Leica, CA, USA).
The aortic root sections were stained with hematoxylin and eosin (H&E). Similarly, mouse brain tissues
were embedded and frozen in optimal cutting temperature (O.C.T.) compound at −80 ◦C. Twenty
micrometer whole mouse brain coronal sections were prepared using Cryotome (MEV, SLEE, Mainz)
and stained with ORO. The total area of lipid deposits at aorta and ChPs regions were quantified
using ImageJ (National Institute of Health(NIH), Bethesda, MD, USA) and expressed as the plaque
area percentage.

2.8. Low Density Lipoprotein (LDL) Isolation and Oxidation

Blood was drawn from healthy voluntary human subjects in the fasting state. Blood samples
were collected into sterile ethylenediaminetetraacetic acid (EDTA) containing tubes, and plasma was
separated for 20 min at 2,000 g centrifugation. LDL was isolated by sequential unltracentrifugation,
yielding LDL at a final density of 1.019 to 1.063 g/mL with potassium bromide in EDTA-saline.
The isolated LDL was dialyzed 1 mM EDTA buffer (pH 8.0) and then oxidized with CuSO4

(Sigma-Aldrich, USA). LDL oxidation with copper was performed by incubation of LDL (0.2 mg of
LDL protein/mL) with 5 µM CuSO4 in PBS (pH 7.4) for 4 hat 37 ◦C. The oxidized LDL was dialyzed
with 0.15 M NaCl solution containing 0.01% EDTA buffer (pH 7.0) for 36 h at 4 ◦C.
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2.9. Lipid Profiles

Blood samples were collected into tubes and centrifuged at 3000 rpm for 10 min. The levels of total
cholesterol, LDL-cholesterol and HDL-cholesterol in serum were measured using kits purchased from
BioVision Ltd (San Francisco, CA, USA) according to the manufacturer’s instructions. Triglyceride
level was measured with a Triglyceride Assay Kit (Cayman Chemical, Ann arbor, MI, USA). All assays
were performed according to the manufacturer’s instructions. The absorbance values were determined
with an ELISA microplate reader (Biochrom, Cambridge, UK).

2.10. Analysis of Leptin and Resistin Levels

The levels of leptin and resistin in plasma were analyzed by using the Bio-Plex Pro Mouse
Diabetes Set immunoassay kit (Bio-Rad Laboratories, Hercules, CA, USA) according to the
manufacturer’s instructions.

2.11. Statistical Analysis

All data were exported to GraphPad Prism v8.0 (GraphPad Software) for statistical analyses.
Values represent the mean± standard deviation (SD). Statistical significance was determined based on
p-values obtained from one-way ANOVA with Tukey’s test.

3. Results

3.1. β-OHB Attenuated HFD-Induced Lipid Deposition, Amyloid Plaque Formation in the ChP, and Tau
Accumulation in the Hippocampal Region of ApoE−/− Mice

The overall in vivo experimental procedure is illustrated in Figure 1A. Given the pathophysiological
role of ApoE on both atherosclerosis and AD, we first focused our view particularly on the brain’s ChP
region, the blood-cerebrospinal fluid (CSF) barrier, of ApoE−/−mice to elucidate the neuroprotective effect
of β-OHB. As expected, HFD increased lipid deposition in the ChP region of ApoE-/-, while treatment of
β-OHB attenuated HFD-induced lipid deposition (Figure 1B,C). We next employed Congo red staining
to determine the presence of AD-plaques such as amyloid-beta (Aβ) accumulation, which also showed
decreased plaque formation in the substantia nigra pars compacta (SNR) region of ApoE−/− mice when
compared with control ApoE−/− mice (Figure 1B). It is well documented that the degree of ChP lipid
deposit-associated chronic inflammation correlated with all AD-related neuropathology. Overwhelmed
lipid deposits alter the immunological interface in CSF, and we noticed an increase in the expressions
of CD68 macrophage in ChP of ApoE−/− mice (Figure 1C,D), representing that lipid deposits might
be colocalized with the macrophages to induce complex pathological signaling in brain CSF. Notably,
β-OHB treatment reduced the expression of CD68 in APOE−/− mice, which depicts the regulatory effect
of OHB in macrophage lineages. AD is pathologically characterized by intracellular neurofibrillary
tangles (NFTs) containing phosphorylated tau. We then examined whether ApoE deficiency resulted
in the excessive tau accumulation in ApoE−/− mice and found that ApoE deficiency induced increased
tau accumulation in the hippocampus of the brain (Figure 1G). We also found that β-OHB ameliorated
HFD-induced AT8-positive tau tangles colocalized with thioflavin-S in the hippocampal region of
ApoE−/− mice (Figure 1G).

3.2. β-OHB Treatment Reduced IgG Extravasation in ApoE−/− Mice

It is well established that increased lipid deposition and Aβ accumulation in the ChP affect
CSF permeability [16–18]. Thus, we then determined the levels of IgGs in the brain of ApoE−/−.
A considerably increased intensity of IgG staining was evident in ApoE−/−, relative to WT, brain
(Figure 2A,B). β-OHB treatment clearly reversed increased extravasation of IgG into brain parenchyma.
The overall density of IgG is presented in Figure 2B. ApoE−/− tissue demonstrated a 3.8-fold increase
in IgG compared with WT tissue (p = 0.003).
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Figure 1. β-hydroxybutyrate (β-OHB) attenuates apolipoprotein-E (ApoE)-/--triggered lipid, amyloid 
deposition and tau accumulation. (A). Schematic illustration of the overall in vivo experimental 
procedure. (B) Mice choroid plexus (ChP) sections were stained with oil red O (ORO) for lipid (red, 
black arrowhead), deposits and counterstained with hematoxylin (HE). (C) Quantitative data 
representations of the percentage of lipid deposit in ChP regions. (D) Brain sections were stained with 
Congo red for amyloid plaque (black arrowhead) deposits and counterstained with HE. (E) Brain 
sections were stained for CD68+ and counterstained with HE. (F) Quantitative data representations of 
the fold increase in CD68+ staining. (G) Brain sections were double-labeled with thioflavin-S and AT8 
(pSer202/Thr205) antibody for tau entanglements (Scale bars = 20 μm). WT, normal chow diet-fed 
C57BL/6J; HFD-ApoE-/-, high fat diet-fed ApoE knock-out; β-OHB, β-hydroxybutyrate; ChP, choroid 
plexus; V, ventricle; SNR, substantial nigra pars compacta. ** p < 0.001 vs. HFD-ApoE-/-. 
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Figure 1. β-hydroxybutyrate (β-OHB) attenuates apolipoprotein-E (ApoE)−/−-triggered lipid, amyloid
deposition and tau accumulation. (A). Schematic illustration of the overall in vivo experimental
procedure. (B) Mice choroid plexus (ChP) sections were stained with oil red O (ORO) for lipid
(red, black arrowhead), deposits and counterstained with hematoxylin (HE). (C) Quantitative data
representations of the percentage of lipid deposit in ChP regions. (D) Brain sections were stained
with Congo red for amyloid plaque (black arrowhead) deposits and counterstained with HE. (E) Brain
sections were stained for CD68+ and counterstained with HE. (F) Quantitative data representations
of the fold increase in CD68+ staining. (G) Brain sections were double-labeled with thioflavin-S and
AT8 (pSer202/Thr205) antibody for tau entanglements (Scale bars = 20 µm). WT, normal chow diet-fed
C57BL/6J; HFD-ApoE−/−, high fat diet-fed ApoE knock-out; β-OHB, β-hydroxybutyrate; ChP, choroid
plexus; V, ventricle; SNR, substantial nigra pars compacta. ** p < 0.001 vs. HFD-ApoE−/−.
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3.3. β-OHB Inhibited Inflammation in the Brain of ApoE−/− Mice

Based on the recent evidence that identified ApoE4-specific differentially expressed ChP genes [19],
we next examined further in ECPC4 cells whether β-OHB regulates the expressions of ApoE4-specific
differentially expressed ChP genes, ubiquitin specific peptidase 18 (usp18), IFN-induced protein
with tetratricopeptide repeats 3 and 1 (ifit3, ifit1), interferon, alpha-inducible protein 27–like 2A
(ifi27l2a), interferon-induced protein 44 (ifi44), guanylate-binding protein 3 (gbp3), IFN-regulatory
factor 7 (irf7), and receptor transporter protein 4 (rtp4), the biological functions of which include
regulation of autoimmunity by macrophages and dendritic cells, and maintenance of blood-brain
barrier integrity [20–22]. We observed that, except ifi27l2a, expressions of usp18, ifit3, ifit1, ifi44, gbp3,
irf7, and rtp4 were induced by oxLDL treatment, and β-OHB treatment reversed oxLDL-stimulated
expressions of usp18, ifit3, ifit1, ifi44, gbp3, irf7, and rtp4 (Figure 3).

3.4. β-OHB Treatment Reduced Atherogenic Plaque Formation in ApoE−/− Mice

ApoE deficient mice are the most widely used murine models of atherosclerosis and the formation
of plaques is an important indicator of atherosclerotic pathology. In this study, we primarily investigated
the efficacy of OHB in ApoE−/−mice by measuring the ORO stained lipid areas within the aortic tissues.
As shown in Figure 4A,B, HFD-fed ApoE−/− mice showed increased atherosclerotic plaques (161.5 ±
13%) in aortic regions, while ApoE−/− + β-OHB mice exhibited reduced plaque deposits by ~60% in the
aorta compared with those of WT. Foam cell formation, irregular intima thickening, and macrophage
infiltration to adventitia are the major phenotypic characteristics of atherosclerosis. We next examined
the above-mentioned histological changes in the aortic tissue sections. As shown in Figure 4C, HFD-fed
ApoE−/− showed clear atherosclerotic plaque linings along the aortic wall thus narrowing aortic lumen,
which was reversed in ApoE−/− + β-OHB. These results suggest the therapeutic effect of β-OHB on
the development of lipid deposits and plaque formation. Lipid profiling analysis demonstrated no
difference in the levels of total cholesterol, LDL, HDL, and triglyceride between ApoE−/− and ApoE−/−

+ β-OHB groups (data not shown).
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Figure 3. β-OHB decreases ApoE4-specific differentially expressed ChP genes. Quantitative mRNA
expressions of (A) Ubiquitin specific peptidase 18 (Usp18), (B) IFN-induced protein with tetratricopeptide
repeats 1 (Ifit1), (C) Interferon alpha-inducible protein 27–like 2A (ifi27l2a), (D) Interferon-induced
protein 44 (ifi44), (E) Guanylate-binding protein 3 (gbp3), (F) IFN-induced protein with tetratricopeptide
repeats 3 (Ifit3), (G) IFN-regulatory factor 7 (Irf7), and (H) Receptor transporter protein 4 (Rtp4). Data
are represented as mean ± S.D. of three independent experiments in duplicates. CTL, control; β-OHB,
β-hydroxybutyrate; oxLDL, oxidized low density lipoprotein. * p < 0.05. ** p < 0.001. *** p < 0.0001.
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3.5. β-OHB Treatment Reduced Serum Resistin Levels in ApoE−/− Mice

We then assessed serum levels of adipokines, leptin and resistin (Figure 5A,B). As expected, leptin,
a prototype of adipokine, was decreased in ApoE-/-, and β-OHB treatment did not affect serum leptin
levels. However, resistin, a proved risk factor for both AD and atherosclerosis, was increased and β-OHB
significantly reduced serum level of resistin in ApoE−/− + β-OHB mice, again confirming the possible
therapeutic effect of β-OHB in both AD and atherosclerosis via inhibiting lipid-induced inflammations.
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4. Discussion

We have shown in the current study that β-OHB exerts a protective effect, possibly via
anti-inflammatory action, on both AD and atherosclerosis in HFD-fed ApoE−/− mice. β-OHB delays the
progression of AD via attenuating inflammatory reactions in the ChP region of ApoE−/−mice. β-OHB also
impedes plaque formation and lipid deposits in atherosclerotic arteries. Moreover, we found that β-OHB
reduced serum level of resistin, a hormone known to be associated with both AD and atherosclerosis.

ApoE functions in lipoprotein metabolism and cholesterol homeostasis [23]. Although ApoE is a
risk factor for both AD and atherosclerosis, the common mechanism of action remains to be elucidated.
A very recent study, however, identified a complementary regulating function of ApoE that directly
links ApoE to the regulation of the immune system [19]. Based on the above referenced report and a
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known inhibitory function of β-OHB on NACHT-, LRR-, and pyrin (PYD)-domain-containing protein 3
(NLRP3) inflammasome pathway [24], we explored the potential therapeutic effect of β-OHB in murine
AD and atherosclerosis model on ApoE−/− mice. Due to the short half-life of β-OHB [25], we delivered
β-OHB through osmotic minipumps and adopted the dosage of β-OHB based on the previous report
that showed an approximately three fold increase in baseline plasma levels of β-OHB [26].

ChP is the region of principal intracranial neuroimmunological interface that forms the blood-CSF
barrier, and is the major gateway for bloodborne leukocytes to infiltrate the central nervous system
in inflammatory and degenerative brain diseases [27–31]; thus we first examined the ChP for lipid
deposition. In line with the previous report [19], we found increased lipid deposition and amyloid
plaque formation in the ChP region. Since ChP is the blood-CSF barrier and lipid deposition in ChP
might lead to damage and leakage of CSF, we next determined the extravasation of IgG into brain
parenchyma and observed decreased expression. We also found that β-OHB abrogated HFD induced
lipid deposition as well as amyloid plaque formation in the ChP, which reveals the inhibitory effect of
β-OHB on lipid deposition-related diseases of the brain, such as AD.

Tau is a microtubule associated protein and is post-translationally modified in various ways,
among which abnormal hyperphosphorylated tau in NFTs is frequently observed in AD and other
taupathies [32–34]. In the current study, we observed that the level of phosphorylation of tau protein was
increased in HFD-fed ApoE−/− mice compared with NCD-fed C57BL/6J control mice, implicating the
involvement of ApoE in the development of AD. We also observed that β-OHB reduced HFD-induced
aggregates of tau tangles.

Lipid deposition promotes inflammation. ApoE4 allele is more prone to lipid-induced inflammation;
especially, interferon-related genes are more likely to be increased in ApoE4 allele compared with ApoE2
and ApoE3 alleles [19]. We then explored the possible inhibitory function of β-OHB in ApoE-specific,
differentially regulated inflammatory genes in ECPC4 ChP cells, and indeed observed that β-OHB
attenuated ApoE-specific, differentially regulated inflammatory genes. This result clearly suggests a
therapeutic effect of β-OHB in human AD, since ApoE4 is a well-established high-risk factor for early
onset of AD in humans.

Another finding in the current study that supports the therapeutic effect of β-OHB in both AD
and atherosclerosis is that β-OHB reduced the serum level of resistin, a hormone that plays important
roles in, and is associated with, both AD [35] and atherosclerosis [36]. Evidence in multicohort studies
also indicates it as a biomarker as well as a risk factor for AD [37–39]. Higher levels of resistin in both
serum and cerebrospinal fluid were observed in AD patients.

Recently, the applications of ketogenic diets as therapeutic modalities has gained substantial
attention. Given that ketogenic diet requires drastic changes in dietary pattern, however, adherence
to and maintenance of ketogenic diet are challenging. Thus, exogenous ketone supplements in the
form of ketone salts or ketone esters have been developed. A study showed that blood β-OHB levels
increased from 0.2 to 3.3 mM, the level of ketosis, 1 h after 1.9 kcal/kg of ketone ester consumption [40].
The present findings show that β-OHB reduced pathological phenotypic changes of AD as well as
atherosclerosis, which implicates the potential application of exogenous β-OHB supplement as dietary
intervention in the treatment of AD and atherosclerosis.

5. Conclusions

Evidence demonstrates the neuroprotective effects of β-OHB in various models of neurological
disorders [26,41–44]. However, underlying mechanistic details ofβ-OHB effects remain to be elucidated.
The present study unravels a novel anti-inflammatory function of β-OHB, leading to new insights into
the mechanism by which β-OHB confers protection against AD and atherosclerosis, thereby presenting
the possibility of β-OHB as a dietary therapeutic modality. Further studies to validate the efficacy of
β-OHB for metabolic diseases, including neurodegenerative and cardiovascular diseases, will provide
further scientific understanding and clinical translation.
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