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Abstract: Leptin is a peptide hormone produced primarily in adipose tissues. Leptin is considered
a biomarker associated with obesity and obesity-mediated diseases. Biosensor detection of leptin
in the blood may play a critical role as an indicator of dynamic pathological changes. In this
paper, we introduce an electrochemical biosensor that adopts o-Phenylenediamine (oPD) on screen-
printed gold electrodes (SPGEs) for detecting the leptin from a mouse model of diet-induced obesity
(DIO). A linear calibration curve for the leptin concentration was obtained in the ranges from 0.1 to
20 ng/mL with a lower detection limit of 0.033 ng/mL. The leptin concentration was quantified
with HRP (horseradish peroxidase)-catalyzed oxidation of oPD by two voltammetry methods: cyclic
voltammetry (CV) and square-wave voltammetry (SWV). The proposed sandwich enzyme-linked
immunosorbent assay (ELISA)-based electrochemical biosensor for the leptin in mouse blood serum
showed high stability, sensitivity, selectivity, and effectivity compared to the commercial Leptin
ELISA measurement. Thus, we believe that this leptin biosensor can be a sensitive analytical tool to
detect low-levels of biomarkers in clinics and point-of-care testing (POCT).

Keywords: leptin analysis; electrochemical immunoassay; diet-induced obesity

1. Introduction

The number of overweight and obese people is becoming a significant burden on
healthcare systems worldwide [1,2]. Obesity is associated with a high risk of physio-
logical diseases and symptoms; hypertension, type 2 diabetes (T2D), sleep apnea, and
various cancers [3–7]. As a 16-kDa peptide hormone, leptin is vital for regulating glucose
metabolism, thermogenesis, and neuroendocrine axes. Blood leptin level is proportional to
body fat amount, particularly white adipose tissues (WAT). It is reported that overweight
and obese people have significantly higher blood leptin levels because of their larger WAT
amounts [8–10]. The average concentration of blood leptin is approximately 10 ng/mL in
adults with normal weight, whereas obese people have 30 ng/mL higher leptin levels [11].
The elevated leptin levels cause autoimmune, neurodegenerative, and cardiovascular dis-
eases (CVD) [12–15]. Therefore, it is essential to measure leptin levels to inform healthcare
management of obesity and obesity-mediated diseases.

In most practical fields, radioimmunoassay (RIA) [16], enzyme-linked immunosor-
bent assay (ELISA) [17], and Western blotting [18] are typically used to measure leptin
levels. These techniques are effective and well established, but they have several limita-
tions, such as complexity, expensiveness, and time-consuming procedures. Furthermore,
they require sizeable instruments, skilled instrument technicians, and the use of complex
protocols. Electrochemical techniques have shown advantages, such as high sensitivity,
proper selectivity, low-cost, time-saving, and long-term stability in detecting various types
of molecules [19]. Electrochemical biosensors have especially gained significant attention
by measuring specific biomarkers (DNA, RNA, proteins, ions, and small molecules) in
clinical and commercial fields [20,21]. ELISA is one of the most effective and commonly
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used methods for quantitating specific biomarkers with excellent performance; stability,
sensitivity, selectivity, and effectivity [22]. Thus, it is crucial to develop a device combining
both the benefits of electrochemical techniques and ELISA to measure the low biomarker
concentrations in bodily fluids.

This article describes a sandwich ELISA-based electrochemical biosensor, using the
strong binding affinity between the antigen and the antibody, enabling leptin’s detection
in blood plasma samples at concentrations from 0.1 ng/mL to 20 ng/mL. We employed
o-Phenylenediamine (oPD) as a powerful label substrate and developed a diet-induced obe-
sity (DIO) mouse model fed by a high-fat content chow. It has been demonstrated that the
DIO mouse models show physical and physiological similarities to obese humans [23,24].
It is also reasonable to use the DIO models as the representatives rather than genetically-
derived models (ob/ob and db/db mice) because most obese human patients have non-
engineered genes [25]. In addition, to the best of our knowledge, no one has reported the
blood leptin level using an electrochemical biosensor together with oPD substrate and a
DIO model mouse.

We successfully evaluated our proposed biosensor using various criteria, such as
stability, sensitivity, selectivity, and effectivity. The biosensor also detected a meaningful
difference in blood leptin level between normal mice and DIO model mice. Our findings
suggested that the ELISA-based sandwich biosensor showed promise for the diagnosis of
obesity and obesity-related diseases and opens a new window for the future development
of commercially successful point-of-caring testing (POCT) products or devices.

2. Materials and Methods
2.1. Apparatus and Electrodes

All electrochemical measurements were performed using a CHI760E electrochemical
workstation from CH Instruments (Austin, TX, USA). The screen-printed gold electrodes,
SPGEs (DRP-C220AT), were purchased from Dropsens. These are composed of (i) a gold
working electrode (diameter = 4 mm), (ii) a gold counter electrode, and (iii) a silver reference
electrode. A cable connector linked the SPGEs to the workstation.

2.2. Reagents

All chemicals and reagents were of an analytical grade and used without any further
purification steps. Phosphate buffered saline (PBS), Triton X-100, o-Phenylenediamine
dihydrochloride (oPD), bovine serum albumin (BSA), potassium hexacyanoferrate III
(K3[Fe(CN)6]), and potassium hexacyanoferrate II (K4[Fe(CN)6]) trihydrate were purchased
from Sigma–Aldrich (St. Louis. MO, USA). 3,3′-dithiobis (sulfosuccinimidyl propionate)
(DTSSP) was purchased from ThermoFisher. Streptavidin-HRP (horseradish peroxidase)
solution was purchased from Abcam. Mouse leptin ELISA kits were obtained from Merck
Millipore. Mouse leptin recombinant protein, mouse monoclonal anti-leptin antibody (as
the capture antibody), and mouse polyclonal anti-leptin antibody (biotin-conjugated, as
the detection antibody) were purchased from Enzo Life Sciences. All stock and buffer
solutions were prepared using autoclaved Milli-Q ultra-filtered distilled and deionized
water (18.2 MΩ-cm). All experiments were conducted at room temperature (23 ± 1 ◦C).

2.3. Diet-Induced Obesity Mice Model

All the animal experimental procedures and protocols were approved by the Keimyung
University School of Medicine Animal Care and Use Committee (KM-2019-18R2). Male
C57BL/6J mice (4 weeks old) were provided from Hyochang science (Daegu, Korea) and
housed in standard cages in a 12-h light/dark cycle at 23 ◦C ± 1 ◦C with 50% ± 5% relative
humidity. Before diet modification, the mice adapted for a week with normal diet chow. All
mice were divided into two groups (n = 5 per group) with matched weights; high-fat diet
(HFD) and normal diet (ND) mice. HFD mice were fed high-fat chow (60% kcal from fat),
and the ND group fed normal chow (15% kcal from fat). Both groups were fed ad libitum
for 12 weeks, and their body weight was measured daily. Blood was collected by cardiac
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puncture after 15 h of fasting with a K3 EDTA-coated tube and centrifuged at 4 ◦C. Plasma
was separated and stored at −80 ◦C until analysis. Organs and tissues (liver, epididymal
and subcutaneous fat) were collected after blood collection and weighed.

2.4. Leptin Biosensor Modification (SPGE/DTSSP/a-Leptin/Leptin/Biotinylated
a-Leptin/Streptavidin-HRP/oPD)

A schematic illustration of a sandwich ELISA-based electrochemical biosensor is
shown in Scheme 1a. Before preparing the biosensor, SPGEs were stored in pure ethanol
overnight at 4 ◦C to remove impurities and were gently dried with a flow of Nitrogen
gas. Subsequently, a 50 µL droplet of 5 mM DTSSP solution was applied to the electrode
(working area only) and incubated for 2 h. A 50 µL droplet of anti-leptin antibody solution
(10 µg/mL) was then applied as a capture antibody on the electrode for 1 h. To prevent
unspecific binding, we applied a 50 µL droplet of a blocking buffer (1% BSA, 1% Triton
X-100) to the electrode for 1 h, then gently rinsed it with the blocking buffer. A 50 µL
droplet of the antigen solutions (leptin solutions or mouse blood plasma) was then applied
onto the electrode and incubated at 4 ◦C in a humid chamber. In addition, a 50 µL droplet of
a biotin-conjugated anti-leptin antibody solution (10 µg/mL) was applied on the electrode
at room temperature for 1 h. A streptavidin-HRP solution (0.1 µg/mL) was then applied to
the electrode at room temperature for 0.5 h. To complete the ELISA-based electrochemical
biosensor’s preparation to detect leptin, a 50 µL droplet of oPD solution was applied as an
electron mediator on the modified electrode and then incubated at room temperature for
0.5 h.
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Scheme 1. Schematic illustration of (a) a sandwich enzyme-linked immunosorbent assay (ELISA)-based electrochemical
biosensor on screen-printed gold electrodes (SPGE) and (b) a procedure of diet-induced obesity (DIO) model development
using C57BL/6J male mice.

2.5. Electrochemical Measurement

The modified biosensor with multiple layers of SPGE/DTSSP/leptin, Ab./leptin/
biotinylated leptin, and Ab./Strep-HRP/oPD was evaluated by two electrochemical detec-
tion methods; cyclic voltammetry (CV) and square-wave voltammetry (SWV). During CV,
cyclic voltammograms were recorded at electrical potentials ranging from −0.5 V to 0.7 V
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with a scan rate of 100 mV/s. For SWV, the square wave voltammograms were recorded
at electrical potentials ranging from −0.8 V to 0.0 V with a frequency of 15 Hz and an
amplitude of 0.025 V. All experiments were performed and analyzed in triplicate at room
temperature.

2.6. Statistics

All statistical analyses were performed using the Microsoft Excel 2016 (Microsoft Corp.,
Redmond, WA, USA) software. The level of statistical significance was set at p ≤ 0.001.

3. Results and Discussion
3.1. Diet-Induced Obesity Mice Model

DIO model development using male C57BL/6J mice is shown in Scheme 1b. Male
mice were chosen because, compared to the female mice, they are more vulnerable to
HFD effects, such as weight gains, etc. [26]. In Figure 1, we summarized the characteristic
comparisons of the normal diet (ND) mouse group and the high-fat diet (HFD) mouse
group (n = 5 per each group). After 12 weeks of the diet treatments, we demonstrated
four significant physical differences (body weight, liver mass, epididymal fat mass, and
subcutaneous fat mass) between the two groups. The HFD mice had statistically increased
in body weight (21.33 ± 2.48 g in ND mice and 29.96 ± 3.33 g in HFD mice) while the
starting weights in each group were similar to each other (18.25 ± 0.25 g in ND mice
and 18.49 ± 0.18 g in HFD mice). In terms of body weight, an increase in weight was
detected after 2 weeks and became more apparent after 5 weeks of the diet. There was a
significant weight difference after 10 weeks of the diet (21.68%) (Figure 1b). Liver mass
was 0.92 g ± 0.25 g in ND and 2.86 g ± 0.43 g in HFD (Figure 1c). The liver weight was
also dramatically increased in the HFD mice. Epididymal fat mass and subcutaneous fat
mass were 0.62 g ± 0.13 g and 1.39 g ± 0.25 g, respectively. (Figure 1d,e). Both epididymal
fat and subcutaneous fat are categorized as white adipose tissue (WAT). Thus, as shown in
Figure 1d,e, the increases in both epididymal and subcutaneous fat mass mean increased
total white adipose tissue (WAT). The most apparent difference between normal and obese
groups was the body-fat ratio, especially between the brown adipose tissue (BAT) and white
adipose tissue (WAT) [27]. The development of obesity mainly depends on the amount of
WAT because WAT has the highest level of fat-containing adipocytes in mammals. Based
on all changes in physical values, we determined that the DIO mice model was successfully
established.

3.2. Stability

We quantified the stability and long-term storage ability of the biosensor. First, we
investigated the stability of the bare screen-printed gold electrodes by cyclic voltammetry
(CV) at a range of scan rates. The CV with 10 to 300 mV/s scan rates was applied by using
0.1 M KCl solution with 5 mM potassium ferricyanide (III) solution. As shown in Figure 2a,
the absolute values of anodic and cathodic peak currents showed a linear relationship with
the square root of the scan rates. The correlation coefficients were 0.992 and 0.993 for the
oxidation and reduction peaks, respectively (Figure 2b). These results demonstrated that
the electrochemical reaction on the surface of SPGE was a diffusion-controlled process.

Additionally, we investigated the biosensor’s long-term storage ability after being kept
under blocking buffer (1% BSA with 0.1% Triton X-100 in 1X PBS solution) for up to 18 days
at 4 ◦C. Each biosensor was constructed as far as applying the layer of a streptavidin-HRP
and stored in a 15 mL conical tube with 2 mL of blocking buffer. Stability data are shown
in Figure 3. Each point indicates the mean value of peak current from three 1.0 ng/mL
leptin measurements every 3 days (Figure 2c). A total of twenty-one SPGEs were used
for this storage ability testing. After 18 days of testing, the biosensor’s electrochemical
response maintained almost 80% (80.29%) of its initial response measured on the first day
(day 0). This small variation over 18 days indicated that the biosensor has an excellent
storage ability in humid conditions.
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bar = 1 cm) and (b) a chart of the time course of changes in body weight in each group, (c) liver mass
(gram) in each group, (d) epididymal fat mass (gram) in each group, and (e) subcutaneous fat mass
(gram) in each group (** p ≤ 0.01, *** p ≤ 0.001). (c–e) include representative images of the liver,
epididymal fat, and subcutaneous fat, respectively. All static data are presented as mean ± standard
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Figure 2. (a) Cyclic voltammetry (CV) response test for stability with 10 to 300 mV/s scan rates. (b) The oxidation and
reduction current peaks from graph (a). (c) The long−term storage ability test in humid conditions at 4 ◦C over 18 days.
Measurements were taken every 3 days and calculated as the mean value of peak current from 1.0 ng/mL leptin in triplicate.

3.3. Sensitivity

To investigate biosensor sensitivity, the quantitative detection of leptin was evaluated
by SWV measurement against the increasing concentration of leptin solutions (0.1, 0.5,
1.0, 5.0, 10, and 20 ng/mL). The solutions were prepared with mouse leptin recombinant
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proteins with specific binding affinity with an α-leptin antibody. The SWV responses for the
electrochemical behaviors of leptin are shown in Figure 3a. In Figure 3b, calibration plots
displayed a robust linear relationship between the SWV peak currents and the logarithm of
leptin concentrations (R2 = 0.9867). Each of the points was obtained and integrated from the
peak currents in triplicate. The limit of detection (LOD) was determined to be 0.033 ng/mL
through the 3σ rule. The linearity and low LOD indicated that the sandwich ELISA-based
electrochemical biosensor could be applied accurately and with high sensitivity to quantify
leptin concentrations spanning the physiological range for mammals.
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solutions from 0.1 to 20 ng/mL and (b) calibration plots displaying a robust linear relationship between the SWV peak
currents and the logarithm of leptin concentrations. Each point was obtained and integrated from the peak currents in
triplicate.

3.4. Selectivity

We investigated the biosensor’s selectivity, the biosensor’s ability to discriminate a
specific biomarker, such as leptin, in a mixture of bodily fluids, such as blood plasma.
Table 1 summarizes leptin recovery rates among four combinations of insulin, glucose,
and urea with leptin. Closer to 100% recovery rates indicate fewer false-positive signals
caused by non-specific binding with other compounds. The compounds were dissolved
with distilled water and prepared at a physiologically realistic concentration (5 ng/mL
for each compound). The electrochemical leptin signals in the mixtures were compared to
that of a 5 ng/mL leptin solution as a control. All leptin recovery rates were close to 100%.
These rates demonstrated that the biosensor had high selectivity towards leptin and did
not experience non-specific binding with other compounds.

Table 1. Cross-reactivity study indicating biosensor leptin recovery rates in combination with insulin, glucose, and urea.

Sample (ng/mL) Added (ng/mL) Found * (ng/mL) Recovery (%)

Leptin 5.0 (Leptin) 4.69 ± 0.36 93.8
Leptin + Insulin 5.0 (Leptin) + 5.0 (Insulin) 5.40 ± 0.34 108
Leptin + Glucose 5.0 (Leptin) + 5.0 (Glucose) 4.96 ± 0.55 99.2

Leptin + Urea 5.0 (Leptin) + 5.0 (Urea) 4.71 ± 0.76 94.2
Leptin + Insulin + Glucose 5.0 (Leptin) + 5.0 (Insulin) + 5.0 (Glucose) 5.51 ± 0.61 110

* The experiments were performed in triplicate, with the results presented as mean ± standard deviation.
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3.5. Effectivity

We also investigated the biosensor’s effectivity, which is the ability to distinguish
the leptin levels in non-diluted blood from the two groups, ND and HFD mice. Table 2
summarizes the leptin concentrations from the ND (3.08–5.86 ng/mL) and HFD groups
(11.58–18.58 ng/mL) with the Sandwich ELISA-based Leptin biosensor. Next, we compared
the leptin level obtained from the Sandwich ELISA-based Leptin biosensor to that from a
microplate reader using a commercial ELISA kit. The quantification differences between
the biosensor and ELISA kit were less than 10% across all samples (Table 2). The ability to
distinguish between ND and HFD mice, and comparable performance to the commercial
ELISA kit, showed that the modified biosensor with electrochemical strategy could be
applied in the research of obesity and obesity-related diseases.

Table 2. The blood leptin levels of high-fat diet (HFD) and normal diet (ND) mice with a commercial
Leptin enzyme-linked immunosorbent assay (ELISA) kit and the sandwich ELISA-based leptin
biosensor.

Samples
(Plasma)

Commercial Leptin
ELISA Kit (Absorbance)

(ng/mL)

Sandwich ELISA-Based
Leptin Biosensor *

(ng/mL)

Difference
(%)

ND S1 04.25 04.64 ± 0.26 8.40
ND S2 05.27 05.02 ± 0.37 4.98
ND S3 03.21 03.08 ± 0.49 4.22
ND S4 03.11 03.42 ± 0.22 9.06
ND S5 06.18 05.86 ± 0.39 5.46

HFD S1 12.69 11.58 ± 0.41 9.59
HFD S2 17.25 18.58 ± 0.55 7.16
HFD S3 15.58 15.02 ± 0.49 3.73
HFD S4 11.08 12.20 ± 0.71 9.18
HFD S5 16.93 15.82 ± 0.65 7.02

* The experiments were performed in triplicate, with the results presented as mean ± standard
deviation. (Here, S1 represents Sample number 1, other numbers follow in sequence).

4. Conclusions

Here, we reported a sandwich ELISA-based electrochemical biosensor for detecting
leptin in blood plasma from ND and HFD mice. The biosensor consists of multi-layers of a
DTSSP, a capture antibody, a detection antibody, and a streptavidin-HRP on the surface
of a screen-printed gold electrode. The quantification of the leptin concentration was
accomplished with HRP-catalyzed oxidation of oPD by two voltammetry methods; cyclic
voltammetry (CV) and square-wave voltammetry (SWV). The proposed sandwich ELISA-
based electrochemical biosensor for detecting leptin in mouse blood serum was evaluated
as having high stability, sensitivity, selectivity, and effectivity. The leptin concentrations
obtained by the biosensor were distinguishable between ND and HFD groups. Significantly,
the leptin level obtained from the biosensor was comparable to that from a microplate
reader using a commercial ELISA kit. Thus, we believe that our biosensor is a promising
tool for diagnosing diverse biomarkers for obesity and obese-related diseases and opens
a new window for the development of commercially successful point-of-caring testing
(POCT) devices for humans [28,29].
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