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Abstract

Background: Many COVID-19 patients rapidly progress to respiratory failure with a broad range of severities. Identification
of high-risk cases is critical for early intervention.

Objective: The aim of this study is to develop deep learning models that can rapidly identify high-risk COVID-19 patients
based on computed tomography (CT) images and clinical data.

Methods: We analyzed 297 COVID-19 patients from five hospitals in Daegu, South Korea. A mixed artificial convolutional
neural network (ACNN) model, combining an artificial neural network for clinical data and a convolutional neural network for
3D CT imaging data, was developed to classify these cases as either high risk of severe progression (ie, event) or low risk (ie,
event-free).

Results: Using the mixed ACNN model, we were able to obtain high classification performance using novel coronavirus
pneumonia lesion images (ie, 93.9% accuracy, 80.8% sensitivity, 96.9% specificity, and 0.916 area under the curve [AUC] score)
and lung segmentation images (ie, 94.3% accuracy, 74.7% sensitivity, 95.9% specificity, and 0.928 AUC score) for event versus
event-free groups.

Conclusions: Our study successfully differentiated high-risk cases among COVID-19 patients using imaging and clinical
features. The developed model can be used as a predictive tool for interventions in aggressive therapies.

(JMIR Med Inform 2021;9(1):e24973) doi: 10.2196/24973
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Introduction

In December 2019, SARS-CoV-2, also called COVID-19, was
first detected in Wuhan, China [1]. Since then, the COVID-19
pandemic has rapidly propagated across the world via airborne
person-to-person transmission [2,3]. Some patients with
COVID-19 progressed to novel coronavirus pneumonia (NCP),
which can lead to severe acute respiratory failure, multiple organ
failure, and, in some cases, death [4]. A recent study reported
that more than 60% of patients who progressed to a severe stage
of NCP died [4,5]. Therefore, it is critical to identify high-risk
patients among those with advanced COVID-19 to deliver early
intensive care.

COVID-19 is diagnosed using viral nucleic acid detection
employed by reverse transcription–polymerase chain reaction
(RT-PCR) [6]. Although this approach is considered the most
effective, it is both time-consuming and has a high rate of false
negatives [7]. As an alternative, computed tomography (CT)
can be utilized for the initial screening of NCP [8]. CT imaging
exhibits the advantage of faster processing time as compared
with the molecular diagnostic test. CT scans can also provide
detailed structural information, such as the extent of lung
involvement and quantitative analysis of NCP lesions associated
with prognostic value in patients with COVID-19 [9].
Furthermore, the Fleischer Society has highlighted CT imaging
as being crucial in the management of the disease [10]. CT
imaging can also be easily performed in a facility-equipped
hospital and can assist in the triage assessment of COVID-19
patients by identifying those with severe cases.

Artificial intelligence (AI) methods, particularly deep learning
(DL), have shown promising results for lung disease analysis
using CT scans. Recent advances via machine learning in the
prognosis of COVID-19 patients include estimating the mortality
risk in patients with suspected or confirmed COVID-19,
predicting progression to a severe or critical state, and predicting
the duration of hospital stay [11-15]. Predicting factors included
age; features derived from the CT machine; lactate
dehydrogenase; sex; C-reactive protein (CRP); comorbidity,
including hypertension, diabetes mellitus, cardiovascular
disease, and respiratory disease; and lymphocyte count. The
advantages and disadvantages of these studies have been
described in a recent study by Wynants et al [16]. However, the
way of utilizing these models, including data acquisition, was
not clearly described and lacked generalization to diverse
populations. Some models consider only clinical indicators,
demographics, and laboratory tests [17], whereas others only
consider CT images [18]. In addition, the timing of the follow-up
varies between studies; therefore, the accuracy of the models
was not consistent and ranged from 90% to 98% among studies.
Featured in these papers was Kang et al [18], who developed
an AI system that can diagnose NCP. Furthermore, this system
is able to differentiate NCP from common pneumonia and other
normal controls using a large CT database of 3777 patients.
They used existing networks—3D ResNet (residual neural
network)-18, U-Net, DRUNET (dilated-residual U-Net), FCN
(fully convolutional network), SegNet (segmentation network),
and DeepLabv3—to build two lung-lesion segmentation models
and then provide a diagnosis prediction. This system has been

tested and has been successfully able to provide diagnoses at
several hospitals in China. In addition, a recent study [17]
analyzed the electronic health records of patients confirmed to
have COVID-19 at a single center in the Mount Sinai Health
System in New York City to predict critical events and mortality
with a boosted decision tree–based machine learning model.
However, their proposed method was based only on the data
extracted within 36 hours of patients’ hospitalization, failing to
consider clinical parameters during the hospital stay.
Furthermore, some patient test parameters are missing from
their data set, affecting the final evaluation results. In view of
the above problems, we propose a DL algorithm combining an
artificial neural network (ANN) and a convolutional neural
network (CNN) to build a risk prediction model for all
COVID-19 patients. Predicting a personalized prognosis is
important for detecting high-risk patients who are more likely
to become critical and would require intensive care. In addition,
it is crucial to accelerate the development of AI techniques to
predict clinical prognosis, particularly during a crisis period
caused by the current pandemic.

We hypothesize that a mixed model consisting of both ANN
using clinical parameters and 3D CNN using CT imaging—an
artificial convolutional neural network (ACNN) model—can
help classify patients into event and event-free COVID-19
groups. The events include high-flow nasal cannula, mechanical
ventilator care, septic shock, acute kidney injury, continuous
renal replacement therapy, extracorporeal membrane
oxygenation, intensive care unit admission, or death. The 3D
ACNN with CT images can potentially identify the
abnormalities of lung parenchyma and clinically predict relevant
outcomes in COVID-19 patients. DL models can assist
radiologists, physicians, and clinicians in performing a quick
diagnosis that can help in decision making and resource
allocation, which is particularly important when the health
system is overloaded.

Methods

The institutional review boards of all participating hospitals
approved this retrospective study, and the requirement for patient
consent was waived.

Study Population and Image Acquisition
We retrospectively reviewed 330 chest CT scans of COVID-19
patients that were obtained in five hospitals in Daegu, South
Korea, from January 31 to April 10, 2020. All patients were
confirmed based on RT-PCR tests for SARS-CoV-2 from
nasal-pharyngeal swabs. All chest CT scans were performed
within 3 days of the COVID-19 diagnosis. A total of 33 patients
were excluded from our study owing to the following causes:
(1) poor image quality (n=9), (2) insufficient medical records
(n=10), (3) no pneumonic infiltration on CT scans (n=8), or (4)
failure of image segmentation with both AVIEW (Coreline Soft,
Co) and 3D Slicer Chest Imaging Platform (CIP) (Brigham and
Women's Hospital), possibly due to the lack of number of slices
(n=6). A total of 297 patients were included in our AI analysis.
All of the chest CT scans were obtained in the supine position
at full inspiration with or without contrast media and performed
using one of the following various multidetector CT scanners:
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SOMATOM Sensation 64, SOMATOM Definition AS/AS+,
SOMATOM Definition Flash, or SOMATOM Perspective
(Siemens Healthineers); Optima CT660, LightSpeed 16, or
Revolution EVO (GE Healthcare); or Aquilion PRIME (Toshiba
Medical Systems). The scanning parameters were as follows:
a tube voltage of 100-140 kVp, a tube current of 32-192 mAs
with a volume CT dose index of 3.97-13.77 mGy, a slice
thickness of 1.0-3.0 mm, a detector collimation of 128 × 0.6
mm or 64 × 0.6 mm, and a beam pitch of 1.0-1.2. Axial images
were reconstructed with a standard or sharp reconstruction
kernel.

Demographic, Clinical, and Laboratory Data
We analyzed the clinical and laboratory data of each patient at
the time of admission from medical records. This included age;
sex; smoking history; clinical symptoms; underlying disease,
including hypertension, diabetes mellitus, chronic obstructive
pulmonary disease, chronic kidney disease, and coronary artery
calcification; systolic blood pressure; white blood cell count
(WBC); CRP level; respiratory rate; heart rate; and oxygen
saturation. To identify high-risk cases among COVID-19
patients, the endpoint was the occurrence of events subsequent
to admission.

ANN Model With Demographic, Clinical, and
Laboratory Data
With only clinical and laboratory data, we constructed an ANN
model to predict whether input subjects were event or event-free
patients. The ANN models comprise nodes, layers, activation
functions, optimizers, and loss functions. Nodes between layers
are connected by edges along with individual weights (see
Figure 1). After the end of one iteration (ie, 1 epoch), with real
and predicted classes obtained from the ANN model, a loss
function was computed and weights were updated in each layer
through the optimizer to minimize the loss. The binary
cross-entropy and adaptive moment estimation (Adam)
optimizer [19] were used for the loss function and optimizer,
respectively. For improving the classification performance, we
further added L2 regularization on the loss function. To prevent
a gradient vanishing issue, we used a rectified linear unit (ReLU)
function [20] from layer to layer and a sigmoid function at the
last layer as activation function. We assessed the number of
layers from one to six for the ANN model to determine the
optimal number of layers. For an objective comparison, we
evaluated all of the ANN models using the same training and
testing data. In the end, we obtained an optimized number of
layers to achieve the best classification performance compared
with the number of other layers.

Figure 1. Architecture of a text-based artificial neural network (ANN).
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CT Image Processing
Image segmentation for lungs was performed using the lobes
and airway segmentation modules for 288 subjects with AVIEW
and for 9 subjects with 3D Slicer CIP [21]. This step separated
the voxels corresponding to the lung parenchyma and airway
from the voxels corresponding to the surrounding anatomy (ie,
mediastinum, thoracic cage, muscle, and space outside the body)
of the original CT images (see Figure 2, A). The image obtained
through the segmentation process was defined as the lung
segmentation image. Next, NCP lesions were identified for
detecting abnormal regions using CT Hounsfield unit (HU)

thresholds: ground-glass opacity (GGO), consolidation,
semiconsolidation, and normal lung. Each component in NCP
lesion images is colored using a specific value: normal lung is
8 (color-coded blue; −950 to −701 HU) [22], GGO is 32
(color-coded red; −700 to −501 HU), semiconsolidation is 64
(color-coded green; −500 to −201 HU) [9], and consolidation
cluster is 64 (color-coded cyan; −200 to 60 HU); in addition, 8
is set for an unclassified voxel. Figure 2, B visualizes the
exemplary distributions of patients experiencing severe-stage
COVID-19. These spatial distributions of lesion components
were trained for comparison with the raw CT and lung
segmentation CT images.

Figure 2. Main experimental products of (A) convolutional neural network (CNN) models, (B) lung lesion segmentation parts of a severe subject, (C)
the architecture of our CNN model, and (D) illustration of the artificial convolutional neural network (ACNN) model, a mix of the artificial neural
network (ANN) and CNN models. CT: computed tomography; GGO: ground-glass opacity; ReLU: rectified linear unit.
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3D CNN Models With CT Imaging Data
All of the 297 images were resampled to 64 × 64 × 64 voxels
using a linear interpolation method, and the HU of each pixel
was normalized to the range between 0 and 1. Figure 2, C
illustrates the architecture of our 3D CNN network, which
comprised nine layers: three convolutional layers, three batch
normalization layers, and three max-pooling layers. After each
convolutional layer of a 3 × 3 × 3–kernel size, the feature maps
were down-sampled by a max-pooling layer with a 2 × 2 ×
2–voxel window. ReLU was used as an activation function to
maintain positive input values and change negative input values
to zeros in each convolutional layer. The number of filters was
determined as 32, 64, and 128, based on our experience. The
sigmoid function was then used to distinguish between event
and event-free COVID-19 patients using the last fully connected
layer. Three typical successful CNN models (ie, ResNet50 [23],
InceptionV3 [24], and DenseNet121 [25]) were respectively
implemented herein. We have developed these typical 2D
models into a 3D domain and trained them to use the same input
data set. These models used multiple convolutional blocks with
residual connections to continuously extract local and global
contextual features. The neural networks were trained using
binary cross-entropy between the predicted and true diagnoses
as the loss function. The Adam optimization algorithm and the
proposed default settings (ie, learning rate=0.001) of the
parameters were employed to find the weights of the CNN
model [26,27]. The proposed CNN model was also trained for
3000 iterations with a batch size of 16 samples. Moreover, we
implemented these typical models into a 2D domain for
comparison by extracting one slice per subject at the location
representing 50% of the total slices with the input size of 128
× 128 pixels.

A Mix of CNN and ANN Models: 3D ACNN
We applied the fully connected layer to the last layers of the
previously described CNN model to derive a 256-dimensional
feature vector to represent a CT image. A total of 19 clinical
features of the same patient were concatenated with this feature
vector. A new model (ie, ACNN) takes this combined feature
vector as the input to predict the patient’s COVID-19 status
(see Figure 2, D). A total of 19 clinical features of the same
subject were concatenated with a 64-dimensional feature vector
of the CT image. The classification conclusions of CNN models
still lack transparency and cannot straightforwardly provide
reasoning and explanations as do human experts in diagnosis
[26]. We used the gradient-weighted class activation mapping
(Grad-CAM) [28] approach for visualizing the CNN learning
process. This method creates a 2D spatial heatmap as a visual
explanation that indicates where the CNN has focused to make

its predictions of images, which can track the spatial attention
of the CNN when predicting COVID-19 status.

Validation of AI Models and Statistical Analysis
We used 5-fold cross-validation to evaluate the performance of
the ANN, CNN, and ACNN models. We implemented our
models using a system on the Intel Xeon Processor E5-2640
v4, 2.40 GHz, with the NVIDIA GeForce RTX 2080 Ti graphics
card. We applied a cost-sensitive neural network [29] method
to handle our imbalanced dataset (ie, small number of event
subjects) using class weighting. The measures of accuracy,
precision, sensitivity, specificity, F1 score, confusion matrix,
receiver operating characteristic (ROC) curve, and area under
the curve (AUC) score were calculated using the true positive
(TP), true negative (TN), false negative (FN), and false positive
(FP) results [30]. From the confusion matrix, we calculated five
values for accuracy, precision, sensitivity, specificity, and F1
score as follows:

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

Precision = TP / (TP + FP) (2)

Sensitivity = TP / (TP + FN) (3)

Specificity = TN / (TN + FP) (4)

F1 score = 2 × (Precision × Sensitivity) / (Precision
+ Sensitivity) = 2TP / (2TP + FP + FN) (5)

Statistical comparison of the demographic and clinical data was
performed using the Python (Python Software Foundation)
SciPy [31] library using the Mann-Whitney U test for continuous
variables and the chi-square test for categorical variables. All
numerical values are expressed as mean (SD) or n (%).

Results

Demographic, Clinical, and Laboratory Information
The patients were classified as belonging to either the event
group (n=42) or the event-free group (n=255) (see Table 1).
Age, sex, and smoking history were significantly different
between the two groups. Fever was the most common initial
symptom (249/297, 83.8%), followed by cough (182/297,
61.3%), dyspnea (104/297, 35.0%), myalgia (92/297, 31.0%),
and headache (68/297, 22.9%). Compared with the event-free
group, the event group exhibited a significantly higher
percentage of patients presenting with dyspnea (66.7% vs
29.8%) but a lower percentage presenting with headache (4.8%
vs 25.9%). Further, clinical parameters associated with
respiratory function and inflammation (eg, oxygen saturation,
WBC, and CRP level) were predominantly increased in the
event-free group (see Table 1).
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Table 1. Demographic and clinical data for the event versus event-free data sets.

P valueEvent group (n=42)Event-free group (n=255)Total cohort (N=297)Characteristic

<.00114 (33)155 (60.8)169 (56.9)Sex (female), n (%)

<.00172.9 (11.9)58.7 (16.6)60.6 (16.7)Age (years), mean (SD)

<.001Smoking status, n (%)

N/Aa30 (71)233 (91.4)263 (88.6)Never smoked

N/A11 (26)14 (5.5)25 (8.4)Current smoker

N/A1 (2)8 (3.1)9 (3.0)Ex-smoker

.4112 (29)58 (22.7)70 (23.6)Diabetes mellitus, n (%)

.00721 (50)74 (29.0)95 (32.0)Hypertension, n (%)

.477 (17)32 (12.5)39 (13.1)Coronary artery calcification, n (%)

.0026 (14)8 (3.1)14 (4.7)Chronic obstructive pulmonary disease, n (%)

.013 (7)3 (1.2)6 (2.0)Chronic kidney disease, n (%)

.0939 (93)210 (82.4)249 (83.8)Fever, n (%)

.8025 (60)157 (61.6)182 (61.3)Cough, n (%)

<.00128 (67)76 (29.8)104 (35.0)Dyspnea, n (%)

.159 (21)83 (32.5)92 (31.0)Myalgia, n (%)

.0032 (5)66 (25.9)68 (22.9)Headache, n (%)

.02138.1 (22.4)128.5 (18.1)129.9 (19.0)Systolic blood pressure, mean (SD)

.1088.3 (18.9)83.6 (13.4)84.3 (14.4)Heart rate, mean (SD)

.2821.3 (4.8)20.2 (2.4)20.3 (2.9)Respiratory rate, mean (SD)

.2093.9 (6.9)96.5 (2.5)96.1 (3.5)Oxygen saturation, mean (SD)

<.0018897.1 (4656.4)5589.6 (2226.0)6057.4 (2930.5)White blood cell count (count/µL), mean (SD)

<.00111.0 (7.4)3.1 (4.7)4.2 (5.8)C-reactive protein (mg/dL), mean (SD)

aN/A: not applicable; the P value that was reported for Smoking status was based on the chi-square test between the three groups (ie, never smoked,
current smoker, and ex-smoker), therefore, it is not reported for each group.

Analysis of Risk Features
We performed correlation tests to determine the clinical features
that contributed to the endpoint using a Pearson correlation
heatmap [32] (see Figure 3). The heatmap in Figure 3, A
highlights potentially important clinical metrics to be considered
when constructing a DL model of ANN. The intensive colors
of either red or blue indicate a greater correlation magnitude.
Figure 3, B also shows the Pearson correlation coefficients

between clinical parameters with the endpoint. CRP level and
WBC were the most important features having a strong positive
correlation with the endpoint. Age was a significant risk factor
related to the endpoint, which was in accordance with recent
conclusions [33]. Conversely, oxygen saturation and sex
(female) were negatively correlated with the endpoint and were
identified as significant contributors to the clinical prognosis
estimation.
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Figure 3. A. Correlation heatmap of clinical features with the endpoint (event vs event-free). B. Diverging bars of important features with endpoint.
CAC: coronary artery calcification; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CRP: C-reactive protein; DM: diabetes
mellitus; HR: heart rate: HTN: hypertension; RR: respiratory rate; SBP: systolic blood pressure; WBC: white blood cell count.

Performances of Deep Learning Models: ANN Versus
CNN Versus ACNN
Performance metrics from the DL models are reported in Table
2. The ANN model only uses clinical metrics without
considering CT images (see Multimedia Appendix 1). The
ACNN model combined both an ANN with clinical data and a
CNN with 3D CT imaging data by concatenation. The reported

metrics of the learning models were averaged using 5-fold
cross-validation, and a threshold was set to the sigmoid output
of 0.5.

Both the ANN and CNN models provided an accuracy greater
than 90%; however, their F1 scores were only about 64%, based
on the precision and sensitivity. While both models show a
potential to differentiate event versus event-free cases, the
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respective model performances were insufficient to be used in
a clinical setting. However, the ACNN model outperformed
both models in almost all classification performances. The
ACNN model for the NCP lesion achieved the best performance
in terms of accuracy (93.9%), sensitivity (80.8%), specificity
(96.9%), and AUC score (0.916). These results demonstrate
that the combination of clinical information and imaging data
can significantly improve the classification performance.

Figure 4 shows the ROC curves with an AUC score for the
ANN, CNN, and ACNN models during testing with the NCP
lesion data set. Similar to the prediction accuracy, the AUC

score of the ACNN model (0.916) was greater than those of the
ANN model (0.851) and the CNN model (0.813). Based on the
confusion matrix, the ACNN model produced two FPs (ie,
event-free wrongly predicted as event) and one FN (ie, event
wrongly predicted as event-free) (sensitivity=80.8%). The FP
to FN occurrence ratio for the ANN model was 2:3 and for the
CNN model was 0:4. Thus, the ACNN model was much more
effective in eliminating FNs. Moreover, compared with the
ACNN model, the training times using the ANN and CNN
models were shorter (ie, ~3.5 min for ANN vs ~145 min for
CNN vs ~150 min for ACNN).

Figure 4. Receiver operating characteristic (ROC) curves and confusion matrices (with a threshold of 0.5) of (a) artificial neural network (ANN), (b)
convolutional neural network (CNN), and (c) artificial convolutional neural network (ACNN) models for event and event-free novel coronavirus
pneumonia (NCP) lesion data sets. AUC: area under the curve; Neg: negative; Pos: positive.
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Effects Caused by the Use of Three Different Imaging
Data Sets With ACNN Models
The effects of using different inputs (eg, raw, lung segmentation,
and NCP lesion images) were assessed for the ACNN model.
The prediction accuracy was 91.6% for raw, 94.3% for lung

segmentation, and 93.9% for NCP lesion (see Table 2). The
lung segmentation AUC score (0.928) was similar to the NCP
lesion AUC score (0.916). However, both performed
significantly better than the raw AUC score (0.896). This
indicates that lung segmentation and NCP lesions contain more
information associated with clinical outcome than other areas.

Table 2. Performances of artificial neural network (ANN), convolutional neural network (CNN), and artificial convolutional neural network (ACNN)
models for predictions of event versus event-free cases.

AUCa scoreSpecificityF1 scoreSensitivityPrecisionAccuracyInput data and model

Clinical metrics only

0.85194.471.563.985.192.9ANN

NCPb lesion

0.81392.664.151.986.791.9CNN

0.91696.978.980.878.393.9ACNN

Lung segmentation

0.80491.656.045.083.390.6CNN

0.92895.978.174.787.194.3ACNN

Raw

0.78192.357.350.674.490.3CNN

0.89694.467.163.377.991.6ACNN

aAUC: area under the curve.
bNCP: novel coronavirus pneumonia.

Classification by Other Comparative ACNN Models
Using the NCP lesion image, we constructed three other ACNN
models using existing available models (ie, ResNet50,
DenseNet121, and InceptionV3). We then compared them with
the proposed ACNN model (see Table 3). All models provided
similar performances, although the sensitivity was much lower
for ResNet50 (78.3%), DenseNet121 (56.1%), and InceptionV3
(59.4%) as compared with the proposed ACNN model (80.8%).

The AUC scores of the three online models were also
considerably smaller than that of the proposed ACNN model.

Furthermore, we developed a 2D ACNN model using a middle
slice. The 2D ACNN model had a final accuracy of 91.9%, a
sensitivity of 52.8%, and a specificity of 92.7%. The 2D ACNN
model performed worse than the 3D ACNN model, particularly
with regard to the sensitivity. The poor performance of the 2D
ACNN model is presumed to be related to the loss of the 3D
context, proving that discriminative information in all slices
improved the prediction performance.

Table 3. Performance of the 2D artificial convolutional neural network (ACNN) model and other 3D models, constructed using free source codes
available online, for 297 subjects with the novel coronavirus pneumonia lesion data set: prediction of event versus event-free.

AUCa scoreSpecificityF1 scoreSensitivityPrecisionAccuracyModel

0.90096.576.678.375.393.3ACNN–ResNet50b

0.81493.667.259.478.491.9ACNN–InceptionV3

0.82693.563.056.188.791.6ACNN–DenseNet121

0.87392.763.852.886.091.9Our 2D ACNN model

0.86595.170.169.478.892.3Our ACNN model without cost-sensitivity method

aAUC: area under the curve.
bResNet50: residual neural network 50.

Prognostic of the CNN Model by Grad-CAM
Visualization
Suspicious lung areas (ie, lesion regions) discovered via the
CNN system through the Grad-CAM visualization algorithm

made it possible to visualize lung regions that drew the most
attention in the CNN model. Figure 5 illustrates the
CNN-discovered suspicious lung areas for both event and
event-free patients for the three data set types. From Figure 5,
A, the Grad-CAM of raw images is able to focus on areas inside
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the NCP lesions, but almost all of the mapping locates regions
outside of the lung at random. Different scanners create different
CT domains; therefore, this artificial area may be the source of

the FNs and FPs. This effect could be avoided using lung
segmentation and NCP lesion images.

Figure 5. Gradient-weighted class activation mapping (Grad-CAM) heatmap images for representative event and event-free COVID-19 patients with
(A) raw computed tomography (CT) images, (B) lung segmentation images, and (C) novel coronavirus pneumonia (NCP) lesion images.

Based on Figure 5, B and C, the CNN model discovered
sensitive lung regions within the high-attenuation area (ie,
brighter regions). The most distinguishing features are the
combination of high-level features (ie, GGO, consolidation, and
semiconsolidation). From Figure 5, C, we can see that with the

combination of lesion features, the obtained activation maps
cover the similar highlighted regions as the lung segmentation
images. The main difference is that the NCP lesions are more
discrete owing to different pixel densities, which contributes to
the enhancement of only part of the final features.
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We found a high overlap when comparing these
CNN-discovered suspicious lung areas with actual abnormal
lung areas. This is consistent with radiologist experiences
wherein COVID-19 patients have demonstrated lung lesion
features. These results suggest that the lesion features have a
potential prognostic value for COVID-19 patients and they
verify the effectiveness of the NCP lesions.

Discussion

Principal Findings
In this study, we developed three DL models for the rapid
diagnosis of COVID-19 using clinical data and different CT
image types. The identification of high-risk patients is critical
because they can progress toward severe or critical illness. Based
on our data set, the COVID-19 abnormality manifests itself in
various forms and ranges in severity between groups. These
abnormalities could be efficiently captured by combining clinical
parameters using an ANN model and CT images using a CNN
model. Through the mixed ACNN model, we could obtain a
high classification accuracy of 94.3% for event versus event-free
groups averaged with 5-fold cross-validation. The ACNN model
performances using lung segmentation or NCP lesion images
achieved accuracies of 94.3% and 93.9%, sensitivities of 74.7%
and 80.8%, specificities of 95.9% and 96.9%, and AUC scores
of 0.928 and 0.916, respectively. This indicates that lung or
NCP lesion images contained high-level features that can
effectively represent distinct and abnormal morphological
appearances as compared with raw images.

To improve the sensitivity, we applied a cost-sensitive learning
method by changing the misclassification cost [29]. This class
weighting was achieved using the inverse of the class
distribution present in the training data set. Using the
cost-sensitivity method, the prediction sensitivity was 80.8%,
which was much greater than without using the cost-sensitivity
method (69.4%) for the NCP lesion data set. Furthermore, the
accuracy and specificity increased by implementing this method
(see Table 3).

Zhang et al developed an AI-assisted model using chest CT
scans to predict the clinical outcome for COVID-19 patients.
They also showed that the clinical outcome exhibited better
performance when combined with clinical data: 86.71%
sensitivity, 80.00% specificity, and 0.909 AUC score [18]. This
is consistent with our result showing that the combination of
clinical and imaging information showed better performance.
However, our results demonstrated that all ACNN models
showed high specificity (94.4%-96.9%) for event prediction in
COVID-19 patients (see Table 2). That means that intensive
medical treatment is needed if the patient is expected to have a
poor prognosis based on an ACNN model. This information
may be useful in classifying patients according to risk,
particularly in hospitals that are already overloaded owing to
the COVID-19 pandemic.

The accuracy for the CNN model using raw images (90.3%)
was lower as compared with its accuracy using NCP lesions
(91.9%) and lung segmentation (90.6%). This was also true for
the ACNN models where the accuracy of the raw images

(91.6%) was lower than the accuracy when using NCP lesions
(93.9%) or lung segmentation (94.3%). The poor performance
of raw images could be attributed to the redundancy around the
lungs rather than considering the lung purely, and this extra
area can affect the diagnosis. While the recommended chest CT
coverage was from the thoracic inlet to the upper abdomen [34],
in poor medical environments patients were examined using
wide-coverage CT to increase the success of the scan. Therefore,
we view a more focused CT image scan and inclusion of the
segmentation process as essential when developing a model to
predict a clinical outcome.

Existing well-known DL models with deep network structures
(ie, ResNet50, DenseNet121, and InceptionV3) were also
implemented. It was assumed that these models would be more
accurate, as they were developed using lots of imaging data.
However, as shown in Table 3, the performances of these models
were not as good as those of the proposed ACNN model, which
used a relatively simple network. We presume that this is
because of the relatively small data set being insufficient to
train the complex network of the existing models. Although the
first convolutional layer can extract diverse representations
through multiple slices, this advantage can be weakened with
the increased depth of the model. In other words, deeper
networks may not perform better than shallower networks
because of the limited data set [35].

The correlations between the COVID-19 outcomes,
demographics, clinical parameters, and biomechanical
parameters were also evaluated. Identified parameters, such as
systolic blood pressure, WBC, CRP level, respiratory rate, heart
rate, and oxygen saturation, were viewed as prognostic factors.
This is consistent with the prognostic factors seen in severe
COVID-19 patients with multiorgan failure. These parameters
can assist doctors in quickly screening patients and also ease
the significant demand for diagnostic expertise, particularly
during a crisis such as a pandemic.

Limitations and Future Work
Our study had several limitations. First, this was a
retrospectively designed study, where the data set size (ie, the
number of patients) was small. Moreover, the number of patients
that progressed to the severe stage was relatively small (42/297,
14.1%). Therefore, the accuracy and sensitivity of the CNN
model were based on CT images that may be affected by the
variation in imbalanced data sets. To overcome this imbalance,
we first implemented a cost-sensitivity approach. Second, we
only included COVID-19 data in this study. However, a real
diagnosis model should contain the features to distinguish
COVID-19 from other types of pneumonia (eg, flu, viral
pneumonia, and bacterial pneumonia). Third, we compared our
model with three typical 2D models that were developed into
a 3D domain. As these models were designed for 2D images,
this comparison did not present the alternatives for the same
domain of application. Therefore, the 3D context is important
for differentiating between event versus event-free COVID-19
structures, necessitating the development of 3D pretrained
models. Fourth, in clinical practice, acute dyspnea is one of the
most common symptoms in patients with pulmonary
thromboembolism (PTE) resulting in serious consequences. As
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some of the patients included in this study suffered from acute
dyspnea, physicians preferred enhanced CT scans to exclude
PTE. In patients with high fever, CT scans with contrast agent
were performed to determine fever focus. Although imaging
analysis may be affected by the contrast agents used, only 7%
of CT scans (21/297, 7.1%) included in this study were
performed with a contrast agent. In the pulmonary segmentation
technique, large blood vessels and intraperitoneal organs, in
which contrast medium is mainly distributed, are removed.
Therefore, we believe that the effect of the contrast agents on
imaging analysis was minimal. Finally, our data sets were
sourced from five hospitals adopting different imaging protocols.
The main issues that could be caused by the variety of
reconstruction kernels were image noise, artifacts, and changes
in the HU values. These variations may affect lung lesion
segmentation parts and subsequent calculation results. We

controlled for the effect of scanner variation by resampling and
normalizing the imaging data. Therefore, these limitations are
viewed as potential expansions of this research in future studies.
Another potential for future research is to test the
generalizability of our models once more patients are enrolled
from different centers.

Conclusions
In summary, our study assessed the imaging and clinical features
related to COVID-19 from five centers. Our models suggested
that the ACNN model can identify and predict COVID-19
patients at risk of severe status without conducting laboratory
tests. We believe our work is meaningful for risk stratification
management, which is helpful for alleviating overburdened
medical resources while also helping reduce the mortality rate
of COVID-19.
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