
nanomaterials

Article

Two–Dimensional Disposable Graphene Sensor to Detect
Na+ Ions

Hong Gi Oh 1,†, Dong Cheol Jeon 1,†, Mahmudah Salwa Gianti 1, Hae Shin Cho 1, Da Ae Jo 1,
Muhammad Naufal Indriatmoko 1 , Byoung Kuk Jang 2, Joon Mook Lim 3, Seungmin Cho 4

and Kwang Soup Song 1,*

����������
�������

Citation: Oh, H.G.; Jeon, D.C.; Gianti,

M.S.; Cho, H.S.; Jo, D.A.; Indriatmoko,

M.N.; Jang, B.K.; Lim, J.M.; Cho, S.;

Song, K.S. Two–Dimensional

Disposable Graphene Sensor to

Detect Na+ Ions. Nanomaterials 2021,

11, 787. https://doi.org/10.3390/

nano11030787

Academic Editor: Pavel Brunkov

Received: 16 February 2021

Accepted: 15 March 2021

Published: 19 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology,
Gumi 39177, Korea; oh558@naver.com (H.G.O.); vcaptin@kumoh.ac.kr (D.C.J.);
algi.salwa@gmail.com (M.S.G.); nunnunnun@naver.com (H.S.C.); jda226@gmail.com (D.A.J.);
muhammadnaufal9.1@gmail.com (M.N.I.)

2 Department of Internal Medicine, Keimyung University School of Medicine, Daegu 41931, Korea;
jangha106@gmail.com

3 Department of Creative Convergence Engineering, Hanbat National University, Daejeon 34158, Korea;
JoonMookLim@gmail.com

4 MCK Tech Co., Ltd., Daejeon 34013, Korea; seungmin.cho@mcktech.co.kr
* Correspondence: kssong10@kumoh.ac.kr; Tel.: +82-54-478-7435
† These authors contributed equally to this work.

Abstract: The monitoring of Na+ ions distributed in the body has been indirectly calculated by
the detection of Na+ ions in urine. We fabricated a two–dimensional (2D) Na+ ion sensor using a
graphene ion–sensitive field–effect transistor (G–ISFET) and used fluorinated graphene as a reference
electrode (FG–RE). We integrated G–ISFET and FG on a printed circuit board (PCB) designed in the
form of a secure digital (SD) card to fabricate a disposable Na+ ion sensor. The sensitivity of the PCB
tip to Na+ ions was determined to be −55.4 mV/dec. The sensor exhibited good linearity despite the
presence of interfering ions in the buffer solution. We expanded the evaluation of the PCB tip to real
human patient urine samples. The PCB tip exhibited a sensitivity of −0.36 mV/mM and linearly
detected Na+ ions in human patient urine without any dilution process. We expect that G–ISFET with
FG–RE can be used to realize a disposable Na+ ion sensor by serving as an alternative to Ag/AgCl
reference electrodes.

Keywords: Na+ ion; disposable sensor; fluorinated graphene; reference electrode; fluorobenzene; ISFET

1. Introduction

Sodium ions (Na+) are essential for maintaining the normal functions of the human
body, such as transmitting nerve impulses and adjusting the concentration of ions in
blood and cells [1,2]. Normally, the concentration of Na+ ions in the human body is
135–145 mM [3,4]. However, difficulty in excreting Na+ ions due to kidney and gastroin-
testinal problems or the consumption of Na+ ions in excess of the recommended daily
intake can lead to hypernatremia (≥145 mM) or hyponatremia (≤135 mM) [5,6]. In general,
the concentration of Na+ ions in the body is high due to the excessive intake of salt, which
causes many diseases, such as confusion, seizures, coma, and adult disease [6]. The 24 h
urine analysis method collects urine over 24 h and calculates the concentration of Na+ ions
distributed throughout the body by determining the concentration of Na+ ions in 24 h
urine. However, collecting urine over 24 h is very cumbersome. Therefore, there is a need
for a disposable sensor capable of detecting Na+ ions when urinating without collecting
urine over 24 h.

Various methods have been used for the detection of Na+ ions, such as atomic absorp-
tion spectroscopy (AAS) [7], neutron activation analysis (NAA) [8], flame photometry [9],
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ion–sensitive optodes (ISO) [10], ion–sensitive electrodes (ISEs) [11], and ion–sensitive field–
effect transistors (ISFETs) [12–14]. AAS, NAA, and flame photometric methods precisely
detect Na+ ions. However, these methods require expensive equipment and professional
staff for equipment utilization. For ISO, the low cost, high versatility, and compatibility
with other assays offer many advantages. However, ISO has a problem that can lead to
unwanted cross–responses with changes in the pH of the sample [10]. Conventional ISEs
are difficult to miniaturize, and ions tend to leak from the internal solution [15]. These
methods cannot be applied to detect Na+ ions in disposable sensors when urinating. ISFETs
are miniaturized sensors that can quickly detect several different ions and are suitable
for use in disposable sensors [11,13,16]. Ag/AgCl reference electrodes (Ag/AgCl–REs)
have been widely used in electrochemical ISFETs sensors because the Ag/AgCl electrode
exhibits stable potential in electrolytes. However, Ag/AgCl electrodes are conventionally
made with fragile glass tubes and require an internal filling solution. For this reason, it is
difficult to apply such electrodes to the integrated fabrication process of ISFETs. Hence, a
new miniaturized reference electrode that is compatible with the ISFETs manufacturing
process is required.

Previously reported Na+ ion detection graphene–ISFET (G–ISFET) sensors used Ag/AgCl
reference electrodes, and the sensor was a three–dimensional structure (3D) [14,17,18]. In this
work, we propose a two–dimensional (2D) sensing structure, a fluorinated graphene
reference electrode (FG–RE), for integration with a G–ISFET sensing device for the detection
of Na+ ions. The 2D structure of G–ISFET integrated with FG–RE was beneficial in detecting
Na+ ions in human patient urine samples, helping to realize a disposable sensor capable of
detecting Na+ ions. G–ISFET with FG–RE exhibited linear detection of Na+ ions without
dilution in human patient urine samples. By integrating FG–RE into the 2D structure of
G–ISFET for the detection of target ions, we have developed a new sensing device that
addresses the structural limits associated with Ag/AgCl–RE.

2. Materials and Methods
2.1. Materials and the Fabrication of G–ISFET with ISM

Graphene sheets were purchased from MCK Tech (Daejeon, Korea). Fluorobenzene,
sodium ionophore III, polyvinyl chloride (PVC, high molecular weight), bis(1–butylpentyl)
adipate, tetrahydrofuran (THF), tris(hydroxymethyl)aminomethane, sodium chloride,
potassium chloride, calcium chloride, boric acid, citric acid, trisodium phosphate, Tris base,
and hydrochloric acid were purchased from Sigma Aldrich (St. Louis, MO, USA).

The characterization of graphene was performed via Raman spectroscopy (System
1000, Renishaw, Wotton–under–Edge, UK) using an Ar–ion laser at a wavelength of 514 nm.
The surface wettability was evaluated based on the water contact angle using the sessile
dropping method with a contact angle analyzer (Phoenix 300, SEO Co. Ltd., Suwon, Korea).

The following process was sequentially performed on the pristine graphene sheet
transferred onto a polyethylene terephthalate (PET) substrate to fabricate G–ISFET
(Supplementary Figure S1). The graphene was washed with ethanol and distilled water to
remove residue from the surface. A gold electrode (Au) was deposited to a thickness of
200 nm using a thermal evaporator to form the drain and source electrodes. The length
and width of the formed gate channel were 500 and 5000 µm, respectively. To apply bias
to the electrodes, conductive wires were bonded to the drain and source electrodes using
silver paste. Finally, the drain and source electrodes were covered with epoxy resin to
protect the electrodes from the electrolyte. In the case of FG–ISFET, the FG channel was
formed by fluorobenzene treatment before wire bonding, followed by wire bonding and
shielding with epoxy resin to fabricate FG–ISFET. Briefly, the ion–sensitive membrane
(ISM) solution was prepared by dissolving 1 wt.% of sodium ionophore III, 66 wt.% of
bis(1–butylpentyl) adipate, and 33 wt.% of PVC in 1 mL of THF [17]. Then, 3 µL of the
prepared ISM solution was dropped onto the channel surface of G–ISFET to fabricate the
Na+ ion sensor (G–ISFET–ISM), which was then stored at 25 ◦C for 24 h to dry THF.
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2.2. Detection of Na+ Ions Using G–ISFET–ISM

The transfer characteristics of G–ISFET were characterized using two digital sourceme-
ters (Keithley 2400, Keithley, Cleveland, OH, USA). Either Ag/AgCl–RE or FG–RE was
used as a gate electrode for gate bias on G–ISFET in the electrolyte solution. G–ISFET–ISM
was submerged in a 100 mM NaCl solution for 30 min to activate the ISM, followed by
immersion in DI water for 15 min before Na+ ion detection [18]. In order to evaluate the
Na+ ion sensitivity of G–ISFET–ISM, Tris–HCl buffer (50 mM, pH 7.4) was used. NaCl,
KCl, and CaCl2 were dissolved in Tris–HCl buffer, and their concentrations were adjusted
to the range of 10−4–10 M. Carmody buffer (0.2 M boric acid, 0.05 M citric acid, and 0.1 M
trisodium phosphate) was used as a pH buffer solution. We evaluated the sensitivity using
at least 20 disposable sensors independently in each experiment, and all statistical analysis
results are presented as the mean ± standard deviation.

We performed Na+ ion detection in real patient urine samples. The real human
patient urine samples were provided by Keimyung University Dongsan Hospital (Daegu,
Korea) and approved by the Institutional Review Board of Keimyung University Dongsan
Hospital (IRB No. 2015-03-018). The information on the 4 real human urine samples is
summarized in Table 1. All the real patient urine samples were used without any additional
dilution process.

Table 1. The ion concentrations (Na+, K+, Cl−, and Cr3+) and Na+/K+ ratio in patient urine samples.

Subject No. u–Na+ (mM) u–K+ (mM) Na+/K+ Ratio u–Cl− (mM) u–Cr3+ (mM)

S037 97.0 25.0 3.88 39.0 56.6
S039 39.0 21.2 1.84 39.0 56.6
S047 80.0 29.1 2.75 38.0 105.1
S054 119.0 28.8 4.13 134.0 79.5

3. Results and Discussion
3.1. Fluorinated Graphene

Fluorobenzene has a structure in which one hydrogen atom on the benzene ring is
replaced with a fluorine atom. Fluorobenzene can thus easily interact with the graphene
surface through π–π interactions [19]. Therefore, we performed fluorobenzene treatment for
the functionalization of pristine graphene to FG. For fluorine functionalization, graphene
was immersed in 99% fluorobenzene for 30 s and then completely dried at 25 ◦C.

The Raman spectra of graphene are shown in Figure 1a. The D, G, and 2D peaks
of pristine graphene (PG) were observed at 1348.0, 1586.1 and 2688.5 cm−1, respectively.
The intensity ratios, IG/I2D and ID/IG, of PG were 0.34 and 0.14, respectively, which
indicates that the graphene sample was a single layer with few defects [20,21]. For FG, the
D, G, and 2D peaks were observed at 1349.6, 1587.6 and 2689.8 cm−1, respectively. The
intensity ratios, IG/I2D and ID/IG of FG, were 0.37 and 0.15, respectively. There were no
significant differences between the Raman spectra of FG and PG. Graphene was fluorinated
by fluorobenzene without changing the graphene structure, because benzene binds to
graphene through π–π interactions rather than ionic bonds. However, for fluorinated
graphene with plasma treatment, the G and 2D peaks were shifted owing to the C–F ionic
bond after fluorination [22]. The water contact angles of PG and FG were 76.8◦ and 87.0◦,
respectively, as shown in Figure 1b. The water contact angle of FG was higher, owing to
the fluorine atom of fluorobenzene on FG [23].
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3.2. Characteristics of G–ISFET and FG–ISFET

Characterization of G–ISFET and FG–ISFET with Ag/AgCl–RE were conducted ac-
cording to the drain–source current (IDS), drain–source voltage (VDS), and gate–source
voltage (VGS) in a Tris–HCl buffer solution. The VDS value was fixed at 0.05 V, and VGS
was swept from −0.6 to 0.6 V with a 2.5 mV step. Figure 1c shows the IDS–VGS of G–ISFET
and FG–ISFET. The Dirac point (VDirac) of the G–ISFET was 0.11 V. In contrast, for the
FG–ISFET, VDirac was 0.28 V. VDirac of G–ISFET shifted to more positive values (by 0.17 V)
after fluorobenzene treatment, because VDirac of G–ISFET shifts depending on the func-
tional groups or doping state on the surface [24,25]. Graphene follows an sp2 hybridized
carbon structure and has a delocalized electron cloud due to the π electrons of each carbon
atom [26]. Benzene rings also have a delocalized electron cloud due to π electrons and a
relatively low electron density compared with graphene. Graphene and fluorobenzene are
bound via π–π interactions by electrostatic forces, and the electron density of graphene is
decreased owing to the attraction of π electrons away from graphene [25]. Thus, VDirac of
FG–ISFET shifted towards positive values due to the p–doping effect.

An ideal reference electrode should maintain a constant potential over long–term use
and should not be sensitive to specific ions in the electrolyte [27]. Graphene is sensitive to
pH and cations (Na+ and K+) due to the hydroxyl groups on its surface [28,29]. FG–ISFET
has been reported to not exhibit sensitivity to pH [19]. However, FG–ISFET has not yet
been sufficiently investigated for its sensitivity to other ions.

We evaluated the sensitivity of G–ISFET and FG–ISFET with Ag/AgCl–RE to cations
(Na+, K+, and Ca2+ ions) in a Tris–HCl buffer solution, as shown in Figure 2a. The size
of slide glass was 76 × 24 × 2.0 mM3. The sensitivity of G–ISFET and FG–ISFET to
cations in the buffer solution was evaluated by the change in VDirac. The typical IDS–VGS
plots of FG–ISFET are shown in Figure 2b. FG–ISFET was not sensitive to Na+ ions, as
evidenced by VDirac, which did not shift with changes in the Na+ concentration in the buffer
solution. Moreover, FG–ISFET was not sensitive to pH, as shown in Figure 2c. However,
G–ISFET was sensitive to pH at 16.40 mV/pH (Supplementary Figure S2). For G–ISFET,
VDirac became more positive with increasing Na+ and K+ ion concentrations, as shown in
Figure 2d. In the case of Ca2+ ions, VGS became more negative with the increasing Ca2+

ion concentration (−8.96 mV/dec). However, FG–ISFET did not exhibit shifts to Na+, K+,
and Ca2+ ions in the buffer solution, as shown in Figure 2e. Fluorobenzene prevented
the reaction with ions in the electrolyte by blocking the active groups on the graphene
channel surface.

To evaluate the long–term stability of G–ISFET and FG–ISFET, ∆VGS was determined
in real time using a Tris–HCl buffer, in which 200 mM NaCl was dissolved for 6 h. The
VDS value was fixed at 0.05 V, and the IDS value was fixed at 180 µA. G–ISFET exhibited
a rapid change in ∆VGS (−29.28 mV), and such value plateaued after 1.5 h, as shown in
Figure 2f. In contrast, ∆VGS of FG–ISFET was −9.90 mV, and such value plateaued after
4.4 h. This ∆VGS value would be negligible throughout the sensor sensitivity evaluation
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time (30 s). FG–ISFET was not sensitive to cations (H+, Na+, K+, and Ca2+) and was stable
for 6 h. Based on these results, we fabricated an FG reference electrode (FG–RE), as shown
in Figure 3a. The FG sample was 500 × 5000 µm2 in size. To integrate FG–RE and G–ISFET
to the 2D structure, a printed circuit board (PCB) of the type that can be inserted into a
secure digital (SD) card slot was manufactured, as shown in Figure 3b. Two G–ISFETs
and one FG–RE were fabricated on the PCB tip (60 × 24 × 2.1 mM3). There was a gate
channel between drain and source electrodes of G–ISFET. G–ISFET operated as a solution
gate–FET through FG–RE, and FG–RE was 9.5 mM away from G–ISFET. G–ISFET operates
as a sensor that detects ions in electrolyte solution, and FG–RE replaces the Ag/AgCl
reference electrode and applies a gate bias in the solution to induce the electric field effect
of G–ISFET.
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3.3. G–ISFET with ISM to Detect Na+ Ions Using Ag/AgCl–RE or FG–RE

The gate channel of G–ISFET was covered with ISM and was employed to detect
Na+ ions using Ag/AgCl–RE or FG–RE in Tris–HCl buffer solution. Figure 4a depicts
G–ISFET–ISM with FG–RE in use during a typical experimental run. The sensing device
had a 2D structure, and the testing solution was dropped onto the 2D sensing device using
a micropipette. We showed the IDS–VDS characteristics of G–ISFET–ISM with Ag/AgCl or
FG–RE. VDS was increased from 0.0 V to 0.05 V in a Tris–HCl buffer solution; IDS increased
with respect to VGS at the n–channel region (Supplementary Figure S3). When gate voltage
was applied by using FG–RE, ions in the electrolyte moved and formed electrical double
layers on gate channel surface of G–ISFET–ISM and FG–RE. The electrical double layers
had no charge transfer, and current flow through the electrolyte from the G–ISFET–ISM to
the FG–RE was negligible (<0.1 nA). This indicates that the electrical double layers act as
the thin insulators in both sides. However, when FG–RE was used at the same VGS voltage,
the current value was smaller when Ag/AgCl–RE was used. The transconductance (gm)
of G–ISFET–ISM was higher when Ag/AgCl–RE (0.3 mS) was used than when FG–RE
(0.18 mS) was used.
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Figure 4. (a) Experimental setup using G–ISFET–ISM with FG–RE; (b) IDS–VGS of G–ISFET–ISM with
FG–RE depending on Na+ ion concentration; (c) the sensitivity of G–ISFET–ISM with Ag/AgCl–RE
or FG–RE to Na+ ions. Linear fits were used to extract sensitivity; (d) real–time detection of Na+ ions
using G–ISFET–ISM with FG–RE.

Clinically, the concentration of Na+ ions in urine is 10–250 mM [30]. The IDS–VGS
plot of G–ISFET–ISM with FG–RE indicated ambipolar graphene field effect transistor
(FET) behavior (p–channel and n–channel), which is a typical characteristic of G–ISFET
with Ag/AgCl–RE. VDirac of G–ISFET–ISM with FG–RE was shifted by −55.4 mV/dec
depending on the Na+ ion concentration, as shown in Figure 4b. The sensitivity of G–ISFET–
ISM with Ag/AgCl–RE was −43.5 mV/dec (Supplementary Figure S4a). G–ISFET–ISM
with either Ag/AgCl–RE or FG–RE exhibited a linear sensitivity to Na+ ions in the range
of 10−4–100 M, as shown in Figure 4c. Na+ ions were captured on the graphene surface
through ISM, and the ion charge on the graphene surface increased as the concentration of
Na+ ions increased. As the concentration of Na+ ions increased, the positive charge on the
graphene surface increased; hence, VDirac of G–ISFET–ISM shifted towards negative values.

The voltage between G–ISFET–ISM and FG–RE was set with respect to the ISM gate
channel and FG–RE. Considering VGS in FG–RE, the change of surface charge in the ISM
gate channel resulted in the variation of voltage between the ISM gate channel and FG–
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RE. The bulk potential of the electrolyte solution was determined by VGS in FG–RE with
electrostatic equilibrium and capacitive coupling [20]. Therefore, the voltage between the
ISM gate channel and FG–RE was the only parameter related to the concentration of Na+

ions in the electrolyte solution. The change of Na+ ions concentration in the electrolyte
solution led to the variation of surface charge by the capture of Na+ ions on the ISM gate
channel and modulated the channel conductance of ISM gate channel in G–ISFET–ISM.
The variation of VDirac on G–ISFET–ISM can be expressed as follows:

∆VDirac = (VISM − VS) − (VFNa+ + VF − VS) (1)

where VISM is the Na+ ion sensitivity of the ISM gate channel, Vs is the potential of the
source electrode, VFNa+ is the Na+ ion sensitivity of FG–RE, and VF is the bias potential of
FG–RE. The Na+ ions sensitivity of G–ISFET–ISM is determined by the differential response
between the ISM gate channel (VISM) and FG–RE (VFNa+). The IDS–VDS characteristics of
G–IGFET–ISM with FG–RE in the Tris–HCl buffer solution, where VGS was fixed at 0.5 V
and VDS ranged from 0.0 V to 0.05 V, are shown in the Supplementary Figure S3b. IDS
was increased depending on the Na+ ion concentration in electrolyte solution. This was
consistent with the VDirac value shifting to the left as the Na+ ion concentration increased,
as shown in Figure 4b.

We also conducted real–time detection of Na+ ions in Tris–HCl buffer. The results of
the real–time detection of Na+ ions using G–ISFET–ISM with FG–RE are shown in Figure 4d.
For this, ∆VGS was continuously measured with fixed VDS (0.05 V) and IDS (180 µA) values
while adjusting the Na+ ion concentration by periodically injecting a high–concentration
NaCl solution. G–ISFET–ISM with FG–RE exhibited an immediate and linear response in
real time to changes in the Na+ ion concentration. We showed the previously published
studies to fabricate a graphene–based ion sensor in Table 2. Some studies used Ag/AgCl
electrode, gate–free, HfO2, Ag, and Pt wire as the reference electrodes and accurately
detected many kinds of ions. However, we fabricated a 2D sensing structure using FG–RE
and G–ISFET–ISM to realize the portable Na+ ions sensor in this work. Our 2D sensing
structure detected Na+ ions in the Tris–HCl buffer solution with high reproducibility.

Table 2. Comparison of recent G–ISFETs to detect specific ions.

Graphene–ISFET Channel Detecting Ion/Sensing Range Reference Electrode Sensitivity Ref.

Mechanical exfoliation

H+/pH 1–10.5 gate–free 30.8 Ω/pH [31]
H+/pH 4–10 gate–free 2.13 kΩ/pH [32]
H+/pH 6–9 Ag/AgCl 17 mV/pH [33]

H+/pH 4–8.2 Ag/AgCl 30 mV/pH [34]

Mechanical exfoliation
(without ISM) K+, Na+/0–10−3 M Ag/AgCl − [29,35]

Chemical exfoliation (rGO)) H+/pH 6–9 Ag/AgCl 29 mV/pH [36]

Chemical exfoliation
(rGO + oxygen plasma) H+/pH 1–13 Ag/AgCl 57 mV/pH [37]

Epitaxial growth H+/pH 3–12 Ag/AgCl 19.1 mV/pH [38]

Chemical vapor deposition
(CVD) growth H+/pH 1.2–9 Ag wire 22 mV/pH [39]

CVD growth + oxygenation
(plasma)

H+/pH 5.3–9.3 HfO2 57.5 mV/pH [40]
H+/pH 4–10 Ag/AgCl 19.4 mV/pH [22]
H+/pH 4–10 FG–RE (plasma) 18.2 mV/pH [22]

CVD growth + ISM K+, Na+, NH4
+, NO3

−, SO4
2−,

HPO4
2−, and Cl−/10−6–10−1 M

Ag/AgCl Sensitivity depends
on ions (∆IDS) [14]

CVD growth + fluorination
(fluorobenzene) H+/pH 4–10 Pt wire <1 mV/pH [19]



Nanomaterials 2021, 11, 787 8 of 12

Normally, many kinds of ions in the body can be released through urine. The release
of such ions depends on food intake and kidney health [30,41]. Therefore, we evaluated
G–ISFET–ISM with FG–RE in the presence of interfering ions (H+, K+, and Ca2+). The eval-
uation of the sensitivity of G–ISFET–ISM with FG–RE to K+ and Ca2+ ions was performed
using a Tris–HCl buffer solution, in which 100 mM NaCl was dissolved. The ∆VDirac values
of G–ISFET–ISM were considerably lower for K+ and Ca2+ ions compared to those for Na+

ions, as shown in Figure 5a. Because the ISM selectively allows passage of Na+ ions through
the membrane according to the selectivity coefficient, the interfering effects of K+ and Ca2+

greatly decrease in the presence of Na+ ions in the electrolyte [13,42]. The results of the
evaluation of G–ISFET–ISM with Ag/AgCl–RE with regards to interfering ions are shown
in Supplementary Figure S5. Figure 5b shows the sensitivity of G–ISFET–ISM with FG–RE
to pH. As shown in Figure 2c, G–ISFET exhibited sensitivity to pH, due to the oxygen
functional groups on the graphene channel surface [22,43]. However, G–ISFET–ISM did
not exhibit sensitivity to pH. The gate channel surface of G–ISFET–ISM that was exposed
to the buffer solution was covered by the ISM; thus, the oxygen functional groups did not
react with H+.
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Figure 5c shows the sensitivity of G–ISFET–ISM with FG–RE to Na+ in the Tris–HCl
buffer solution, in which 100 mM KCl was dissolved. G–ISFET–ISM with FG–RE exhibited
a sensitivity of −53.8 mV/dec despite the high concentration of K+ ions in the buffer
solution. We characterized the sensitivity of G–ISFET–ISM with FG–RE to glucose, lactate,
bicarbonate, and Mg2+. G–ISFET–ISM was insensitive to glucose, lactate, bicarbonate,
and Mg2+ (Supplementary Figure S6). Hence, G–ISFET–ISM with FG–RE exhibited high
selectivity for Na+ ions.

3.4. Urine Test

We evaluated the sensitivity of G–ISFET–ISM with FG–RE in human patient urine
samples. The patient urine samples were provided by Keimyung University Dongsan
Hospital and were used without any dilution process. Information of the Na+, K+, Cl−,
and Cr3+ ions concentration in each urine sample is summarized in Table 1. The ion
concentration of patient urine samples was characterized using an ISE–based analytical
equipment (ADVIA 2400, SIEMENS Healthineers, Erlangen, Germany) at Keimyung Uni-
versity Dongsan Hospital. We used two measurement methods and urine samples from
four patients to evaluate the detection of Na+ ions using G–ISFET–ISM with Ag/AgCl–RE
and FG–RE.

There are several different ions and substances in human urine. These ions and
substances interfere with the ability of G–ISFET–ISM with FG–RE to detect Na+ ions.
Moreover, the concentrations of such ions and substances differ per urine sample. For the
first measurement method, we used the same urine sample and only changed the Na+ ions
concentration in the urine. The concentration of Na+ ions in a unit of urine was 39 mM
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(S039), which was increased to 200 mM by titration in 40 mM steps. The Na+/K+ ratio was
initially 1.84 and was increased to 9.43. Figure 6a shows the results depending on the Na+

ion concentration upon dissolving NaCl in the urine sample. VDirac shifted towards more
negative values as the concentration of Na+ ions in the urine sample increased. G–ISFET–
ISM with FG–RE exhibited a sensitivity of −0.29 mV/mM for Na+ ions in the urine sample.
The comparative sensitivity to Na+ ions of G–ISFET–ISM with Ag/AgCl–RE is shown in
Supplementary Figure S7a.
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Figure 6. Detection of Na+ ions in real human patient urine samples using G–ISFET–ISM with FG–RE. Linear fits were used
to extract sensitivity: (a) IDS–VGS plots at different Na+ concentrations in the same urine sample (added by titration); (b)
IDS–VGS plots of three different urine samples; and (c) IDS–VGS of G–ISFET–ISM with FG–RE in Tris–HCl buffer between
measurements of three different patient urine samples.

For the second measurement method, we independently tested urine samples from
different patients (S037, S047, and S054). The concentration of Na+ ions in each urine
sample was 97, 80, and 119 mM, respectively. Each urine sample contained a different ionic
composition (K+, Cr3+, and Cl−). In the presence of interfering ions and substances in urine,
G–ISFET–ISM with FG–RE could detect Na+ ions with a sensitivity of −0.36 mV/mM
(Figure 6b). The sensitivity of G–ISFET–ISM to Na+ ions was higher with the second
method (detecting Na+ ions in different patient samples) than the first method (detecting
Na+ ions in the same patient sample). The reason for the higher shift in VDirac can be
attributed to two phenomena: (1) the reaction of FG–RE with other ions and the adsorption
of substances in urine on the FG–RE surface; and (2) the adsorption of substances in urine
onto the ISM surface.

To understand the cause for the increase in sensitivity to Na+ ions, we compared the
IDS–VGS plots of G–ISFET–ISM with FG–RE in the Tris–HCl buffer among the different
urine samples. There was no shift of VDirac (four counts) measured in Tris–HCl buffer
before and after the measurement of Na+ ion in the each patient urine sample, as shown in
Figure 6c. Normally, the concentrations of K+ and Ca2+ ions excreted through urine are
25–40 and 10–15 mM, respectively [30,41]. The pH value of human urine is pH 4.5–7.8 [44].
These ions may interfere with the detection of Na+ ions by G–ISFET–ISM with FG–RE, and
the concentrations of such interfering ions differ per urine sample. However, G–ISFET–ISM
with FG–RE did not exhibit sensitivity to K+, Ca2+, and H+ ions in the solution in which
100 mM NaCl was dissolved (Figure 5). Therefore, G–ISFET–ISM with FG–RE ignored
the effects of K+, Ca2+, and H+ ions. Albumin, which is the main protein in blood, can
be excreted through urine [45,46]. Albumin can be precipitated and adsorbed on the ISM
surface of G–ISFET–ISM or FG–RE. The absorption of albumin on FG–RE affected the
detection of electrical signals. However, the graphene surface with fluorine functional
groups inhibited the adsorption of albumin [47,48], and thus the albumin in the urine
samples were not adsorbed onto the FG–RE surface.

We considered the adsorption of substances on the ISM surface of G–ISFET–ISM
because the sensitivity of G–ISFET–ISM with Ag/AgCl–RE to Na+ ions also increased with
the second method (Supplementary Figure S7b). The other substances excreted through the
kidney appeared to have been adsorbed onto the ISM surface of G–ISFET–ISM, which led
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to the difference in VDirac between urine samples. We think that if the sensor tip is limited
to single–use applications, this shift will be minimized for Na+ ion detection.

4. Conclusions

In order to realize a disposable sensor with a two–dimensional structure for detecting
Na+ ions, a new reference electrode based on graphene was proposed. The FG–RE could
be used as a reference electrode based on improved chemical stability through fluorination
with fluorobenzene. A fluorinated graphene electrode proved the possibility of using the
reference electrode by comparing the measurement results using Ag/AgCl–RE. G–ISFET–
ISM and FG–RE were integrated on a PCB designed as an SD card to fabricate the Na+ ion
sensor. G–ISFET–ISM with FG–RE was able to selectively detect Na+ ions. To confirm the
possibility of practical use, we detected Na+ ions in real human urine samples. Based on
the results, G–ISFET–ISM with FG–RE exhibited high sensitivity, linearity, and selectivity
in the detection of Na+ ions in human patient urine. A typical 24 h urine analysis method
collects urine from a patient for 24 h and stores it in a refrigerator. This method is very
uncomfortable for patients. If the conventional 24 h urine analysis method were to be
replaced with our sensor, measuring and recording of the Na+ ion concentration each time,
the patient would be comfortable without the need to collect urine for 24 h and the accuracy
of the 24 h urine analysis method will be increased.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/3/787/s1, Figure S1. The fabrication of G–ISFET–ISM for detection of Na+ ions. Figure S2. The
pH sensitivity of (a) PG–ISFET and (b) FG–ISFET with Ag/AgCl–RE in Carmody buffer. Figure S3. (a)
IDS–VDS characteristics of G–ISFET–ISM with FG–RE or Ag/AgCl–RE in Tris–HCl buffer solution; (b)
IDS–VDS characteristics of G–ISFET–ISM with FG–RE depending on Na+ ions concentration. Figure
S4. Evaluation of G–ISFET–ISM with Ag/AgCl–RE according to changes in Na+ ions concentration:
(a) IDS–VGS and (b) real–time detection. Figure S5. Sensitivity of G–ISFET–ISM with Ag/AgCl–RE
to (a) K+ and Ca2+ ions in Tris–HCl buffer, in which 100 mM NaCl was dissolved; (b) sensitivity to
pH in Carmody buffer; and (c) sensitivity to Na+ ions in Tris–HCl buffer, in which 100 mM KCl was
dissolved. Figure S6. IDS–VGS of G–ISFET–ISM with FG–RE (a) glucose; (b) lactate; (c) bicarbonate;
and (d) Mg2+ ions in Tris–HCl buffer solution; (e) Sensitivity of G–ISFET–ISM with FG–RE to glucose,
lactate, bicarbonate, and (f) Mg2+ ions. Figure S7. Detection of Na+ ions in real human patient
urine samples using G–ISFET–ISM with Ag/AgCl–RE: (a) IDS–VGS at different concentrations of
Na+ in the same urine sample (added by titration); (b) sensitivity to Na+ ions in three different urine
samples; and (c) ∆VDirac of G–ISFET–ISM measured in Tris–HCl buffer between measurements of
three different urine samples.
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