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Abstract: The browning of white adipocytes, which transforms energy-storing white adipocytes to
heat-producing beige adipocytes, is considered a strategy against metabolic diseases. Several dietary
compounds, such as anthocyanins, flavonoids, and phenolic acids, induce a brown adipocyte-like
phenotype in white adipocytes. In this study, we demonstrated that purple sweet potato (Ipomoea
batatas) extract (PSP) exhibited potent radical scavenging activity. In addition, PSP was found to
contain large amounts of phenolic, flavonoid, and anthocyanin compounds; the amount of these
compounds was affected by fermentation. Functionally, PSP-induced adipose browning in high-fat-
diet (HFD)-induced obese mice. The administration of PSP significantly suppressed the body weight
gain and abnormal expansion of white adipose tissues in the obese mice. The expression of adipose
browning-related genes was higher in the inguinal white adipose tissues from the PSP-treated mice
than those in the HFD-fed mice. Moreover, PSP-treated 3T3-L1 adipocytes formed multilocular lipid
droplets, similar to those formed in the 3T3-L1 adipocytes treated with a browning induction cocktail.
The PSP-treated cells had an increased expression level of mitochondria and lipolysis-related genes.
The browning effects of PSP were enhanced by fermentation with Lactobacillus. This study, to our
knowledge, is the first to identify a new mechanism to increase the antiobesity effects of PSP by
inducing adipocyte browning of adipocytes.

Keywords: 3T3-L1 adipocyte; antiobesity; browning; fermentation; purple sweet potato; transdiffer-
entiation

1. Introduction

Patients affected by obesity have excessive white adipose tissues (WATs), which play
a role in energy storage as triglycerides (TGs) [1]. In contrast, brown adipose tissues
(BATs) dissipate energy as heat in a process called thermogenesis through mitochondrial
uncoupling. Thermogenesis is an appealing target for treating obesity, diabetes, and other
metabolic disorders [2]. Since the metabolic activity of BATs is lower in patients affected
by obesity, browning, or the induction of the brown adipocyte-like phenotype in white
adipocytes, is considered a promising strategy for the treatment of obesity [3,4].

Several dietary compounds, such as curcumin, capsaicin, berberine, and some antho-
cyanins, have been proposed to be used to induce browning in mammals [5–7]. Purple
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sweet potato (PSP)—a functional food rich in anthocyanins—has many potential biological
and pharmacological functions [8]. The anthocyanins from PSP are more stable than those
in other plants such as strawberries, red cabbage, and perilla [8,9]. In addition, PSP exhibits
anti-inflammatory and antiobesity effects [9,10]. Specifically, PSP exerts lipolytic effects on
3T3-L1 adipocytes by increasing the level of HSL and perilipin [10]. Lipolysis also occurs in
brown adipocytes for mitochondrial β-oxidation and the activation of UCP1 that triggers
thermogenesis [11]. However, the browning effects of PSP have not yet been investigated.

On the other hand, fermentation can modify the levels of most bioactive compounds,
thus, promoting the utilization of value-added functional foods [12,13]. Microbial fermenta-
tion is a potential means of producing natural compounds causing various pharmacological
activities, including antioxidant and antiobesity effects. The relationship between these
activities has been supported by numerous studies [14,15]. For example, the antioxidant
activity of fermented garlic by L. plantarum BL2 is enhanced compared to nonfermented
garlic, exerting robust antiobesity effects on high-fat-diet (HFD)-induced mice [16]. Con-
sidering the association between the pharmacological activities and fermentation of com-
pounds, we hypothesized that fermentation could improve the antioxidant and antiobesity
effects of PSP. Here, we demonstrated the antiobesity effects of PSP on HFD-induced
obese mice. We also evaluated the effect of PSPs on inducing the brown adipocyte-like
phenotype in white adipocytes. We found that this effect was higher with fermented PSPs
than nonfermented PSPs.

2. Materials and Methods
2.1. Sample Preparation

PSPs (Andong City Agricultural Technology Center, Andong, Korea) were extracted
with 70% ethanol, lyophilized, reconstituted with PBS, and stored at 4 ◦C for use in the
animal study. Different fermentation methods were used to prepare three different types
of fermented PSP. During Lactobacillus fermentation (LF), PSP was cultured using lactic
acid bacteria isolated from traditional Korean fermented foods for 3 days. During non-
natural fermentation, PSP was inoculated with 7.0 ± 0.2 × 1012 CFU/mL Lactobacillus and
cultured in broth at a ratio of 1:1 (w/v). During natural fermentation, PSP was fermented at
37 ◦C for 7 days. For each sample, 200 g was extracted three times in two volumes of 70%
ethanol, concentrated under a vacuum to recover the samples, and stored at −20 ◦C. Later,
the samples were dissolved in DMSO at specific concentrations and used for experiments.
The nonfermented, nature fermented, and Lactobacillus-fermented PSP extracts were
referred to as nonfermentation (NNF), natural fermentation (NF), and LF, respectively.

2.2. Animals and PSP Administration

The animal procedures were approved by the animal ethics committee at Kyungpook
National University, Daegu, South Korea (Approval number: KNU 2020-0078). Six-week-
old male C57BL/6 mice (Hyochang Science, Daegu, Korea) were kept in cages under a
12-h light/dark cycle at 25–30 ◦C for 1 week for acclimatization. The effect of PSP on
HFD-induced obesity was examined by randomly dividing the mice into three diet groups,
normal diet (ND), HFD, and HFD supplemented with PSP at 100 mg/kg/day (the PSP
group). PSP was administered orally to the mice daily during the study, whereas an equal
volume of sterile water was administered to the control mice. All the mice had ad libitum
access to sterile water and corresponding diet food. The body weight and food intake
of the mice were recorded weekly. At the end of the experiment, organs and blood were
collected from each mouse for subsequent analysis.

2.3. Histological Analysis

Histological analysis was performed as previously described [17,18]. The livers and
inguinal WAT (iWAT) of the mice were embedded in paraffin, sliced into 5-µm sections,
stained with hematoxylin and eosin (H&E) according to standard protocol, and examined
under a microscope (Leica, Wetzlar, Germany).
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2.4. Measurement of Plasma Cholesterol

Plasma was prepared from whole blood via centrifugation. Total cholesterol (CHO) in
the plasma was measured using an Olympus AU400 analyzer (Olympus Optical, Tokyo,
Japan), according to the manufacturer’s instructions [19].

2.5. Glucose Tolerance Test

The glucose tolerance test was performed on 14-week-old mice and administered
with PSP or sterile water. The mice were intraperitoneally injected with 1 g/kg D-glucose.
The glucose levels were measured from the tail bleeds at 0, 15, 30, 60, 90, and 120 min
after injection using an AccuChek-EZ glucose monitor (Roche Molecular Biochemicals,
IN, USA).

2.6. Cell Culture and Differentiation

Preadipocyte 3T3-L1 cells (Korea Cell Line Bank, Seoul, Korea) were maintained
in Dulbecco’s modified Eagle medium (DMEM; GIBCO, Grand Island, NY, USA) sup-
plemented with 10% bovine calf serum (BCS; GIBCO). Differentiation was induced by
culturing the 3T3-L1 preadipocytes to postconfluence (designated as Day 0) for 2 days
and replacing the media with a differentiation induction medium consisting of 0.5 mM
3-isobutyl-1-methylxanthine, 0.25 µM dexamethasone, 0.125 mM indomethacin, and 1.72 nM
insulin for 2 days. Afterward, the cells were maintained in media supplemented with
1.72 nM insulin for 6–7 days. For the brown adipocyte-like induction of 3T3-L1, we added
a browning cocktail (BC) of 50 nM triidothyronine and 1 µM rosiglitazone to the differenti-
ation induction medium. The cytotoxicity of the PSPs was evaluated by treating the 3T3-L1
preadipocytes with or without PSP for 24 h before conducting the MTT assay, as described
previously [19].

2.7. Oil Red O Staining

Oil Red O staining (ORO) was performed as previously described [20]. The cells were
washed, fixed, and stained with an ORO solution (Sigma-Aldrich, St. Louis, MO, USA).
The level of staining was quantified by dissolving the stained cells in isopropyl alcohol and
measuring the absorbance at 495 nm.

2.8. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)

The isolation of total RNA, synthesis of complementary DNA (cDNA), and reverse
transcription polymerase chain reaction (RT-PCR) were performed as previously de-
scribed [20]. Total RNA was isolated from 3T3-L1 adipocytes and iWAT using the RNAiso
Plus reagent (TakaRa Bio, Shiga, Japan). Then, cDNA was synthesized using the Prime-
Script™ RT Reagent Kit (TaKaRa Bio). Quantitative RT-PCR was conducted with the
iCycler iQ™ Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA)
using SYBR Green (TOYOBO, Osaka, Japan) and specific mouse primers (Table 1). The fold
change in the target gene was normalized to the level of β-actin.

Table 1. Primer sequences for RT-PCR.

Gene Name Accession No. Forward Primer Reverse Primer

ATGL NM_001163689.1 AACGCCACTCACATCTACGG GGACACCTCAATAATGTTGGCAC

β3-AR NM_013462.3 CCTTCAACCCGGTCATCTACTG CGCACCTTCATAGCCATCAAA

SREBP-1c NM_011480.4 GCTGTTGGCATCCTGCTATC TAGCTGGAAGTGACGGTGGT

TFAM NM_009360.4 CAAAGGATGATTCGGCTCAG AAGCTGAATATATGCCTGCTTTTC

PDK4 NM_013743.2 CCGCTGTCCATGAAGCA GCAGAAAAGCAAAGGAC

SOD2 NM_013671.3 ACCTGCCTTACGACTATGGC CCACCATTGAACTTCAGTGC
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Table 1. Cont.

Gene Name Accession No. Forward Primer Reverse Primer

PGC1α XM_006503778.3 CCCTGCCATTGTTAAGACC TGCTGCTGTTCCTGTTTTC

PPARγ AB644275.1 GGAAGACCACTCGCATTCCTT GTAATCAGCAACCATTGGGTCA

UCP-1 NM_009463.3 CTGCCAGGACAGTACCCAAG TCAGCTGTTCAAAGCACACA

Adiponectin NM_009605.4 GATGGCACTCCTGGAGAGAA TCTCCAGGCTCTCCTTTCCT

Leptin NM_008493.3 GGGCTTCACCCCATTCTGA TGGCTATCTGCAGCACATTTTG

β-actin EF095208 CGTGCGTGACATCAAAGAGAA GCTCGTTGCCAATAGTGATGA

2.9. Western Blot Analysis

The tissues and cells were lysed with radioimmunoprecipitation assay (RIPA) lysis
buffer (Biosesang, Korea), homogenized, and centrifuged at 13,000 rpm for 15 min. Western
blotting was performed [18,21] using anti-PGC-1α and anti-β-actin antibodies (Santa Cruz
Biotechnology, Santa Cruz, CA, USA).

2.10. Measurement of Total Polyphenolic, Flavonoid, and Anthocyanin Contents
2.10.1. Total Phenolic Content

The total phenolic content (TPC) of the PSPs was determined using Folin–Ciocalten’s
reagent [22], as described [23]. A volume of 100 µL of RAE was mixed with 50 µL of
Folin–Ciocalten’s reagent and 300 µL of 2% Na2CO3. After 15 min, 1 mL of distilled water
was added, and the absorbance was measured by spectrophotometry (UV-2550, Shimazu
Co., Tokyo, Japan) at 725 nm. The results were expressed as mg gallic acid equivalent
(mg GAE/g) based on a standard curve (R2 = 0.9987), using gallic acid standards of
25–250 µg/mL.

2.10.2. Total Flavonoid Content

The total flavonoid content (TFC) was analyzed using the aluminum colorimetric assay
as described by Teng et al. [24]. A volume of 70 µL of the extract was diluted with 430 µL
of distilled water, mixed with 50 µL of 5% NaNO2 and 50 µL of 10% Al(NO3)3.9H2O.
After incubation at room temperature for 6 min, 500 µL of 1 N NaOH was added, and the
absorbance was measured by spectrophotometry at 510 nm. The results were expressed as
mg of rutin equivalent per mL (mg RE/mL) based on a standard curve (R2 = 0.9984) using
rutin standards of 0.8–2.0 mg/mL.

2.10.3. Total Anthocyanin Content

The TFC was determined using the pH differential method. The PSPs were diluted
with 500 µL of 0.025 M hydrochloric acid-potassium chloride (pH 1.0) or 500 µL of 0.4 M
sodium acetate (pH 4.5), incubated for 15 min at room temperature. The absorbance of the
low- and high-pH samples was measured at 530 and 700 nm using a UV-Vis spectropho-
tometer, respectively. The total anthocyanin content was expressed as cyanidin-3-glucoside
equivalents in the following equation:

TAC (mg chanidin-3-glucodise/L) = (A × 445 × DF)/26900 (1)

where A = (A530 − A700 nm)pH 1.0 − (A530 − A700 nm)pH4.5 and DF denotes the
dilution factor of the sample.

2.11. Antioxidant Analysis

The antioxidant activity of PSPs was determined using the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) ABST radical scavenging
methods [25]. The DPPH reagent at 100 mM was prepared by reacting 0.2 mM DPPH
in 100 mL 95% ethanol for 2 h. Then, 100 µL of the DPPH extract was mixed with a
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900-µL DPPH solution dissolved in ethanol; 95% ethanol served as the control. The sample
was kept in the dark for 30 min, and absorbance was measured by spectrophotometry
at 517 nm. DPPH radical scavenging activity was calculated in percentages using the
following formula:

DPPH (%) = (control absorbance − sample absorbance/control absorbance) × 100 (2)

On the other hand, the ABTS radical solution was prepared by reacting 7 mM ABTS
and 2.45 mM aqueous potassium persulfate with 10 mL of distilled water in the dark at
room temperature for 16 h. Next, the absorbance at 734 nm was adjusted to approximately
1.0 using distilled water. Then, 50 µL of the sample at 0.125, 0.25, 0.5, or 1 mg/mL was
incubated with 950 µL of ABTS solution in the dark for 30 min. Ethanol was used in
the control reaction. The absorbance was measured at 734 nm on a spectrophotometer
(UV-2550, Shimazdu Co., Tokyo, Japan), and the ABTS scavenging capacity was calculated
as follows:

ABTS scavenging capacity (%) = (control absorbance − sample absorbance/control absorbance) × 100 (3)

2.12. Statistical Analysis

All data were expressed as means ± standard deviation (SD). The control and PSP-
treated groups were compared using one-way ANOVA. A p value less than 0.05 was
considered statistically significant.

3. Results
3.1. PSP Reduced Body Weight Gain and Suppressed Adipose Tissue Expansion in HFD-Induced
Obese Mice

Initially, we studied the antiobesity effects of PSP on HFD-induced obese mice. The
PSP-treated mice showed a significant decrease in body weight gain after 4 weeks of
treatment (Figure 1A). The abnormal expansion of the WATs, including iWAT, epididymal
WAT (eWAT), and retroperitoneal WAT (rWAT), and the liver were suppressed in the
PSP-treated mice. In contrast, the BATs and other organs in the PSP-treated mice were
similar to those in the HFD control mice (Figure 1B,C). Notably, food intake did not differ
significantly between the PSP and HFD control mice (Figure 1D). These data indicate that
PSP administration may affect the abnormal body weight gain and tissue expansion in the
HFD-induced obese mice.
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Figure 1. Effects of PSP on body weight gain, adipose expansion, and food intake in mice with HFD-
induced obesity: The ND group (n = 7) was fed a normal diet, HFD control group (n = 7) was fed an
HFD, and PSP-treated group (PSP) (n = 7) was fed an HFD plus PSP at 100 mg/kg/day. The ND and
HFD control groups were given the same volume of water. (A) The body weight for 7 weeks. (B) The
weight of adipose tissues, including BAT, iWAT, eWAT, and rWAT (n = 7/group). (C) The weight of the
liver, heart, spleen, pancreas, lung, muscle, and kidney (n = 7/group). (D) Food intake was recorded
every week throughout the study (n = 6/group). * p < 0.05, significant difference compared with HFD
group. Bar graphs show mean ± SD of each group.

3.2. PSP Ameliorated the Metabolic Syndrome Associated with Obesity

We analyzed whether PSP administration affected the HFD-induced metabolic ab-
normalities, such as impaired lipid and glucose homeostasis. The PSP-treated mice had
lower plasma CHO levels, with improved glucose tolerance (Figure 2A,B) and suppressed
adipocyte hypertrophy and hepatic steatosis (Figure 2C,D) compared to the HFD con-
trol mice. Both adipocyte size and liver lipid deposition were smaller in the PSP-treated
mice than in the HFD control mice (Figure 2C). In particular, the sizes of adipocytes in
the adipose tissues of the PSP-treated mice were smaller than those in the HFD control
mice (Figure 2D). On the other hand, the PSP and ND mice displayed similar patterns of
adipocyte size distribution (Figure 2D).

3.3. PSP Induced Browning Features in Adipose Tissue

The results above suggested that adipose hypertrophy and hyperplasia were dimin-
ished in the PSP-treated mice; however, there was no difference in food intake between
the PSP-treated and HFD control mice. Thus, we hypothesized that PSP administration
accelerated energy expenditure through adipose browning. We observed the dramatically
upregulated expression of browning-related genes, including PGC1α and UCP-1, in the
iWAT in the PSP-treated mice compared to those in the HFD control mice (Figure 3A,B).
Similarly, the protein levels of PGC1a and UCP-1 were increased in the adipocytes of the
PSP-treated mice (Figure 3C–E). These observations indicate that PSP may regulate en-
ergy expenditure and protect against HFD-induced metabolic abnormalities by regulating
these molecules.
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3.4. The Influence of PSP in the Differentiation of 3T3-L1 Adipocytes

Next, we investigated PSP’s effects on in vitro adipocyte differentiation. The 3T3-L1
preadipocytes were treated with PSPs at 50 or 500 µg/mL during the entire period of
differentiation. The PSP-treated cells displayed the increased expression of PPARγ—a key
transcription factor of adipogenesis (Figure 4A). Contrary to our expectations, PSPs did not
change the number of mature adipocytes. In general, we believe that the increased expres-
sion of PPARγ in mature adipocytes indicates excessive intracellular lipid accumulation
and hyperplasia. Conversely, in recent years, there has been burgeoning evidence suggest-
ing that PPARγ likewise coordinates with adipose browning through multiple signaling
pathways [26,27]. One of the interesting findings in this study is that the PSP-treated cells
showed small multilocular lipid droplets compared with control cells (Figure 4B). Based
on these results, we hypothesized that PSPs could regulate adipocyte lipid metabolism and
their properties as well as the expression of adipogenic marker genes.
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Figure 4. Effects of PSP on the differentiation of 3T3-L1 preadipocytes: (A) The expression of PPARγ
in each experimental group. (B) A representative image of the control and PSP-treated cells at the
end of the differentiation period (8–9 days). The cells were photographed under a microscope at
200 × magnification. Preadipocytes and mature adipocytes acted as the negative control (NC) and
control (CON), respectively. All cell culture experiments are representative of three independent
experiments. Data are presented as the mean ± SD of three independent experiments. ** p < 0.01,
comparison to the control.

3.5. PSPs Induce Brown Adipocyte-Like Phenotype in White Adipocytes

We examined if different fermentations produced varying effects. We prepared three
types of PSPs, nonfermentation (NNF), NF, and LF, at 100 µg/mL and administered them
to the 3T3-L1 adipocytes. NNF-, NF-, and LF-treated cells displayed small intracellular
sizes and multilocular lipid droplets compared to the control cells (Figure 5A,B). The
morphology of NNF-, NF-, and LF-treated cells was similar to that of the BC-treated
cells. Among the fermented PSP-treated cells, the LF-treated cells exhibited smaller lipid
droplets, with the diameters in the range of 4-25 µm2, than the NNF- and NF-treated
cells (Figure 5C). Consistent with the above results, the ORO-stained intracellular lipids in
the PSP-treated cells were smaller than those in the control cells, although the total ORO-
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stained content did not vary between the control and PSP-treated cells (Figure 5D). We also
did not observe any cytotoxic effects of NNF, NF, and LF on the 3T3-L1 preadipocyte at
400 µg/mL (Figure 5E). These results suggest that PSPs can change adipocyte cell size and
lipid droplet morphology but not the total lipid content.
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treated with NNF, NF, or LF at 100 µg/mL during the entire period of differentiation. BC, treating the 3T3-L1 adipocytes
with a browning cocktail. The representative images of the cells (A) and ORO-stained-cells (B) in each indicated group.
(C) Intracellular lipid droplets size was measured using ImageJ software. (D) The ORO staining in the cells was dissolved
and measured. (E) The preadipocytes were treated with NNF, NF, or LF at 400 µg/mL or not treated (CON). After treatment
for 24 h, cell viability was determined using the MTT assay. The bars represent the means ± SD of three independent
experiments. *p < 0.05 and ** p < 0.01, comparison to the control.

3.6. LF Increases mRNA Expression of Browning- and Adipogenesis-Related Genes in the
3T3-L1 Adipocytes

Mitochondrial content, which triggers lipolysis and decreases adipocyte TG con-
tent, is an important feature that defines the characteristics of brown, beige, and white
adipocytes [28,29]. We attempted to uncover the possible function of PSPs on adipocytes
by investigating the regulation of the expression of various mitochondrial genes, such as
UCP-1, Tfam, Pdk4, and Sod2, and lipolysis-related genes, such as Atgl, Adrb3, and Srebf1,
by the PSPs.
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The expression of UCP-1, ATGL, β3-AR, SREBP-1C, TFAM, and SOD2 in the PSP-
treated cells was higher than that in the control cells (Figure 6A). Notably, the expression of
UCP-1, Srebf1, and Tfam was increased most significantly in the LF-treated cells compared
to the BC-treated cells. These results suggest that PSPs improve the lipolytic function
and mitochondrial biogenesis in adipocytes, causing adipose browning. Moreover, these
results indicate that fermented PSP may exert a more potent browning effect than unfer-
mented PSP. Based on these results, we determine that the PSPs trigger the browning of
3T3-L1 adipocytes.
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Figure 6. Effects of LF on the expression of adipogenic and thermogenic marker genes: (A) The mRNA level of UCP-1, ATGL,
β3-AR, SREBP-1c, TFAM, PDK4, and SOD2 of each indicated group. The expression level of each gene was normalized
to that of Actb and was expressed relative to the control. BC, treating the 3T3-L1 adipocytes with a browning cocktail.
The bars represent the means ± SD of three independent experiments. * p < 0.05 and ** p < 0.01, comparison to the
control. # p < 0.01, comparison to BC. (B) The expression of Ppargc1a, Pparg, Adipoq, and Lep. The mRNA level of each
gene was normalized to that of Actb and expressed relative to the control. The bars represent the means ± SD of three
independent experiments. * p < 0.05 and ** p < 0.01, comparison to the control.

The expression level of several mitochondrial and lipolysis-related genes was signif-
icantly higher in the LF-treated cells than in the NNF- and NF-treated cells (Figure 6A).
Thus, we further investigated LF regarding the browning effect. We examined whether
treatment with LF regulated not only browning but also adipocyte differentiation. We
confirmed the expression of a common adipogenesis marker and adipokine genes. The
cells were treated with different concentrations of LF, and the expression of the genes was
analyzed. The cells treated with LF at 200 µg/mL had an increased mRNA level of Pparg,
Adipoq, and Lep compared to the control cells (Figure 6B). LF’s effects on the expression
of adipokine genes, including Adipoq and Lep, were also observed in a dose-dependent
manner. Moreover, the LF treatment increased the expression of Ppargc1a, although not in
a statistically significant manner (Figure 6B).

3.7. Effects of PSPs on Antioxidant Activities

Finally, we examined the antioxidant activities of the PSPs using ABTS and DPPH
radical scavenging assays. NNF, NF, and LF exhibited high scavenging activity with half-
maximal inhibitory concentration (IC50) values of 0.92, 1.28, and 1.00 mg/mL, respectively,
in the ABTS assay and 1.06, 1.56, 1.04 mg/mL, respectively, in the DPPH assay (Table 2).
Since bioactive compounds, including phenolic, flavonoid, and anthocyanin compounds,
generally possess higher antioxidant activity [30], we determined the contents of these
compounds in the PSPs (Table 3). Notably, we found the highest levels of TPC and TFC
in 200 ug/mL LF, at 7.89 ± 1.08 and 135.43 ± 1.45 GAE µg/mL, respectively. This result
indicates that these bioactive compounds contribute to the antioxidant properties of PSPs.
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Table 2. ABTS and DPPH antioxidant activity. Data are expressed as means ± SD (n = 3).

IC50
(mg/mL)

ABTS assay

Ascorbic acid
(standard) 0.0687 ± 0.01

NNF 0.9231 ± 0.046
NF 1.2861 ± 0.059
LF 1.0098 ± 0.009

DPPH assay

Ascorbic acid
(standard) 0.0505 ± 0.001

NNF 1.0642 ± 0.051
NF 1.5641 ± 0.104
LF 1.0451 ± 0.078

Table 3. Contents of total phenolic, flavonoid, and anthocyanin compounds. Data are expressed as
means ± SD (n= 3).

Sample (µg/mL) TPC (GAE µg/mL) TFC (µg RE/mL) TAC (µg/mL)

NNF
100 3.90 ± 0.60 35.65 ± 6.55 5.57 ± 1.51
200 7.08 ± 0.70 131.07 ± 2.91 9.69 ± 0.58

NF
100 2.80 ± 0.20 1.74 ± 0.26 2.89 ± 1.02
200 6.22 ± 0.44 49.69 ± 3.84 7.12 ± 0.70

LF
100 3.21 ± 0.17 34.68 ± 8.39 3.34 ± 0.58
200 7.89 ± 1.08 135.43 ± 1.45 7.24 ± 0.19

4. Discussion

Herein, we have demonstrated for the first time that PSP improves HFD-induced
metabolic abnormalities, including abnormal body weight gain, adipose hypertrophy, and
impaired homeostasis. In addition, we have found that PSP increases the mRNA and
protein levels of PGC1α and UCP-1 in WATs; therefore, the antiobesity effects of PSP
may be mediated by adipose browning. The three types of PSP extracts tested here all
triggered a change in adipocyte properties, transitioning white adipocytes to brown-like
adipocytes and increasing the expression of the thermogenic marker genes. Among all the
PSP extracts tested, we found that LF had a dramatic browning effect, as assessed by most
mitochondrial- and lipolysis-related genes. These data suggest that bacterial fermentation
is a good strategy for improving PSP’s antiobesity effects.

Our results are contrary to a previous observation that PSP exerts antiobesity effects
by suppressing the expression of adipogenic genes and Lep in 3T3-L1 adipocytes [10].
We believe that such inconsistency may be due to the differences in experimental design,
including the extraction process, PSP concentration used, and duration of the PSP treatment.
In the previous study, the adipocytes were treated with PSP after the induction of adipocyte
differentiation for 24 h [10]. In contrast, we treated the adipocytes with PSP throughout the
differentiation period. Despite this inconsistency, the lipid droplet size in the PSP-treated
cells was observed to be decreased in both studies. Most notably, we have identified a new
method to increase the antiobesity effects of PSP via inducing adipocyte browning.

Another significant finding is that the expression of common adipogenic genes, such
as those encoding PPARγ, adiponectin, and leptin, was increased by LF treatment. PPARγ,
a known master regulator of adipogenesis, is responsible for inducing the expression of
adipogenic genes [31,32]. Although we did not provide direct evidence and the adipocytes
were only analyzed at the end of differentiation, our results suggest that LF can influence
initial-stage adipogenesis, not inhibit adipogenesis. On the other hand, microbial fermenta-
tion can often regulate the content of many active substances [33]. In this study, we have
ascertained that fermentation can change the content of bioactive constituents, including
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TPC, TFC, and TAC, in PSP. This observation suggests that the differential antioxidant
activity of PSPs likely results from their varying bioactive constituents.

5. Conclusions

In summary, our study has demonstrated that PSPs induce adipose browning and
exert antioxidant action, thus protecting the mice from HFD-induced obesity. We also
propose that LF is a good strategy for enhancing the antiobesity and antioxidant effects of
PSPs. We thereby suggest that PSPs can be used as a dietary supplement to fight obesity
and related oxidative stress.
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