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Abstract: Hip joint ultrasonographic (US) imaging is the golden standard for developmental dyspla-
sia of the hip (DDH) screening. However, the effectiveness of this technique is subject to interoperator
and intraobserver variability. Thus, a multi-detection deep learning artificial intelligence (AI)-based
computer-aided diagnosis (CAD) system was developed and evaluated. The deep learning model
used a two-stage training process to segment the four key anatomical structures and extract their
respective key points. In addition, the check angle of the ilium body balancing level was set to
evaluate the system’s cognitive ability. Hence, only images with visible key anatomical points and
a check angle within ±5◦ were used in the analysis. Of the original 921 images, 320 (34.7%) were
deemed appropriate for screening by both the system and human observer. Moderate agreement
(80.9%) was seen in the check angles of the appropriate group (Cohen’s κ = 0.525). Similarly, there
was excellent agreement in the intraclass correlation coefficient (ICC) value between the measurers
of the alpha angle (ICC = 0.764) and a good agreement in beta angle (ICC = 0.743). The developed
system performed similarly to experienced medical experts; thus, it could further aid the effectiveness
and speed of DDH diagnosis.

Keywords: developmental dysplasia of the hip; screening test; deep learning; Mask R-CNN

1. Introduction

Developmental dysplasia of the hip (DDH) is a hip joint disease with various possi-
ble causes, including genetics, intrauterine factors, and cultural practices. Although the
incidence rates vary by race and ethnicity, many developed countries report DDH rates
ranging from 1.5 to 20 cases per 1000 births [1,2]. DDH causes multiple spectrum disorders,
such as mild capsular laxity, acetabular deficiency, subluxation, and hip dislocation. This
spectrum gradually progresses in severity, with treatment becoming more difficult as the
patient ages and grows. Fortunately, DDH can be treated simply with a brace or splint
when diagnosed early [3,4]. Otherwise, secondary anatomical changes caused by delayed
diagnosis could require surgical treatment [5,6]. If the diagnosis is further delayed or DDH
is not diagnosed, osteoarthritis of the hip joint may occur at an early age, requiring major
surgical treatment (e.g., hip replacement) [7]. Therefore, DDH prognosis depends on early
diagnosis and treatment. Recently, many countries (e.g., Germany, Israel, Korea) have
conducted DDH screening tests on newborns at about six weeks of age because of the
advantages of early diagnosis [8–10].
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DDH diagnosis is done through radiography, physical examination, and US imaging.
Radiography is an effective DDH diagnostic method when femoral head ossification occurs
in children aged more than six months. Similarly, physical examinations can only diagnose
complete hip dislocation. Thus, neither are adequate early DDH screening methods. The
preferred means of early DDH screening is ultrasonographic (US) imaging because it can
capture cartilage conditions before femoral head ossification occurs. In addition, it can be
used to diagnose mild spectrums of DDH aside from dislocation. Moreover, there is no
concern about ionizing radiation by US imaging.

The most common DDH US analysis is the Graf method [11], which measures a bony
acetabular depth or coverage of cartilaginous with labrum in a coronal US image of the hip
(Figure 1). However, this method has high interoperator variability [12–14] that could lead
to misdiagnosis of DDH in half of the infant screenings and up to three-quarters in neonatal
screenings [13]. The primary sources of image acquisition variability between operators
arise from the manual selection of anatomical points for calculating angles (i.e., tri-radiate
cartilage, the acetabular bone edge, the lower edge of the iliac bone, and the end of the
acetabular labrum). An artificial intelligence (AI)-based computer-aided diagnosis (CAD)
system can standardize image acquisition and reduce diagnosis time, thus improving the
accuracy and objectivity of DDH diagnosis.
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dation, and the remaining 921 for testing. 
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One radiologist and one pediatric orthopedic surgeon collected all images, both with 
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Three lines were drawn to distinguish the localized anatomical structures that repre-
sent the alpha and beta Graf angles. However, alpha and beta angle measurements with-
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These were the only alpha and beta angles used to evaluate AI performance. 

2.2. Multi-Detection Type Artificial Intelligence (AI) 
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culated through an algorithm to obtain the alpha and beta Graf angles [21,22]. However, 
in practice, doctors calculate the same angles by extracting measurement points based on 
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Figure 1. (a) A standard hip ultrasonographic (US) image should show three key anatomical struc-
tures: 1. vertical ilium, 2. lower margin of Os ilium, and 3. labrum. (b) Alpha (α) and beta (β) Graf
angles in a US image of the hip.

The concept of CAD emerged in the 1970s when scanned medical images were ana-
lyzed using a computer. In 1998, LeCun et al. [15] laid the foundations for today’s deep
learning by outlining the convolutional neural network (CNN) framework—a neural net-
work being a derivative of mathematical models that simulate the structure and function
of biological neural networks. As graphics processing unit (GPU) images improved with
advances in technology, deep learning, mainly through CNNs, has become a conventional
approach to medical imaging and is even used for genetic analysis [16–18]. CNN is an
effective tool in image recognition, especially in judging image borders and colors. In
addition, it has shown excellent diagnostic performance based on endoscopic images and
magnetic resonance imaging (MRI) [19,20]. Hence, multiple studies on DDH diagnosis
using US images of the hip joint have been conducted [21,22].

Region-based CNNs (R-CNN) apply CNN for object detection in an image. Object
detection consists of proposing a region in an image where an object is supposed to exist and
analyzing the region. Despite R-CNN’s excellent object detection accuracy, its processing is
slow because it performs CNN for too many regions in an image proposed by its selective
search feature. Thus, Fast R-CNNs have been proposed to improve efficiency [23]. This
type of R-CNN performs CNN for the entire image, proposes regions of interest (RoIs),



Diagnostics 2021, 11, 1174 3 of 13

and then uses the region of interest pooling (RoIPool) to make the objects of interest a
feature of a fixed resolution. However, Fast R-CNN’s process is still time-consuming.
Faster R-CNNs hasten the process using a region proposal network (RPN) to propose a
region from a feature map. Mask R-CNN is based on Faster R-CNN and has the advantage
of automatic image segmentation. Specifically, it can define and propose RoIs based on
boundary contours of the anatomical structure in hip US images using the region of interest
alignment (RoIAlign) rather than merely using boxes. Furthermore, it also can find specific
points in an image [24].

Because US images are generally of low resolution and in grayscale, US imaging is
at a disadvantage. Specifically, a large amount of image data are required to construct
an artificial intelligence (AI) system that automatically detects anatomical structures and
obtains the needed angles without human intervention. This disadvantage obstructs re-
search and development in a single institution. Thus, this study segmented a relatively
small number of US images using Mask R-CNN and developed a two-stage multi-detection
method AI system in a single research institution to extract the needed data from the seg-
mented images. To the best of the researchers’ knowledge, this is the first study to estimate
automatically detected key points in US images using a deep neural network model.

2. Materials and Methods

The institutional review board approved the study (IRB No. DSMC 2019-10-003). The
study’s dataset consisted of 1243 hip US images from 168 infants, using a 12.5 MHz linear
probe with HD15 and HD7 XE ultrasound systems (Philips, Bothell, WA, USA) during a
DDH neonatal screening and diagnosis program between 2002 and 2019, retrospectively. Of
the total 1243 images, 289 images were randomly selected for AI training, 33 for validation,
and the remaining 921 for testing.

2.1. Images

One radiologist and one pediatric orthopedic surgeon collected all images, both with
more than 10 years of US DDH screening experience. These images were anonymized and
documented in the vertically oriented standard plane as Digital Imaging and Communica-
tions in Medicine (DICOM) files.

Three lines were drawn to distinguish the localized anatomical structures that repre-
sent the alpha and beta Graf angles. However, alpha and beta angle measurements without
parallelization to the vertical ilium are ineffective when evaluating hip dysplasia. Thus, a
“check angle” was used to define the angle created by the iliac wing and baseline. Check
angle values measured within ± 5◦ by both a pediatric orthopedic surgeon (referred to
in this study as “doctor”) and the AI system were classified as the “appropriate image”.
These were the only alpha and beta angles used to evaluate AI performance.

2.2. Multi-Detection Type Artificial Intelligence (AI)

In previous studies, the ilium, the acetabular roof, and the labrum in ultrasound
images were segmented. Furthermore, the angles created by these three structures were
calculated through an algorithm to obtain the alpha and beta Graf angles [21,22]. However,
in practice, doctors calculate the same angles by extracting measurement points based
on anatomical understanding. In this study, the ilium’s, the acetabulum’s, and labrum’s
shapes were segmented using the Mask R-CNN method. Then, two check angle points and
another three points were determined for calculating the alpha and beta angles. Of these
points, one is an overlap of a check angle point and the middle tri-radiate cartilage point.
Overall, four points were used to calculate the alpha and beta angles, as seen in Figure 2.
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2.2.1. Segmentation

Segmentation was done using the Mask R-CNN technique, wherein a mask head
is added to a Faster R-CNN [24]. Specifically, the Mask R-CNN adds a mask branch to
determine whether a particular pixel corresponds to an object. Mask R-CNN is similar
to Faster R-CNN, using region proposal network (RPN) to extract features and classify
and tighten bounding boxes. Faster R-CNN uses RoIPool as a feature extraction method
for quantifying each RoI region, thus solving the problem of differing RoI feature sizes
at different scales by max pooling. However, this process causes spatial information loss,
leading to the displacement of the original image RoI and extraction features. To solve
this problem, Mask R-CNN replaces the RoI pooling of Faster R-CNN with RoI alignment
(RoIAlign) to mark the object area. Figure 3 illustrates the image segmentation process of
both Mask R-CNN and Faster R-CNN methods. The red arrows depict the Mask R-CNN
method using region of interest alignment (RoIAlign) to draw a precise bounding box that
matches an object and extracts specific key points from the object of interest. In this case,
the areas of the ilium, acetabulum, and labrum were extracted using a mask head. The
region of interest alignment (RoIAlign) and feature pyramid network structures were then
used to extract features for the residual neural network (ResNet) algorithm consisting of
50 layers modified with the background Mask R-CNN algorithm. The black arrows show
the Faster R-CNN method using the region of interest pooling (RoIPool), which creates a
square-bound box containing an object.
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2.2.2. File Conversion

Each patient’s data, including his/her age and sex, were documented as a DICOM file.
All identifying information was removed, following ethical guidelines. The anonymized
data were then converted into 256-bit grayscale portable network graphics (PNG) im-
age files.

2.2.3. Layer Extraction

AI training started with extract image segmentation of the US images. The Computer
Vision Annotation Tool (CVAT; Massachusetts Institute of Technology, MA, USA), a free
online program that helps annotate videos and images for computer vision algorithms [25],
was used to designate the area for the corresponding mask position (Figure 4).
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Figure 4. Sample model training using Computer Vision Annotation Tool (CVAT).

2.2.4. First Training

Using CVAT’s point tool, the key anatomical structures in the US images were desig-
nated, while the extensible markup language (XML) data were obtained using the extraction
tool. The first AI training used the initial modeling data composed of the generated XML
file and image file. In this stage, the areas corresponding to the ilium, acetabulum, and
labrum were converted to white (RGB 255, 255, 255) and the rest to black (RGB 0, 0, 0) as
seen in Figure 5.
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Figure 5. (a) Original image ultrasonographic image of the hip. (b) The same image after the
initial conversion.

2.2.5. Second Training

Using CVAT, the points corresponding to the tri-radiate cartilage, the acetabular bone
edge, the lower edge of the iliac bone, and the end of the acetabular labrum were marked
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with red dots. The secondary training was performed using the resulting image data of the
first training and an XML file marked with the four key points (Figure 6).
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2.2.6. Final Result

The multi-detection process was completed after the second training, wherein the
alpha and beta angles were obtained. A diagram of the implementation process is shown
in Figure 7.
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courses: (a) area learning training using CVAT Program, (b) initial image file conversion, (c) the
secondary point-marking training, and (d) the final result of a multi-detection-trained AI system.

2.3. Network Training

The training takes 40,000 steps in total, with validation at every 1000 steps to verify
the best model selection. The learning rate and weight decay were 0.01 and 0.0001, respec-
tively, while the stochastic gradient descent used a batch size of 10. The following data
augmentation settings were applied: up/down-left/right random shift, −5–5%; random
scale, 80–100%; random rotation, −15–15◦; and random brightness, 75–100%. In addition,
the Random Gaussian Noise setting was used for the robustness of various ultrasonic
noises and brightness.

2.4. Statistical Analysis

The check angle and Graf angles of the same images calculated by a pediatric orthope-
dic surgeon and the AI were compared. The R language version 3.3.3 (R Foundation for
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Statistical Computing, Vienna, Austria) program was used for all statistical analyses. Per-
cent agreement, positive percent agreement, and Cohen’s kappa were computed to assess
inter-rater reliability (IRR) of the AI’s and doctor’s determined check angles. Furthermore,
the intraclass correlation coefficient (ICC) was measured to evaluate the agreement of the
AI’s and the doctor’s computed alpha and beta angles.

3. Results
3.1. Criteria for Data Classification

Before the performance evaluation, finding an image capable of measuring the alpha
and beta angles from the 921 test data images was necessary. Two criteria were set: (1)
all four key anatomical structures and their respective points (i.e., tri-radiate cartilage,
the acetabular bone edge, the lower edge of the iliac bone, and the end of the acetabular
labrum) were visible; and (2) the iliac wing is parallel to the baseline.

3.1.1. Data Classification Based on First Criteria

Hence, two measurers categorized the images based on detectability and as “de-
tectable” if the key anatomical structures and their respective points are observable. The
images were classified as “undetectable” if otherwise.

The doctor classified 542 images as “detectable” images; in contrast, the AI classified
555 images as “detectable” images. Overall, the 512 images were commonly categorized as
“detectable” images. The 409 images that at least one doctor or AI could not detect were
classified as “fail detection” (Table 1).

Table 1. Data classification based on first criteria.

Subgroup n (%)

Doctor 921 (100)
Detectable 542 (58.9)

Undetectable 379 (41.1)

Artificial Intelligence 921 (100)
Detectable 555 (60.3)

Undetectable 366 (39.7)

Doctor and Artificial Intelligence 921 (100)
Commonly detectable 512 (55.6)

Fail detection 409 (44.4)

3.1.2. Data Classification Based on Second Criteria

Images categorized as “detectable” in the first classification were classified once again
according to whether the correct alpha and beta angles could be measured. The image was
defined to measure the correct alpha and beta angles when the baseline and the iliac wing
are generally parallel. Thus, if images of the iliac wing parallel to the baseline measured
a check angle value within ±5◦, they were classified as “OK check angle” and meet the
specified criteria. Otherwise, they were classified as “error check angle”.

The 512 commonly categorized “detectable” images from the performance evalua-
tion were used to classify images according to check angle. Of these images, 320 were
classified as “OK check angle” by both the doctor and AI (Table 2). The interobserver
check angle agreement shows that the percent agreement at 80.9% and kappa coefficient of
0.5 (95% confidence interval 0.52; 0.5) is reasonably good. In addition, a positive agreement
of 0.87 existed between the observers.
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Table 2. Data classification according to the check angles of detectable images.

n (%) Check Angle (Doctor)
OK

Check Angle (Doctor)
Error

All detectable image 512 (100)
Check angle (AI): OK 320 (86.7) 49 (34.3)

Check angle (AI): Error 49 (13.3) 94 (65.7)

3.2. Statistical Result of Graf Angle Measurement

Only images classified as “detectable” with “OK check angle” (thus meeting both
criteria) were defined as appropriate images and considered suitable for an appropriate
DDH diagnosis. Figure 8 shows examples of the image classification. As a result, the alpha
and beta Graf angles of the 320 appropriate images were compared. Similar to Cicchetti [26],
the study considers an intraclass correlation coefficient (ICC) > 0.70 acceptable. The
resulting ICC revealed excellent agreement for the alpha angle (ICC = 0.76) and good
agreement for the beta angle (ICC = 0.74) (Table 3 and Figure 9). For the alpha-angle,
74.7% of images displayed a discrepancy of less than 5◦ between the observers. In addition,
the observers agreed in the classification of 84.3% of cases as being normal or abnormal, as
seen in Figure 10. The mean absolute deviation (MAD) of the alpha angle was 3.4 while it
was 4.5 for the beta angle. The standard deviation of differences was 4.5◦, similar to the
interhuman observer variability reported in previous studies (Table 4) [12,27].

Table 3. Intraclass correlation coefficient (ICC) scatter plot between artificial intelligence (AI) and
doctor using alpha and beta angle as measurement.

ICC 95% Confidence Interval Agreement

Alpha angle 0.764 0.699–0.815 Excellent
Beta angle 0743 0.689–0.788 Good

Table 4. Mean and standard deviation of angles measured from AI and doctor.

n (%)
Artificial

Intelligence
(AI)

Human AI–Human
Mean Absolute

Deviation
(MAD)

Alpha angle 320 (100) 62.843 ± 6.514 64.117 ± 7.12 −1.274 ± 4.555 3.470
Beta angle 320 (100) 40.785 ± 7.69 40.679 ± 8.71 0.106 ± 5.9 4.501



Diagnostics 2021, 11, 1174 9 of 13
Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 8. Examples of ultrasonographic image classifications in the study: (a) Case of the appropriate
image where detection of all key points was possible, the measured check angle was less than 5◦ for
both observers, and the alpha and beta angles were evaluated (n = 320). (b) Case of the inappropriate
image where detection of all key points was possible, but the check angle was more than 5◦ for at
least one observer (n = 192). (c) Case of the fail detection where at least one observer could not detect
all key points (n = 409).
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Figure 10. Scatter plot of the alpha angles measured by the artificial intelligence (AI) system and the
doctor (Human) on the y-axis and x-axis, respectively. The black points between the dotted lines
represent a correct diagnosis wherein the difference in the observers’ measurements is less than 5◦.
These specific points account for 74% of the correct diagnoses made. Furthermore, the black points on
the first and third quadrants represent correct diagnoses. Following the Graf method, the observers
had the same normal and abnormal classifications based on a 60◦ alpha angle. These specific points
account for 84% of all the measurements made. In contrast, values expressed as red crosses represent
the observers’ different normal and abnormal classification results. These crosses represent 16% of all
the measurements made.
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4. Discussion

US imaging is a noninvasive and safe diagnostic tool that offers excellent results for
DDH screening [8], especially when using the Graf method. However, intraobserver and
interobserver variances in the measurement of hip US imaging remain an issue [12–14]. The
primary source of variability arises from the selection of anatomical points for calculating
angles. In response, an automatic key point system for DDH diagnosis was developed
based on a multi-detection deep learning system. Because it is a multi-training system,
small data sizes can be analyzed.

The agreement between the AI system and the doctor was excellent in the alpha-angle
(ICC = 0.76) and good for the beta-angle (ICC = 0.74) calculations. In addition, by analyzing
320 hip US images, the AI system differentiated normal and abnormal hip US images with
a match rate of 84.37% to the doctor. These results show that the system improved from
previous methods [12,28]. Simon et al. [28] evaluated concordance between orthopedic
surgeons and pediatricians for the diagnosis of DDH, and the reported concordance rate
was 82.91%, with class correlation coefficients for alpha angles (ICC = 0.72) and beta angles
(ICC = 0.34). Roovers et al. [12] reported a match rate of 85% between doctors in the
classification of 200 hip US images as normal or dysplasia. Thus, the proposed new deep
learning system produced a higher interobserver agreement, and results with experienced
orthopedic practitioners can be regarded as comparably good.

Our study had several limitations. First, although there were many images in the
dataset, the number of images and image sources was still small. Thus, the results cannot
be generalized. Second, the study sample of doctors was small, having two medical experts
in data collection and one in measuring the Graf angles in images of the control group.
Because of interoperator/interhuman variability, it is necessary to compare the images
collected by more US imaging operators and angles calculated by more doctors. Finally,
the study did not validate the data using external datasets.

DDH becomes challenging to treat when the diagnosis is delayed; hence, screening
tests are essential. This new AI-based CAD system can be a helpful tool for inexperienced
physicians to measure angles in hip images and lessen the interobserver variability of
DDH diagnosis.

5. Conclusions

A CAD deep learning model based on segmentation and key-point multi-detection
using Mask R-CNN was developed for DDH screening and diagnosing. The system’s
performance was comparable to that of human experts. Hence, it can be used as an auxiliary
method for DDH screening.
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