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Abstract: This study evaluated the correlation between tumor-associated macrophages (TAMs)
and long-term oncologic outcomes in colorectal cancer (CRC). We evaluated TAMs based on the
expression of CD68, CD11c, and CD163 as optimal markers via immunohistochemistry in 148 patients
with CRC who underwent surgical resection between September 1999 and August 2004. A high
proportion of CD68-positive macrophages were associated with the occurrence of distant metastasis.
A low proportion of CD11c-positive macrophages were associated with unfavorable overall survival
(OS) and disease-free survival. CD11c-positive macrophages were found to act as independent
prognostic factors for OS. An analysis of our long-term data indicated that TAMs are significantly
associated with OS and prognosis in CRC.

Keywords: tumor-associated macrophages; colorectal cancer; tumor microenvironment; prognosis

1. Introduction

Colorectal cancer (CRC) is a common and malignant epithelial neoplasm prevalent in
Korea and other advanced countries [1,2]. The identification of the predictors of disease
recurrence and poor prognosis is critical for the successful treatment of patients with CRC
and for discovering new therapeutic strategies. Recent studies on the tumor microenvi-
ronment have attracted attention for advancing the understanding of cancer biology and
the identification of significant therapeutic targets. Macrophages, a major component of
the tumor microenvironment, play an important role in the initiation and progression of
various solid tumors [3–5]. CRC carcinogenesis is mediated by epigenetic and genetic
changes in tumor cells and is also affected by tumor–host interactions. CRC tumors are
associated with a dynamic immune response. Therefore, studies on tumor-associated
macrophages (TAMs), that are known to be associated with prognosis and tumor growth,
may provide predictive markers and identify indicators of tumor aggressiveness [6].

TAMs are abundantly clustered around tumor nests. The functional states of macrophages
are classified as M1 and M2 phenotypes [7]. M1 macrophages are activated by helper T
cell-related cytokines and bacterial products; they display pro-inflammatory activity and
are tumoricidal. M2 macrophages release anti-inflammatory cytokines that contribute to
the establishment of a tumor inflammatory microenvironment [8].
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Several specific expression markers have been identified for the evaluation of TAMs.
CD68 is a pan-macrophage marker that is commonly used in clinical practice. CD11c is con-
sidered a marker of M1 macrophages. CD163 is an optimal marker for M2 macrophages [9].
Recent studies have shown that TAMs play a crucial role in the tumorigenesis and progres-
sion of CRC and that they can be used as a potential target for cancer treatment [10–12].
However, the prognostic significance of TAMs in CRC is poorly understood. This study
investigated the distribution patterns of macrophages in CRC using specific markers CD68,
CD11c, and CD163 and possible associations with long-term oncologic outcomes.

2. Materials and Methods
2.1. Patients and Tissue Samples

Formalin-fixed paraffin-embedded (FFPE) block specimens were obtained using sur-
gically resected primary tumors from 148 patients with CRC who underwent curative
surgery and adjuvant chemotherapy at Keimyung University Dongsan Medical Center
(Daegu, Korea) between September 1999 and August 2004. The exclusion criteria were
cancer-related to inherited syndromes, synchronous malignancies, locally advanced rectal
cancer that underwent neoadjuvant chemoradiation and patients who were lost before
follow-up.

The baseline clinicopathological characteristics and clinical outcome data were col-
lected retrospectively from the Colorectal Cancer Database of the Department of Colorectal
Cancer Surgery, and the Pathological Diagnosis Database of the Department of Pathology.
The researchers reviewed all the available medical records related to CRC and extracted
clinical information including the American Joint Committee on Cancer (AJCC) primary
tumor, lymph node, distant metastasis (TNM) classification, the numbers of positive and
negative lymph nodes harvested, and tumor location, and determined the cause of death
in deceased individuals. This prospective observational study was approved by the In-
stitutional Review Board of Keimyung University and Dongsan Medical Center (IRB No.
2016-08-020).

2.2. Evaluation Parameters

The eighth edition of the AJCC classification system was used to determine the
pathological primary tumor depth (pT), the number of metastatic regional lymph nodes
(pN), and the cancer stage [13]. A postoperative clinical examination, measurement of
serum carcinoembryonic antigen (CEA) levels, chest radiography every three months, and
computed tomography of the chest and abdomen every six months were performed at
each follow-up examination over three years. After three years, the follow-up interval
for measuring serum CEA levels and performing chest radiography was changed to six
months. Recurrence was defined as the presence of histologically proven or radiologically
confirmed tumors, and the location of recurrence was defined as the site of first recurrence
after complete resection. Local recurrence was defined as any tumor recurrence in the
surgical field, and synchronous systemic recurrence with local recurrence included systemic
recurrence. The overall survival (OS) time was defined as the time from the date of surgery
to the date of the most recent follow-up visit or death from any cause, and the disease-free
survival (DFS) time was defined as the time from surgery to the time of development of
any type of recurrence.

2.3. Tissue Microarray Construction

All of the human primary CRC tissue samples were prepared using FFPE blocks.
The paraffin blocks, including representative tumor lesions, were selected after reviewing
the commensurate hematoxylin and eosin-stained slides. Representative tumor lesions
(1 to 3) from each case were marked on the source blocks and manually cored using a
3.0 mm diameter cylindrical device. Each selected core was then re-embedded into the
recipient blocks.
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2.4. Immunohistochemistry (IHC)

The proportion of infiltrating macrophages was determined based on the immunopos-
itivity (CD68, CD11c, and CD163). Sections (4 µm thick slices) from the tissue microarrays
were cut in a 10% formalin buffer, embedded in paraffin, mounted onto Superfrost Plus
glass slides (VWR Scientific, West Chester, PA, USA), and incubated at 60 ◦C for 15 min.
The slides were deparaffinized in xylene, rehydrated in graded alcohol solutions, and
washed with tap water. Endogenous peroxidase activity was blocked by the addition of 3%
H2O2. The slides were placed in a steam cooker filled with 10 mM sodium citrate buffer
(pH 6.0) for antigen retrieval after treatment with a blocking agent (DAKO, Carpinteria,
CA, USA) for 10 min to block nonspecific protein binding. Immunohistochemical staining
for specific macrophage markers was performed using a BenchMark ULTRA automatic
stainer (Ventana Medical Systems, Inc., Tucson, AZ, USA) according to the manufacturer’s
instructions. The following primary antibodies were used in this study: CD68 (1:400;
Santa Cruz Biotechnology, Dallas, TX, USA), CD11c (1:100; Abcam, Cambridge, UK), and
CD163 (1:200; Thermo Fisher Scientific, Waltham, MA, USA). The bound antibodies were
visualized using an ultraView Universal DAB Detection Kit (Roche, Basel, Switzerland).
The slides were counterstained using Mayer’s hematoxylin. Slides that were incubated
without primary antibodies were used as negative controls. The positive and negative
controls were stained appropriately.

2.5. Assessment of IHC Staining for TAMs

Three fields containing the highest infiltration of IHC-stained cells were selected at
400× magnification and observed using an Aperio ImageScope (Leica Biosystems Imaging,
Inc., Nussloch, Germany). The number of IHC-stained cells showing only monocytoid
or macrophage-like morphology was counted, and the average of the three fields was
calculated. For the statistical evaluation, the average numbers of positive cells were
assigned to high and low groups based on the cut-off point.

2.6. Statistical Analyses

Statistical analyses were performed using SPSS version 18.0 (IBM Corp., Armonk, NY,
USA) and R 3.5.3 (R Development Core Team, https://www.R-project.org, accessed on
15 October 2021; Vienna, Austria) [14]. An independent t-test was performed to analyze
the association between the number of macrophages (CD68-, CD11c-, and CD163-positive)
and the clinicopathological parameters. The Maxstat method in R 3.5.3 was used to identify
the cut-off points for the number of CD68-, CD11c-, and CD163-positive macrophages. The
cut-off points for the number of CD68-, CD11c-, and CD163-positive macrophages in OS
were 104.7, 60.0, and 64.5, respectively. The cut-off points for the number of CD68-, CD11c-,
and CD163-positive macrophages in DFS were 29.3, 101.0, and 21.0. Both a Kaplan-Meier
analysis and log-rank tests were performed to demonstrate the difference between OS and
DFS based on CD68, CD11c, and CD163 expression. Cox proportional hazard models were
used to determine the hazard ratios (HRs) for death from CRC or other causes based on
the CD68, CD11c, and CD163 expressions in both univariate and multivariate analyses. A
p-value of <0.05 was considered significant.

2.7. Survival Analysis Using Public CRC Datasets

To evaluate the prognostic value of TAMs for predicting the survival in patients
with CRC, we analyzed six public datasets from the Gene Expression Omnibus and The
Cancer Genome Atlas (TCGA) databases, along with the datasets GSE17536, GSE17537,
GSE33113, GSE39582, GSE41258, and COAD. A total of 1,530 patients with primary CRC
for whom survival data were available were selected for analysis. CIBERSORT was used
to deconvolute the abundance of TAMs, and M1 and M2 macrophages from the mRNA
expression datasets [15]. A source code for the CIBERSORT software was provided by
the developer and was executed in R using the immunedeconv package [16]. Probe
identifiers of microarray data were converted to Hugo Gene Nomenclature Committee

https://www.R-project.org
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gene symbols. In order to convert multiple probe identifiers to one gene symbol, only the
ID with the greatest expression of FPKM and TCGA expression data was converted to TPM.
CIBERSORT was executed in its “absolute mode” with disabled quantile normalization
options and without permutation. A leukocyte gene signature matrix (LM22) was used as
a reference to distinguish between infiltrating macrophages in general and the M1 and M2
subtypes. A Kaplan-Meier survival analysis was performed based on the data of TAMs, M1,
and M2 obtained using CIBERSORT. The cases were divided into two groups according to
the median abundance of TAMs, M1, or M2.

3. Results
3.1. Characteristics of the Patients

Among the 148 patients, 92 (62.2%) were males and 56 (37.8%) were females. Accord-
ing to the eighth edition of AJCC TNM staging, 1.4% (2/148) of cases were classified as pT1,
17.6% (26/148) of cases were pT2, 73.6% (109/148) of cases were pT3, and 7.4% (11/148)
cases were pT4. Among the patients, 70 (47.3%) were classified as N0, 41 (27.7%) as N1, and
37 (25.0%) as N2. Fifteen patients (10.1%) were classified as M1. According to differentia-
tion, 3.4% (5/148) of the cases were well differentiated, 89.9% (133/148) were moderately
differentiated, 4.1% (6/148) were poorly differentiated, and 2.7% (4/148) showed mucinous
differentiation. The age of the patients ranged from 32–92 years (mean, 67.2 years).

3.2. Clinical Significance of Macrophage Infiltration

The CD68, CD11c, and CD163 expressions were evaluated for all of the 148 samples
(Figure 1). The relationship between the number of macrophages (CD68-, CD11c-, and
CD163-positive macrophages) and clinicopathological parameters of the patients is shown
in Table 1. A high number of CD68-positive macrophages was associated with the presence
of distant metastasis. There were no significant differences in other parameters.
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Figure 1. Immunohistochemistry for tumor-associated macrophages in colorectal cancer (A) Higher
number of CD68 immunoreactive macrophages (B) Lower number of CD68 immunoreactive
macrophages (C) Higher number of CD11c immunoreactive macrophages (D) Lower number of
CD11c immunoreactive macrophages (E) Higher number of CD163 immunoreactive macrophages
(F) Lower number of CD163 immunoreactive macrophages (400× magnification).
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Table 1. Clinicopathologic parameters of patients and results of mean values of macrophages (CD68, CD11c and CD163).

Clinicopathologic
Features

n = 148
CD68 Positive CD11c Positive CD163 Positive

Mean ± SD p-Value Mean ± SD p-Value Mean ± SD p-Value

Age (mean) 32–92 (67.2)
Gender

Male 92 63.36 ± 31.83 0.31 66.32 ± 30.60 0.87 42.6 ± 23.07 0.33
Female 56 76.07 ± 38.27 75.34 ± 31.27 51.07 ± 25.77
T Stage

1, 2 28 67.40 ± 36.36 0.9 72.94 ± 35.91 0.55 43.40 ± 21.22 0.6
3, 4 120 68.34 ± 34.62 68.98 ± 29.93 46.10 ± 25.16

LN metastasis
Absent 70 68.00 + 36.81 0.96 70.15 ± 32.22 0.88 44.13 ± 20.92 0.49
Present 78 68.32 ± 33.20 69.35 ± 30.19 46.90 ± 27.25

Distant metastasis
Absent 133 65.81 ± 33.78 0.01 69.40 ± 32.07 0.7 45.07 ± 23.80 0.44
Present 15 89.02 ± 38.26 72.69 ± 20.62 50.23 ± 29.90

Differentiation
Well and moderate 138 68.02 ± 33.75 0.85 70.09 ± 31.62 0.61 45.48 ± 24.41 0.84

Poorly and mucinous 10 70.23 ± 49.75 64.80 ± 22.64 47.1 ± 25.89

SD = Standard deviation; LN = lymph node.

3.3. Prognostic Significance of CD68-, CD11c-, and CD163-Positive Macrophages

We found that infiltration with a low number of CD11c-positive macrophages corre-
lated with an unfavorable OS and DFS (p = 0.019 for OS and p = 0.046 for DFS); however,
the number of CD68- and CD163-positive macrophages did not correlate with OS and DFS
(Figures 2 and 3).
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Figure 3. Disease-free survival of patients with colorectal cancer according to densities of macrophages.

In the univariate Cox regression analysis, distant metastasis and the number of CD11c-
positive macrophages were the independent prognostic factors for OS. Lymph node metas-
tasis was an independent prognostic factor for DFS (Table 2).

Table 2. Univariate Cox regression analysis for OS and DFS.

Variables
OS DFS

HR 95% CI p-Value HR 95% CI p-Value

Age 1.018 0.988–1.049 0.247 1.003 0.980–1.027 0.795
Gender (Male vs. Female) 0.815 0.410–1.617 0.558 0.772 0.441–1.351 0.364

T stage (stage 1, 2 vs. stage 3, 4) 2.231 0.653–7615 0.200 2.136 0.827–5.519 0.117
Lymph node metastasis (+ vs. −) 2.144 0.977–4.707 0.057 3.534 1.849–6.751 0.000

Distant metastasis (+ vs. −) 4.847 1.959–11.990 0.001 5.97 × 105 0.000–3.00 × 1073 0.867
Differentiation

(Well and moderate vs. poorly and
mucinous)

2.089 0.599–7.285 0.248 1.884 0.767–4.630 0.167

CD68 1.005 0.994–1.017 0.362 1.003 0.993–1.013 0.550
CD11c 0.985 0.972–0.999 0.032 0.990 0.980–1.001 0.063
CD163 1.002 0.990–1.014 0.747 0.999 0.988–1.010 0.848

OS = Overall survival; DFS = Disease free survival; HR = Hazard ratio; CI = Confidence interval.

In the multivariate analysis, lymph node metastasis, distant metastasis, and the
number of CD11c-positive macrophages were the independent prognostic factors for OS
(Table 3).

Table 3. Multivariate Cox regression analysis for OS.

Variables
OS

HR 95% CI p-Value

Lymph node metastasis (+ vs. −) 2.425 1.139–5.167 0.022
Distant metastasis (+ vs. −) 4.464 2.087–9.548 0.000

CD11c 0.988 0.977–0.999 0.040

OS = Overall survival; HR = Hazard ratio; CI = Confidence interval.

3.4. Public Dataset Analysis

The univariate survival analysis results for the six public CRC datasets are shown in
Figures 4 and 5 (Supplementary Figures S1 and S2). The OS and DFS were analyzed in
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1432 subjects and 883 subjects for a total of 1530 subjects, respectively. High levels of M1
macrophages were associated with better OS (p = 0.0031). Low levels of M2 macrophages
were associated with better OS and DFS (p = 0.0073 and 0.0075, respectively). A significant
association was observed for TAM abundance. Also, the characteristics of the public dataset
using in this analysis is shown in Supplementary Table S1.
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4. Discussion

TAMs are leukocyte member present in the tumor microenvironment. Recently, it was
found that these macrophages can be polarized into two macrophage types (M1 and M2).
Macrophages found in the tumor microenvironment are often referred to as TAMs, which
mostly exhibit the M2 phenotype [17]. TAMs usually interfere with tissue homeostasis
and promote tumor growth, progression, invasion, and metastasis. Therefore, TAMs are
primarily associated with a poor prognosis of tumors; however, a few studies have reported
conflicting results [18,19].
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We evaluated TAM, M1, and M2 proportions in CRC using the following three markers:
CD68, CD11c, and CD163, respectively. Various types of macrophages are distributed in the
surrounding matrix, adjacent to malignant tumors. The proportion of TAM types varied
according to each case. Our data revealed that patients with a high level of CD11c-positive
macrophage infiltration had favorable survival, and CD11c-positive macrophages were an
independent prognostic factor for OS.

Similarly, the multivariate analysis suggested that this factor represents a prognostic
factor in patients with CRC. The infiltration of CD68-and CD163-positive macrophages
was correlated with poor OS, whereas high proportions of CD68- and CD163-positive
macrophages were associated with favorable DFS. These results are significant. We val-
idated the results using public data sets. Since the data sets were obtained from bulk
tissues, each macrophage subtype was analyzed via a deconvolution analysis instead of
using a single marker. Similar results were obtained by using these publicly available CRC
cohort datasets.

Previous studies have evaluated TAMs in various human malignancies, including
breast cancer, CRC, pancreatic cancer, and non-small cell lung cancer [6,19–21]. The clinical
outcome may vary depending on the proportion of TAMs that exhibit conflicting functions.
Therefore, it is important to study the characteristics of TAMs as a treatment target.

Unlike previous findings, the density of a CD68-positive TAM was not related to
survival in CRC patients in our study. Additionally, Nitric oxide synthase (iNOS), an-
other M1 subset marker, TAM, was not associated with survival, but our results showed
that CD11c-positive TAM was significantly associated with OS and DFS [22,23]. To our
knowledge, CD11c is yet to be evaluated as a TAM marker in CRC. CD11c is a marker that
has been traditionally associated with dendritic cells, but a recent study found that it is
expressed by some macrophages. TAMs share certain characteristics with dendritic cells,
infiltrated sites and the secretion of similar pro-inflammatory cytokines [24]. Furthermore,
Gulubova et al. revealed that transforming growth factor (TGF)-β1 and interleukin (IL)-10
are associated with the tumorigenesis and prognosis of CRCs [25]. The prognostic value of
CD11c-positive M1 macrophage has been elucidated in hepatocellular carcinoma [26] and
breast cancer [27].

TAMs have been shown to express immune checkpoint markers [28]. Furthermore, the
results of this study can be applied to the analysis of programmed death-ligand 1 (PD-L1)
markers. Immune checkpoints represent the major defense system of tumors against the
antitumor immunity of the host and play an important role in suppressing T cell-mediated
immune responses in the tumor microenvironment. Currently, PD-L1 immunohistochemi-
cal staining markers are analyzed without distinguishing between immune cells that are
composed of lymphocytes, dendritic cells, and macrophages. Considering the function
and crucial role of TAMs as well as the PD-1/PD-L1 axis in tumor progression, PD-L1
expression should be evaluated via the classification of the types of immune cells and
macrophages using dual staining.

Our study has several limitations. Since limited tissue microarrays were used in the
analyses, it was difficult to distinguish between the intratumoral and invasive front regions.
Additional analyses are required to evaluate the microsatellite status. The present study
may help to clarify the relationship between tumor aggressiveness and the detailed tumor
microenvironment. Based on our results, TAMs may represent a novel therapeutic target
and predictive factor for CRC.

5. Conclusions

In conclusion, our study showed that TAMs in the tumor microenvironment serve as
a prognostic factor for CRC. Given that the focus on immunotherapy and immunologic
reactions has recently increased, our study on TMAs provides a relevant contribution to
the literature.
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