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Abstract: Imaging plays an important role in assessing the severity of COVID-19 pneumonia. Recent
COVID-19 research indicates that the disease progress propagates from the bottom of the lungs to the
top. However, chest radiography (CXR) cannot directly provide a quantitative metric of radiographic
opacities, and existing AI-assisted CXR analysis methods do not quantify the regional severity. In this
paper, to assist the regional analysis, we developed a fully automated framework using deep learning-
based four-region segmentation and detection models to assist the quantification of COVID-19
pneumonia. Specifically, a segmentation model is first applied to separate left and right lungs, and
then a detection network of the carina and left hilum is used to separate upper and lower lungs. To
improve the segmentation performance, an ensemble strategy with five models is exploited. We
evaluated the clinical relevance of the proposed method compared with the radiographic assessment
of the quality of lung edema (RALE) annotated by physicians. Mean intensities of segmented four
regions indicate a positive correlation to the regional extent and density scores of pulmonary opacities
based on the RALE. Therefore, the proposed method can accurately assist the quantification of
regional pulmonary opacities of COVID-19 pneumonia patients.

Keywords: COVID-19; deep learning; segmentation; detection; lung; left hilum; carina; RALE

1. Introduction

The COVID-19 is a novel infectious disease, caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), which could lead to acute respiratory distress syn-
drome (ARDS) [1,2]. Starting in December 2019, COVID-19 became a pandemic that
has claimed over 811 thousand lives, infected over 47 million people worldwide, and
wrecked economic and social hardships in all six inhabited continents [3]. Real-time re-
verse transcription-polymerase chain reaction (RT-PCR) is the preferred test for confirming
COVID-19 infection. Currently, most international and national organizations recommend
RT-PCR assays for screening and initial diagnosis of COVID-19 infection.

For the screening of severe COVID-19 pneumonia patients, computed tomography
(CT) and chest radiography (CXR) are commonly used in sites with high prevalence. There
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is consensus that imaging should be used judiciously, and most often, in patients with
moderate to severe disease and those with complications and comorbidities. Both CT
and CXR are used for establishing the disease extent or severity of pulmonary opacities.
Compared to CT, CXR is more accessible, mobile, cheaper, lower dose, efficient, and
convenient to be utilized in intensive care settings. Prior studies have shown the crucial
roles of imaging modalities for the initial diagnosis and quantification of the severity of
COVID-19 pneumonia [2,4,5].

Deep learning-based methods with both CT and CXR have been explosively investi-
gated in the automated classification and detection of COVID-19 [6–9]. For the robustness,
an ensemble method is widely used [10]. To assess the disease severity from the quantita-
tive extent of pneumonia, an automatic method for prediction of severity score have been
introduced with a deep learning-based method [11], which showed high correlation scores
at R [2] 0.865 and 0.746 with radiological extent and opacity, respectively. Clinical studies
using CXRs have conducted to segment the whole lung into segments for predicting the
severity of the disease [12]. With the importance of early diagnose of severity in CXRs, lung
segmentation methods have focused on reducing non-specific signals such as tube or lines
efficiently [13,14].

The studies using CXRs of COVID-19 patients found that the pneumonia ranges from
normal lungs and subtle haziness in mild or early to more extensive diffuse opacities
consistent with diffuse pneumonia and adult respiratory distress syndrome (ARDS) in
severe and advanced disease. Radiographic assessment of lung edema (RALE) is a score
indicating the severity of ARDS and COVID-19 pneumonia on CXRs [15]. For the RALE
score, each lung is typically divided into upper and lower regions based on a horizontal
line through the level of origin of the left upper lobar bronchus from the left mainstem
bronchus. Then, the density and extent of pulmonary opacity are subjectively graded
by radiologists in each of the four regions to determine the regional and total scores of
pulmonary opacities. Particularly, the inclusion of lower lobes was reported in the majority
of COVID-19 patients [16]. The RALE score has been validated as a good predictor of
ARDS [12]. However, the method is prone to inter- and intra-observer variations, and
inefficient for incorporating into interpretation routine. Other studies have shown a six-
region division of lungs segmented manually for the diagnosis [17,18], which is also
inefficient and requires a lot of effort. Therefore, an accurate sub-region segmentation
method of the whole lung will be useful in clinics.

In this paper, to assist the diagnosis of lung severity with sub-regions, we propose a
fully automated segmentation method using deep learning models to segment four regions
of the whole lung in CXR. Specifically, two deep learning-based segmentation and detection
models are combined as shown in Figure 1. To compute four-region lung masks, left and
right regions are divided by the segmentation model, where a majority voting ensemble
method is used from five different deep learning-based models to achieve a robust four-
region lung segmentation in CXR. Then, the upper and lower sub-regions are divided by
the positions of the carina and left hilum predicted by a deep learning-based detection
model. To clinically evaluate the performance of the segmented regions, we compared the
RALE scores of four regions done by physicians as labels with the mean intensity after
normalization for each region, where the correlations with the extent and density scores
of pulmonary opacities will be measured. In this paper, we focus on the accurate and
robust four-region segmentation, and the robust RALE score estimation combined with our
segmentation method will be developed in the near future.
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Figure 1. A flowchart of the proposed algorithm for segmentation of zones of the lung in CXR of 
COVID-19 patient. Right (R) and left (L) lung masks are generated by an ensemble method based 
on the majority voting from five lung masks predicted by models trained with different conditions. 
Then, left hilum and carina are detected and used to find a central point to split the whole lung into 
upper and lower regions. Finally, right upper lung (RUR), right lower lung (RLR), low upper lung 
(LUR), and left lower lung (LLR) are obtained. 

2. Method 
2.1. Segmentation Model 

U-net architecture [19] using the skip connection was used to train the segmentation 
model, which is the most widely used network for segmentation in medical imaging. We 
trained five segmentation models with different conditions including backbones, pre-pro-
cessing, and augmentation properties as shown in Table 1. EfficientNet v0 and v7 archi-
tectures [20] were used as the backbone networks in the U-net to train five (three v0 and 
two v7) segmentation models. Augmentations of Gaussian noise and gamma correction 
were applied to improve the robustness of the models to pixel noises from multiple CXR 
modalities. To train segmentation models for anterior-posterior (AP) CXRs that are not 
included in the public datasets, morphological transformation methods such as grid dis-
tortion, affine transform, and elastic transformation with different parameters were used 
in the augmentation process [21]. Five binary masks were used to generate the one ensem-
ble mask based on the majority voting method. Technically, if half of the masks were pre-
dicted as a lung region, the pixel is labeled as the lung. The augmentation methods, such 
as affine transform, Gaussian noise, scaling, cutout, contrast, and brightness, were applied 
while training [5] of the five models. All models were trained with the same hyper-pa-
rameters, such as Adam optimizer (learning rate: 0.0001), epochs (200), batch size (8), and 
same input size at 256 × 256. Best models were selected at the lowest loss on the validation 
dataset. In addition, post-processing step was employed to refine the ensemble mask, 
where all the isolated holes were filled with the dilation operation. 

  

Figure 1. A flowchart of the proposed algorithm for segmentation of zones of the lung in CXR of
COVID-19 patient. Right (R) and left (L) lung masks are generated by an ensemble method based
on the majority voting from five lung masks predicted by models trained with different conditions.
Then, left hilum and carina are detected and used to find a central point to split the whole lung into
upper and lower regions. Finally, right upper lung (RUR), right lower lung (RLR), low upper lung
(LUR), and left lower lung (LLR) are obtained.

2. Method
2.1. Segmentation Model

U-net architecture [19] using the skip connection was used to train the segmentation
model, which is the most widely used network for segmentation in medical imaging.
We trained five segmentation models with different conditions including backbones, pre-
processing, and augmentation properties as shown in Table 1. EfficientNet v0 and v7
architectures [20] were used as the backbone networks in the U-net to train five (three
v0 and two v7) segmentation models. Augmentations of Gaussian noise and gamma
correction were applied to improve the robustness of the models to pixel noises from
multiple CXR modalities. To train segmentation models for anterior-posterior (AP) CXRs
that are not included in the public datasets, morphological transformation methods such
as grid distortion, affine transform, and elastic transformation with different parameters
were used in the augmentation process [21]. Five binary masks were used to generate
the one ensemble mask based on the majority voting method. Technically, if half of the
masks were predicted as a lung region, the pixel is labeled as the lung. The augmentation
methods, such as affine transform, Gaussian noise, scaling, cutout, contrast, and brightness,
were applied while training [5] of the five models. All models were trained with the same
hyper-parameters, such as Adam optimizer (learning rate: 0.0001), epochs (200), batch
size (8), and same input size at 256 × 256. Best models were selected at the lowest loss
on the validation dataset. In addition, post-processing step was employed to refine the
ensemble mask, where all the isolated holes were filled with the dilation operation.
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Table 1. Conditions for training different segmentation models.

Model Backbone Pre-Proc. Augmentation

Model 1 Efficient0 N/A DA
Model 2 Efficient0 HE DA

Model 3 Efficient0 HE
DA + Gaussian noise (0.5) + gamma correction (0.5)
+ grid distortion (0.1) + elastic transform (0.1) +
affine transform (0.1)

Model 4 Efficient7 HE DA + Gaussian noise (0.5) + gamma correction (0.5)

Model 5 Efficient7 HE
DA + Gaussian noise (0.5) + gamma correction (0.5)
+ grid distortion (0.1) + elastic transform (0.1) +
affine transform (0.1)

Abbreviations: HE, histogram equalization; DA, default augmentation (horizontal flip: 0.5, rotation: a range of
±25◦, random contrast: 0.1, random brightness 0.1, gamma correction: 0.1, Gaussian noise: 0.1, contrast limited
adaptive histogram equalization 0.1).

2.2. Detection Model

We adopted a detection model to find a central point of the whole lung into four-
regions such as right upper region (RUR), right lower region (RLR), low upper region (LUR),
and left lower region (LLR). Although conventional RALE score described a horizontal
line through the origin of the left upper lobe bronchus for the four-segments of lungs, it is
difficult to identify the horizontal line in most of COVID-19 CXRs. Instead, the left hilum
is the closest landmark for dividing upper and lower regions. However, the left hilum is
sometimes difficult to be detected in patients with diseases progressed or patient rotation.
In this case, the carina position can help to define the center position, which can be assumed
at approximately 2 cm [22] above from the left hilum vertically. Therefore, we use the
positions of left hilum and carina to accurately identify the central point for the horizontal
lung segmentation into upper and lower regions.

RetinaNet [23] was used for the detection model to detect positions of the carina and
the left hilum. The central point of prediction box is used as a reference horizontal level
that divide the upper and lower lungs. Specifically, we typically use the prediction box
of the left hilum to divide the lung into upper and lower regions. However, if the model
confidence of the left hilum detection is lower than 0.9, the position of 2 cm above from the
prediction box of the carina is used.

To train the robust detection model, augmentation methods [23] such as rotation,
translation, shearing, scaling, pixel noise, different range of contrast, brightness, hue, and
saturation were used. The best model was selected as the lowest total loss in the validation
set as shown in Table 2. The model performance was validated in the testing set.

Table 2. Demographics of the dataset for carina and left hilum detection.

Training Set
(n = 551)

Validation Set
(n = 153)

Testing Set
(n = 200)

Patient 124 42 51
Age 68.3 ± 14.8 59.5 ± 16.2 54.3 ± 18.4
Male 53 (42.7%) 16 (38.0%) 23 (54.7%)
RALE 9.9 ± 10.7 3.9 ± 6.7 4.2 ± 6.2
Death 43 (34.6%) 2 (4.7%) 4 (9.5%)

2.3. Normalization

Intensity normalization is widely used as a pre-processing to make a similar statistical
distribution of CXRs. Various scanners and setting parameters from multi-sites can cause
a significant disparity of contrast and brightness of CXRs as shown in Figure 2. Density
scores of Figure 2a–d were confirmed as zero by physicians while the disparity of mean
intensities of the lung was large. To reduce this variation, intensity normalization was
conducted. Pixels inside of the lung were normalized by subtracting their values with the
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mean intensities outside of the lung regions. To compare the correlation of the extent and
density scores for four regions, the normalized pixels were averaged in each region and
then we evaluated the correlation.
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Figure 2. With the same density score as zero annotated by physician, mean intensities of lungs in
CXRs are (a) 39.8, (b) 34.4, (c) 16.6, and (d) 13.2, respectively.

2.4. Correlation with RALE Score

Extent (0 to 4) and density (0 to 3) scores of pulmonary opacities were manually anno-
tated by an experienced radiologist according to the guideline [12]. For the comparison of
correlation between the extent and density scores and the mean intensity, we used a subset
of testing set in Table 2 with a RALE score larger than 0 and the Pearson correlation [24]
was calculated.

2.5. Data Description

The institutional review board (IRB) for human investigations at Massachusetts Gen-
eral Hospital (MGH, Boston, MA, USA), approved the study protocol with the removal of
all patient identifiers from the images, and waived the requirement for informed consent,
following the retrospective design of this study.

(1) Segmentation. Since anatomic segmentation of lungs is independent of radiographic
abnormalities, we used two public datasets for training the segmentation model: RSNA
pneumonia detection challenge dataset [25] and Japanese society of radiological technology
(JSRT) dataset [26]. RSNA pneumonia detection challenge dataset consists of 568 CXRs
from the tuberculosis chest images and the JSRT dataset consists of 257 CXRs.

For evaluation of the segmentation model performance, we used 200 CXRs of 51 patients
with COVID-19 pneumonia (Testing set in Table 2) obtained from three hospitals in South
Korea including Kyungpook National University Hospital, Daegu Catholic University
Hospital, and Yeungnam University Hospital.

(2) Detection. The carina and left hilum detection methods were trained on 704 CXRs
from 166 COVID-19 patients (see training and validation sets in Table 2) between February
and May 2020 from the same hospitals in South Korea, including Kyungpook National Uni-
versity Hospital, Daegu Catholic University Hospital, and Yeungnam University Hospital.
The positions of the carina and left hilum, as landmarks to separate upper and lower lungs,
were annotated under the supervision of a subspecialty chest radiologist with 13 years
of clinical experience in thoracic imaging. For each CXR, a bounding box was placed
around the left hilum. The inferior margin of the carina was also annotated with a point
marker. A bounding box centered at the carina point was used for the training of the carina
detection model.

(3) Correlation. To evaluate the clinical relevance of the proposed four-region segmen-
tation method, CXRs were evaluated by the correlation of their RALE scores annotated
by physicians. The physicians manually divided four-regions and the RALE score was
measured by extent (0–4) and density (0–3) scores of pulmonary opacities in each region
of the lung [12]. For each region, the correlation between the mean intensity and the
corresponding extent and density scores of pulmonary opacities was computed.
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2.6. Experimental Environment

Experimental environments were on Ubuntu 16.04 with a Tesla V-100 GPU, CUDA
9.0/cuDNN 7.0 (NVIDIA Corporation), and Keras 2.0 deep learning platform.

3. Results

Model performance for segmentation are listed in Table 3. The first to the fifth segmen-
tation models were merged to the ensemble model. Model performance of the ensemble
model including all models had the highest dice coefficient (0.908 ± 0.057) with significant
statistical differences from Model 1 to 5 (All p < 0.05).

Table 3. Performance comparison with single and ensemble model in terms of dice coefficient for the
anonymized dataset in South Korea.).

No. Model Mean ± Std.

1 Model 1 0.874 ± 0.057 *
2 Model 2 0.854 ± 0.072 *
3 Model 3 0.873 ± 0.089 *
4 Model 4 0.888 ± 0.084 *
5 Model 5 0.889 ± 0.079 *
6 Ensemble 0.900 ± 0.074

(* Indicates a significant difference between an ensemble and other models, p < 0.05).

Figure 3 shows an example of advantages of the ensemble method for different quality
of CXRs. The first to the last row in each column shows an input CXR, the ground truth
mask, the ensemble result, and the five results predicted by the individual segmentation
models. Figure 3a-1 shows a high quality CXR without medical device, substantial patient
rotation, and over- or under- radiographic exposure. The five individual models gave
consistent segmentations shown in Figure 3a-4–a-8).

The CXR in Figure 3b-1 was challenging due to consolidation and/or atelectasis in
the left lower lobe which obscures delineation of left lung hilum. Left lung hilum can also
be obscured by dense perihilar opacities or marked patient rotation. Compared to the
consistent results predicted by the first to third models as shown in Figure 3b-4–b-6 (0.929,
0.943, 0.934), the masks resulting from model 4 and 5 underestimated the area of right lung
(0.817, 0.831). The ensemble could still reach a robust mask (0.933) as shown in Figure 3b-3.

Figure 3c-1 shows a left chest tube traveling up to and obscuring visualization and
detection of left hilum. Compared to the consistent results predicted by the third to fifth
models as shown in Figure 3c-6–c-8) (0.883, 0.879, 0.903), the first and second models labeled
areas outside of lung regions as shown in Figure 3c-4,c-5 (0.783, 0.885) due to extending
into the right chest wall subcutaneous emphysema which has intensity similar to the right
lung. The ensemble results gave a relative robust mask (0.899) as shown in Figure 3c-3.

Model performance for detection of left hilum and carina in terms of mean of average
precision (mAP) was observed at 0.694. Figure 4 shows different examples for selection of a
reference point to divide upper and lower lungs. Figure 4a shows an example with high
confidence in detection result (left hilum: 0.94), where the center of the left hilum bound
box is directly used as the reference horizontal level for the upper and lower lung region
separation as shown in Figure 4b. In Figure 4c, the confidence of the detection result was
low (left hilum: 0.56), and then the vertically 2 cm lower position of the carina bound box
was used for the upper and lower region separation as shown in Figure 4d.

After normalization, the mean intensity of each region was correlated with the corre-
sponding extent (0–4) and opacity (0–3) scores. Figure 5a–d shows the correlation of the
extent score with mean intensities for each region, i.e., RUR, LUR, RLR, and LLR. For each
region, the mean intensity increased as the extent scores increased. The correlation with the
extent score for the LUR showed a strong positive linear relationship at 0.716 (<0.001) as
shown in Figure 5c, and correlation values with the extent score for LUR, RUR, and RLR
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showed moderate positive linear relationship at 0.625 (<0.001), 0.454 (<0.001), and 0.457
(<0.001), respectively, as shown in Figure 5a,b,d.
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to last row in each column shows an input CXR (a,b,c-1), a ground truth mask (a,b,c-2), an ensemble
result (a,b,c-3), and five results predicted by the first to fifth model. (a-1) A clear CXR that shows
none of severe noise from a portable device and obstacles like medical devices, (b) a lung mask of
(a-1,a-3) an ensemble mask from the first to the fifth masks (a-4–a-8). Dice coefficients of (a-3–a-8) are
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are 0.899, 0.783, 0.885, 0.883, 0.879, and 0.903, respectively.
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Figure 4. An example of detection results for the left hilum colored at red and carina colored at 
green and, dividing segmented lung mask into upper and lower lungs, i.e., RUR, LUR, RLR, and 
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Figure 4. An example of detection results for the left hilum colored at red and carina colored at green
and, dividing segmented lung mask into upper and lower lungs, i.e., RUR, LUR, RLR, and LLR with
a reference point colored at while. (a) Detection results for the left hilum (confidence: 0.94) and the
carina (0.98). (b) A center point of the detection box for the left hilum is used as the reference point to
divide upper and lower lungs. (c) Detection results for the left hilum (0.56) and carina (0.95). (d) A
location down to approximately 2 cm vertically from a center point of the detection box for the carina
is used as the reference point to divide upper and lower lungs.
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Figure 5. Boxplots of mean intensities with extent scores (0–4) and density scores (0–3) of pulmonary
opacities for four-regions. (a) and (e) RUR, (b) and (f) LUR, (c) and (g) RLR, (d) and (h) LLR. For each
region, the mean intensity increased as the extent and density scores increased.

In case of density scores, the tendency that each mean intensity increased as the density
scores increased was observed as shown in Figure 5e–h. The correlation with the density
scores for RUR, LUR, RLR, and LLR showed moderate positive linear relationship at 0.553
(<0.001), 0.469 (<0.001), 0.506 (<0.001), and 0.465 (<0.001), respectively.
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Distribution of mean intensity for each region is shown in Figure 6. Sum of left lung
region is higher than that of right lung region. The mean intensity of LLR where heart is
not segmented in the segmentation algorithm is lower than that of other regions.
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4. Discussion

In the detection model for CXRs of anterior-posterior (AP), the detection inference
value of the carina (average 0.743) was higher than that of the left hilum (average 0.467)
because the label of the exact location of the left hilum is difficult in AP-type CXRs due to a
wider longitudinal extent, overlap from cardio-mediastinal structures, obscuration from
adjacent pulmonary opacities, and overlayed lines and tubes while labeling the location of
the carina is easier due to less noise. It showed that the model performance highly depends
on the quality of labeled data even using the same number of the training set.

In the validation of segmentation models, two different public datasets (RSNA pneu-
monia detection challenge and JSRT datasets) and the anonymized in-house dataset were
used. On the public datasets, the five individual models showed sufficient dice coefficients
around 0.958–0.967 due to the high radiographic quality of the PA CXR public datasets with
low disease burden; both factors make it easier for each model to segment lung regions.
However, in the anonymized dataset most CXRs for COVID-19 patients were captured with
AP CXRs in the training dataset, which is common for severe patients. The utility of the
AP CXRs was challenging due to lower radiographic quality, lower lung volumes, patient
rotation, and a larger number of chest tubes, lines, and medical devices. To overcome
these issues, the ensemble method was selected with segmentation models trained with
different conditions, which was very effective to remove false positive and negative regions.
In the training of segmentation models, different augmentation properties and backbone
networks with the ensemble lead to robust lung masks under various situations such as
patient position, image quality, and intubated patients. To avoid data issues generated from
different portable devices and patient sizes and postures that never been exposed while
training, Gaussian noise and distortion (non-rigid) transform-based augmentations were
applied for the performance improvement because the patient size varies the noise level and
the deformation can mimic the various patient postures and devices. Multiple backbone
networks and ensemble strategy were robust to intubated patients and low contrast CXRs.

Correlation of the extent and density scores of pulmonary opacities with the mean
intensities for each lung region showed positive linear relationships as shown in Figure 3.
For RLR, the correlation of extent score with a mean intensity showed a strong positive
relationship in Pearson correlation of 0.716 (p < 0.005). Dense basilar opacities in COVID-19
pneumonia, likely related to severe airspace opacification (or consolidation on CT images),
obscure the lung margins at their interface with hemidiaphragm and cardio-mediastinal
structures (see the obscured lower lungs in Figure 4a), which can degrade the performance
of segmentation as well as the evaluation of the extent and density of pulmonary opacities.
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Such opacities may require additional dedicated training datasets which were not available
to our model.

Although we showed the Pearson correlation of the segmented regions with the extent
and density scores of pulmonary opacities, the proposed method still has a great potential
combined with various clinical applications such as classifying COVID-19 pneumonia and
regular pneumonia. For the development of clinical methods, the segmentation model will
be a crucial pre-processing tool for extracting lung regions in CXRs. In the future, combined
with the proposed method as a pre-clinical step, we will develop an automatic prediction
method of the RALE and the severity prediction model for COVID-19 patients.

5. Conclusions

In this paper, we proposed a fully automated four-region lung segmentation method
in CXRs for COVID-19 patients and validated the method by the sub-regional correlation
with the RALE value for clinical use. To evaluate the feasibility of the proposed method
as one of the pre-processing methods in CXR, we demonstrated the positive correlation
between intensities of segmented regions and the extent and density scores of pulmonary
opacities. The ensemble strategy using five models showed the high performance of dice
coefficient compared to a single model. Future work will focus on the automatic prediction
of the RALE combined with the proposed segmentation method, and perform clinical
evaluations using CXRs from multiple sites caring for COVID-19 patients.
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CXR Chest X-ray radiography
RALE Radiographic Assessment of the Quality of Lung Edema
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RUR Right Upper Region
RLR Right Lower Region
LUR Low Upper Region
LLR Left Lower Region
mAP Mean of Average Precision
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