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Artificial intelligence predicts 
clinically relevant atrial high‑rate 
episodes in patients with cardiac 
implantable electronic devices
Min Kim1,14, Younghyun Kang2,14, Seng Chan You5, Hyung‑Deuk Park2, Sang‑Soo Lee2, 
Tae‑Hoon Kim3, Hee Tae Yu3, Eue‑Keun Choi6, Hyoung‑Seob Park7, Junbeom Park8, 
Young Soo Lee9, Ki‑Woon Kang10, Jaemin Shim11, Jung‑Hoon Sung12, Il‑Young Oh13, 
Jong Sung Park4* & Boyoung Joung3*

To assess the utility of machine learning (ML) algorithms in predicting clinically relevant atrial high-
rate episodes (AHREs), which can be recorded by a pacemaker. We aimed to develop ML-based models 
to predict clinically relevant AHREs based on the clinical parameters of patients with implanted 
pacemakers in comparison to logistic regression (LR). We included 721 patients without known atrial 
fibrillation or atrial flutter from a prospective multicenter (11 tertiary hospitals) registry comprising 
all geographical regions of Korea from September 2017 to July 2020. Predictive models of clinically 
relevant AHREs were developed using the random forest (RF) algorithm, support vector machine 
(SVM) algorithm, and extreme gradient boosting (XGB) algorithm. Model prediction training was 
conducted by seven hospitals, and model performance was evaluated using data from four hospitals. 
During a median follow-up of 18 months, clinically relevant AHREs were noted in 104 patients (14.4%). 
The three ML-based models improved the discrimination of the AHREs (area under the receiver 
operating characteristic curve: RF: 0.742, SVM: 0.675, and XGB: 0.745 vs. LR: 0.669). The XGB model 
had a greater resolution in the Brier score (RF: 0.008, SVM: 0.008, and XGB: 0.021 vs. LR: 0.013) 
than the other models. The use of the ML-based models in patient classification was associated with 
improved prediction of clinically relevant AHREs after pacemaker implantation.

Multiple clinical trials have demonstrated that longer atrial high-rate episodes (AHREs) are associated with an 
increased risk of atrial fibrillation (AF), ischemic stroke, and adverse cardiovascular outcomes1–5. Therefore, the 
current European Society of Cardiology (ESC) guidelines recommend comprehensive cardiovascular evaluation, 
including the stroke risk, medical comorbidities, and risk factors, in patients with AHREs detected by implanted 
devices. Notably, in patients with a longer duration of AHREs, more intensive monitoring can be more useful6,7. 
Previous clinical studies have demonstrated multiple predictors of AHREs in patients with pacemakers1,4,8–10. 
However, these inconsistent predictors paradoxically indicate that the etiology is ambiguous. Therefore, pre-
cisely estimating clinically relevant AHREs is an important part of optimal patient management after pacemaker 
implantation. Machine learning (ML) offers a computational and alternative approach to standard predictive 
modeling that recognizes complex characteristics within data11. To date, there have been several investigations 
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of ML algorithms for coronary artery disease genetics12, cardiac resynchronization therapy outcomes, such as 
mortality and heart failure (HF)-related hospitalization13, HF with preserved ejection fraction14, and estimation 
of ventricular tachycardia recurrence and mortality after catheter ablation15 in the cardiology era. We hypoth-
esized that ML algorithms can produce a predictive model for clinically relevant AHREs in individual patients 
that can be more useful than previously reported predictors. Herein, we sought to determine which class of ML 
algorithms has the highest predictive accuracy using data from a prospective multicenter registry.

Materials and methods
Study design.  The cohort of patients in this study was derived from the evaluation of the Atrial Fibrillation 
occurrence in patients after Pacemaker implantation (AF-Pacemaker study), a prospective, multicenter, obser-
vational registry study performed in patients with AF aged > 18 years attending any of the 11 tertiary hospital 
centers comprising all geographical regions of Republic of Korea. The study enrollment period started in Sep-
tember 2017 and ended in July 2020.

The AF-Pacemaker study aimed to investigate the occurrence and management (including ablation therapy) 
of device-detected AF episodes in patients with pacemaker implants through a prospective, non-randomized, 
non-blinded, observational, multicenter design. The study was conducted in compliance with the ethical rules 
of the Declaration of Helsinki as a statement of ethical principles for medical research involving human subjects 
by the World Medical Association and approved by the Institutional Review Board of Yonsei University Health 
System (1-2017-0008). This study was registered at ClinicalTrials.gov (NCT03303872, First posted on October 6, 
2017). The ethics committees of all 11 tertiary hospitals (Severance Hospital, Seoul National University Bundang 
Hospital, Seoul National University Hospital, Donga University Medical Center, Keimyung University Hospital, 
Ewha Womans University Medical Center, Daegu Catholic University Medical Center, Korea University Medical 
Center, Eulji University Hospital, CHA Bundang Medical Center, and Kangneung Asan Medical Center) approved 
this study, and all patients provided informed consent for their inclusion.

Study population.  The study population included patients (1) eligible for permanent pacemaker implanta-
tion according to the guidelines on cardiac pacemaker implantation for sick sinus syndrome (sinus bradycardia, 
sinus pause of ≥ 3 s, tachy-brady syndrome, sinus node dysfunction, and chronotropic incompetence) or atrio-
ventricular block (high-degree/complete atrioventricular block), (2) with an atrial sensing capability.

A total of 816 consecutive patients who were implanted with a St. Jude Medical dual-chamber rate-adaptive 
pacemaker (Assurity PM2240) with stored electrogram capabilities were enrolled. The pacemakers were incorpo-
rated with bipolar atrial and ventricular leads (Tendril MRI LPA1200M, Isoflex Optim 1944/1948, and Tendril ST 
Optim 1888TC) in all patients. The atrial and ventricular leads were placed in the right atrial appendage and right 
ventricular apex, respectively. We excluded patients with severe liver dysfunction (aspartate aminotransaminase/
alanine aminotransferase level ≥ 3 times the normal upper limit) or severe renal dysfunction (serum creatinine 
level of ≥ 3.5 mg/dL or creatinine clearance of ≤ 30 mL/min), including conditions requiring dialysis; pregnant 
or lactating patients; or those malignant cancer, dilated cardiomyopathy, hypertrophic cardiomyopathy, severe 
valvular heart disease, or life expectancy of ≤ 12 months from enrollment. Further, 95 patients with missing data 
for analysis were excluded (Fig. 1). Based on the available data from 721 patients567 patients were used for model 
development and 154 for validation.

Data collection, Pacemaker programming and AHREs detection.  For the AF-Pacemaker study, 
data were collected by independent clinical research coordinators via Web-based case report forms on the Inter-
net-based Clinical Research and Trial management system (iCReaT), a data management system established by 
the Centers for Disease Control and Prevention, Ministry of Health and Welfare, Republic of Korea (iCReaT 
Study No. C170004). Each center could see its data and those of the other participating centers.

An AHRE detection rate of 220 beats/min was programmed, and storage of up to four atrial electrograms of 
12-s duration on automatic detection of AHREs was activated. At every visit, the longest duration of all AHREs 
was ascertained. The longest AHRE (> 6 min) was defined as clinically relevant AHREs. Device interrogation 
information was obtained at regular clinic visits every 6 months after pacemaker implantation. An interval of 
up to 3 months before and after each clinic visit was allowed. The AHREs were interrogated to compare elec-
trocardiogram (ECG) traces and pacemaker AHREs data at the end of the ambulatory monitoring period. The 
clinicians were blinded to the atrial diagnostic data. A detailed study protocol has been published previously16.

Model development.  Predictive feature selection.  We collected 28 variables available before the time of 
pacemaker implantation, including baseline patient demographic characteristics, clinical information, medica-
tions, and 12-lead ECG, laboratory examination, Holter monitoring, treadmill test, and transthoracic echocar-
diography findings. The predictors were age, sex, body mass index, current or former smoking status, current 
or former alcohol consumption, baseline heart rate, baseline systolic blood pressure, baseline diastolic blood 
pressure, indications for pacemaker implantation (sinus node dysfunction or atrioventricular node disease), 
estimated glomerular filtration rate (eGFR), left atrium (LA) diameter, left ventricular ejection fraction (LVEF), 
QRS duration, corrected QT (QTc) interval, presence of HF, hypertension, diabetes mellitus, prior stroke or tran-
sient ischemic attack (TIA), vascular disease, chronic kidney disease, presence of ventricular premature contrac-
tion, presence of atrial premature contraction, dyslipidemia, and medications, including renin‒angiotensin‒al-
dosterone system blockers, beta adrenergic receptor blockers, calcium channel blockers, diuretics, and statins. 
Continuous variables were evaluated using point-biserial correlation coefficients17 in relation to the clinically 
relevant AHREs, and the correlation of discrete variables was measured using Cramér’s V18. Considering the 
two indicators, variables showing a low degree of correlation value using the knee point with the clinically rel-
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evant AHREs were excluded from the modeling process (Supplementary Table 1 and Supplementary Fig. 1). In 
addition, all continuous variables were normalized using Z-score normalization. Finally, the predictive models 
were constructed with subset data consisting of 10 variables based on model performance index for maximum 
prediction performance, excluding 18 variables, as shown in Supplementary Table 2.

Imbalanced data preprocessing.  When a predictive model is trained on imbalanced data, it tends to classify pat-
terns biased into majority classes and ignores the characteristics of minority classes. Considering the imbalance 
problem of the study population, we applied a balancing method using the synthetic minority oversampling 
technique (SMOTE)19, and the minority class (clinically relevant AHREs) was oversampled. Clinically relevant 
AHREs were noted in 14.4% of the original dataset but in 30.8% of the SMOTE-balanced dataset after oversam-
pling.

Model derivation and algorithms.  To develop ML algorithms, we divided the study population into a training 
set, in which the prediction algorithm for clinically relevant AHREs was derived, and a test set, in which the 
algorithm was evaluated based on hospital units. The training set was derived from the patient data of seven 
hospitals and the test set from the patient data of the four remaining hospitals. We developed three ML-based 
predictive models: the random forest (RF)20 algorithm, support vector machine (SVM)21 algorithm, and extreme 
gradient boosting (XGB)22 algorithm, in comparison to conventional logistic regression (Fig. 2).

RF algorithm is an ensemble learning method that creates multiple prediction results by multiple decision 
trees and determine the outcome by majority vote from decision tree results. We developed our RF model with 
300 decision trees (Supplementary Fig. 2) and the average tree depth is 16 ± 2.1 (mean ± SD). SVM is an algorithm 
that finds a hyperplane that divides two categories of data in a multi-dimensional space of data. Lastly, XGB is an 
ensemble algorithm to create a strong decision tree classifier by combining weak tree classifiers built sequentially 
that each subsequent tree is trained from residuals of the previous tree to reduce its error.

We applied five repetitions of the tenfold cross validation (CV)23 method to validate predictive models with 
hyperparameters tuned by a grid search algorithm for RF and SVM, and Bayesian optimization24 algorithm for 
XGB. To determine how each variable affects the prediction of outcome, we calculated the feature importance 
of individual variables using the average absolute deviation by sensitivity analysis for each model25.

Statistical analysis.  Continuous variables were presented as means ± standard deviations for normally dis-
tributed values or medians and interquartile intervals for non-normally distributed values and categorical vari-
ables as numbers and percentages in each group. The baseline characteristics of the two groups were compared 
using Student’s t-test or Wilcoxon test for continuous variables and Pearson’s χ2 test or Fisher’s exact test for cat-
egorical variables. To evaluate the model discrimination and accuracy, we measured the area under the receiver 
operating characteristic (AUROC) curve, area under the precision–recall curve (AUPRC), F1-score, accuracy, 

Figure 1.   Study population selection process.
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sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) and calculated the 
Brier score26, including reliability, resolution, and uncertainty. All analyses were performed using R (version 
4.0.2; R Foundation for Statistical Computing, Vienna, Austria). The dedicated R packets and versions to validate 
and apply the 3 ML models has been published in GitHub (RF, R package version 4.6–14 https://​CRAN.R-​proje​
ct.​org/​packa​ge=​rando​mFore​st; SVM, R package version 0.9–29 https://​CRAN.R-​proje​ct.​org/​packa​ge=​kernl​ab; 
XGB, R package version 1.4.1.1. https://​CRAN.R-​proje​ct.​org/​packa​ge=​xgboo​st). Statistical significance was set 
at p values of < 0.05.

Results
Between September 2017 and July 2020, 721 patients were eligible for inclusion; their median age was 73 years, 
and 61.5% were women. The median follow-up duration was 18 months. Atrioventricular node disease (56.7%) 
was the most common indication for cardiac implantable electronic device implantation, followed by sinus node 
dysfunction (43.3%). A total of 104 patients (14.4%) experienced AHREs lasting for > 6 min, which were defined 
as clinically relevant AHREs in this study. The patients who experienced clinically relevant AHREs were signifi-
cantly more likely to have a higher rate of sinus node dysfunction for pacemaker implantation, experience > 1% 
atrial premature contraction on pre-procedural Holter monitoring, use beta-adrenergic receptor blockers, and 
have a shorter QRS duration than those who did not experience clinically relevant AHREs (Table 1). The deri-
vation set consisted of 567 patients from seven hospitals, and the validation set consisted of 154 patients from 
four hospitals. Supplementary Table 3 shows the characteristics of these two sets. The prevalence of former or 
current smokers and alcohol consumers and dyslipidemia, baseline systolic blood pressure, and LA diameter on 
echocardiography were higher in the derivation set. Further, this set of patients had lower baseline eGFR and 
LVEF and shorter QRS duration and QTc interval on electrocardiography.

Model performance.  In the ML-based models, improvement in discrimination was achieved using the 
same data of the validation set (Table 2). The AUROCs achieved by each model was 0.742 for the RF algorithm, 
0.675 for the SVM algorithm, and 0.745 for the XGB algorithm, which were numerically higher than 0.669 for 
logistic regression. The AUPRC and F1-score also improved, especially those for the XGB algorithm. The ROC 
and PRC curve plots are shown in Fig. 3. Using the Brier score, we achieved better performance in all three 
models based on the reliability, with lower values indicating higher agreement between observed and predicted 
risks, in comparison with logistic regression. The XGB algorithm had a higher resolution value, which indicated 
a prediction more accurate than that of the other algorithms across the spectrum risk.

Feature importance of the individual variables.  We observed that beta-adrenergic receptor blocker 
use, prior stroke or TIA, LA diameter, and > 1% atrial premature contraction on Holter monitoring before pace-

Figure 2.   Flow diagram for the modeling process.

https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=kernlab
https://CRAN.R-project.org/package=xgboost
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Table 1.   Baseline characteristics of the patients with and without clinically relevant AHREs. The data are 
presented as number (%), median [IQR]. ACEi angiotensin-converting-enzyme inhibitor,  AHREs atrial high-
rate episodes,  APC atrial premature complex,  ARB angiotensin receptor blocker,  AV atrioventricular,  GFR 
glomerular filtration rate,  LA left atrium,  LVEF left ventricular ejection fraction,  QTc corrected QT, TIA 
transient ischemic attack, VPC ventricular premature complex. *The CHA2DS2-VAS score is a measure of the 
risk of stroke in patients with atrial fibrillation, with scoring ranging from 0 to 9 and higher scores indicating 
greater risk. Congestive heart failure, hypertension, age 75 years or older (doubled), diabetes, stroke (doubled), 
vascular disease, age 65 to 74 years, sex category (female).

Variables Total (n = 721)
Clinically relevant AHREs (-) 
(n = 617)

Clinically relevant AHREs ( +) 
(n = 104) p value

Demographic

Age, (years) 73 (65, 79) 73 (65, 78) 74 (68, 80) 0.155

Male, n (%) 285 (39.5) 242 (39.2) 43 (41.3) 0.763

Body mass index, (kg/m2) 24.1 (22.2, 26.2) 24.2 (22.2, 26.2) 23.9 (22.1, 26.1) 0.566

Smoking, n (%)

 Former/Current 90 (12.5) 78 (12.6) 12 (11.5) 0.877

Alcohol, n (%) 93 (12.9) 80 (13.0) 13 (12.5) 1.000

 Former/Current

Clinical

Heart failure, n (%) 26 (3.6) 23 (3.7) 3 (2.9) 1.000

Hypertension, n (%) 484 (67.1) 416 (67.4) 68 (65.4) 0.767

Diabetes, n (%) 196 (27.2) 173 (28.0) 23 (22.1) 0.256

Prior stroke/TIA, n (%) 80 (11.1) 64 (10.4) 16 (15.4) 0.181

Vascular disease, n (%) 71 (9.8) 58 (9.4) 13 (12.5) 0.422

Dyslipidemia, n (%) 222 (30.8) 197 (31.9) 25 (24.0) 0.134

Chronic kidney disease, n (%) 59 (8.2) 50 (8.1) 9 (8.7) 1.000

CHA2DS2VAS score* 3 (2, 4) 3 (2, 4) 3 (2, 4) 0.454

CHA2DS2VAS score, group 0.955

 0, n (%) 21 (2.9) 18 (2.9) 3 (2.9)

 1, n (%) 104 (14.4) 90 (14.6) 14 (13.5)

  ≥ 2, n (%) 596 (82.7) 509 (82.5) 87 (83.7)

Pacemaker indication  < 0.001

 Sick sinus syndrome, n (%) 312 (43.3) 248 (40.2) 64 (61.5)

 AV block, n (%) 409 (56.7) 369 (59.8) 40 (38.5)

Baseline systolic blood pressure, 
(mmHg) 135 (121, 148) 135 (122, 148) 133 (120, 145) 0.174

Baseline diastolic blood pressure, 
(mmHg) 71 (64, 80) 71 (64, 80) 72 (63, 80) 0.735

Baseline heart rate, (/min) 60 (50, 72) 60 (50, 72) 60 (50, 72) 0.954

Baseline eGFR, (mL/min/1.73 m2) 78.0 (62.0, 91.0) 77.0 (63.0, 92.0) 80.5 (62.0, 88.3) 0.894

Electrocardiogram

QRS duration, (ms) 106 (90, 142) 108 (90, 144) 98 (88, 134) 0.038

QTc interval, (ms) 455 (422, 488) 455 (423, 488) 451 (420, 477) 0.301

Echocardiography

LA diameter, (mm) 40 (36, 45) 40 (35, 45) 42 (37, 45) 0.094

LVEF, (%) 65 (60, 70) 65 (60, 70) 65 (60, 70) 0.868

Holter recording

APC > 1% at pre-implantation, 
n (%) 53 (7.4) 38 (6.2) 15 (14.4) 0.005

VPC > 1% at pre-implantation, 
n (%) 49 (6.8) 39 (6.3) 10 (9.6) 0.306

Medications

ARB/ACEi, n (%) 312 (43.3) 273 (44.2) 39 (37.5) 0.239

Beta adrenergic receptor blocker, 
n (%) 112 (15.5) 84 (13.6) 28 (26.9) 0.001

Calcium channel blocker, n (%) 224 (31.1) 194 (31.4) 30 (28.8) 0.678

Statin, n (%) 306 (42.4) 267 (43.3) 39 (37.5) 0.320

Diuretics, n (%) 162 (22.5) 139 (22.5) 23 (22.1) 1.000
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maker implantation consistently influenced the modeling process for predicting clinically relevant AHREs using 
the three ML-based models (Table 3 and Fig. 4).

Discussion
In this prospective, multicenter, observational registry study, we found that the three ML algorithms (RF, SVM, 
and XGB) were better at identifying individuals who will develop clinically relevant AHREs among those with 
pacemaker implants. The XGB algorithm showed better performance and Brier scores than did the other algo-
rithms. We also defined and calculated the index of feature importance of the variables in all three ML-based 
models. We found consistent feature importances for beta-adrenergic receptor blocker use, prior stroke or 
TIA, > 1% atrial premature contraction on Holter monitoring before pacemaker implantation, and LA diameter 
on echocardiography.

Table 2.   Performance characteristics of models in the validation set for predicting clinically relevant AHREs 
in patients with pacemaker. AHREs atrial high-rate episodes, AUPRC area under the precision-recall curve, 
AUROC area under receiver operating characteristic, CI confidence interval, NPV negative predictive value, 
PPV positive predictive value, RF random forest, SVM support vector machine, XGB extreme gradient 
boosting.

Logistic regression RF SVM XGB

Model performance

AUROC (95% CI) 0.669 (0.536–0.803) 0.742 (0.637–0.835) 0.675 (0.561–0.789) 0.745 (0.631–0.847)

AUPRC (95% CI) 0.182 (0.104–0.274) 0.224 (0.119–0.397) 0.182 (0.102–0.337) 0.240 (0.125–0.424)

F1 score (95% CI) 0.853 (0.783–0.881) 0.888 (0.845–0.925) 0.865 (0.821–0.905) 0.896 (0.857–0.931)

Accuracy (95% CI) 0.753 (0.677–0.819) 0.805 (0.734–0.865) 0.773 (0.698–0.836) 0.818 (0.748–0.876)

Sensitivity (95% CI) 0.815 (0.739–0.876) 0.881 (0.815–0.931) 0.830 (0.755–0.889) 0.889 (0.823–0.936)

Specificity (95% CI) 0.316 (0.126–0.566) 0.263 (0.091–0.512) 0.368 (0.163–0.616) 0.316 (0.126–0.566)

PPV (95% CI) 0.194 (0.074–0.375) 0.238 (0.082–0.472) 0.233 (0.099–0.423) 0.286 (0.113–0.522)

NPV (95% CI) 0.894 (0.824–0.943) 0.895 (0.830–0.941) 0.903 (0.837–0.949) 0.902 (0.839–0.947)

Brier score

Overall 0.181 0.138 0.158 0.141

Reliability 0.086 0.038 0.058 0.054

Resolution 0.013 0.008 0.008 0.021

Uncertainty 0.108 0.108 0.108 0.108

Figure 3.   Receiver operating characteristic curve analysis (A) and precision–recall curve analysis (B) for each 
model.
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The detection of clinically relevant AHREs with cardiac implantable electronic devices is becoming increas-
ingly attractive for predicting the progression to AF or reducing the risk of embolic stroke. Although various 
predictors of AHREs4,8,27,28 have been identified, they did not show highly consistent results. ML is powerful 
and has become ubiquitous and indispensable for solving complex medical problems. It offers an improved 
description and development of decision support tools to predict clinical events and encourage steps forward. 

Table 3.   Feature importance in the three machine learning-based models. AAD average absolute deviation, 
APC atrial premature contraction, CI confidence interval, TIA transient ischemic attack, LA left atrium. * 
Feature importance was measured from sensitivity analysis.

Rank

Random Forest Support Vector Machine eXtreme Gradient Boosting

Features Importance* Features Importance* Features Importance*

1 Prior stroke/TIA 0.184 Beta adrenergic receptor blockers 0.254 Beta adrenergic receptor blockers 0.306

2 Beta adrenergic receptor blockers 0.178 Prior stroke/TIA 0.253 Prior stroke/TIA 0.158

3  > 1% APC on Holter, pre-implantation 0.145  > 1% APC on Holter, pre-implantation 0.220 LA diameter 0.132

4 Dyslipidemia 0.111 LA diameter 0.088 Age 0.105

5 LA diameter 0.104 Baseline systolic blood pressure 0.063 Baseline systolic blood pressure 0.075

6 QRS duration 0.101 Dyslipidemia 0.044 QRS duration 0.073

7 Baseline systolic blood pressure 0.085 Pacemaker indication 0.040  > 1% APC on Holter, pre-implantation 0.071

8 Age 0.057 QRS duration 0.030 Dyslipidemia 0.030

9 Pacemaker indication 0.030 Diabetes 0.005 Diabetes 0.028

10 Diabetes 0.006 Age 0.003 Pacemaker indication 0.023

Figure 4.   Feature importance index plot for each model.
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Although it has been reported that AHREs ≥ 30 s or ≥ 2 min is associated with cerebrovascular events in previ-
ous studies29,30, other studies have reported the more relevant diagnostic points for AHREs (> 6 min)1,31,32. The 
current ESC guidelines also suggest that a minimum of 5 to 6 min of AHREs is associated with progression to 
AF, ischemic stroke, and major adverse cardiovascular events3,5,6.

To our knowledge, this is the first study to apply an ML algorithm to predict clinically relevant AHREs in 
patients with pacemaker implants and demonstrate improved prediction compared with that obtained with 
traditional statistical methods.

We selected the RF, SVM, and XGB algorithms and applied them to each predictive model in comparison to 
the logistic regression model. Because our dataset was relatively small and imbalanced, we used the five repeated 
tenfold CV method, instead of specifying a validation set in a training set separately, and the SMOTE to over-
sample the data set. In this study, we assessed the AUROC, AUPRC, F1-score, accuracy, sensitivity, specificity, 
NPV, and PPV and calculated the Brier score to evaluate the performance metrics of each model. The model 
with the XGB algorithm achieved the best performance. The predictive models also provide an opportunity to 
understand the features that may contribute to clinically relevant AHREs. This approach can identify the quan-
titation of feature importance for each variable, and we found consistent (beta-adrenergic receptor blocker use, 
prior stroke or TIA, > 1% atrial premature contraction on Holter monitoring before pacemaker implantation, 
and LA diameter) factors in the predictive models. Some of these features (prior stroke or TIA and LA diameter) 
have been described previously8,16.

This study had several strengths. The predictive models were based on simple and readily available clinical 
characteristics. Although the models appear only as mathematical exercise, it can provide information that is 
indirectly helpful to clinicians. Recently, Perino et al.33 reported that with increasing AHREs lasting for > 6 min 
to > 24 h, the stroke risk increased in those who did not receive anticoagulation treatment and mostly decreased 
in those who did. Vergara et al.34 investigated the temporal association between AHREs and the risk of ventricular 
arrhythmias (VA). AHREs that precede VA increased the risk of VA recurrence. In these regards, the predicted 
probability for AHREs lasting for > 6 min could be shared with the patient, and anticoagulation or antiarrhythmic 
therapy could serve as a critical element to prevent ischemic stroke or the recurrence of VA. The temporal associa-
tion was observed We compared the model evaluation performance metrics, and the XGB model yielded greater 
discrimination and accuracy than did the other models and logistic regression. Meanwhile, the SVM model 
exhibited relatively worse performance metrics than did the RF and XGB models because the ensemble model 
tends to have better performance and robustness than the single model. Our study showed that ML algorithms 
may play a role in precision cardiology. Although the baseline characteristics of the derivation and validation 
sets were slightly different, the model performance metrics showed acceptable results.

This study has some limitations. As the data sets, especially the validation set, were relatively small and 
contained limited features, the current analysis findings may not necessarily be representative of the predictors 
of clinically relevant AHREs in patients with implanted pacemakers. However, the patients were prospectively 
enrolled from 11 tertiary centers, which can yield some degree of generalizability. In this study, 61.5% were 
women. Many women were enrolled, but the ratio of men and women was comparable to similar studies in the 
same region35,36. Further assessment and improvement of the applicability of the predictive models are necessary 
for larger and different-race populations.

Finally, the models developed herein used only clinically relevant AHREs as the outcome data, not progres-
sion to clinical AF, ischemic stroke, MACEs, and death. Further improvements in multiple outcome prediction 
with higher accuracy should be explored.

Conclusion
Our study illustrated the utility of ML algorithms in estimating clinically relevant AHREs in patients with 
implanted pacemakers using easily obtainable preimplantation features. Classification of patients using these 
models can support clinical decisions for anticoagulation therapy to prevent adverse outcomes in selected 
patients. From this perspective, models need to be built and validated individually for each diagnosis. More 
high-quality evidence can be obtained by applying ML algorithms; consequently, the data obtained can aid in 
the optimal management of these patients with shared decision-making.

Data availability
The data that support the findings of this study are available from a web-based case report form on the Internet-
based Clinical Research and Trial Management System (iCReaT), a data management system established by the 
Centers for Disease Control and Prevention, Ministry of Health and Welfare, Republic of Korea (iCReaT study 
no. C170004) but restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available. Data are however available from the authors upon reasonable request 
and with permission of all investigators of the AF-Pacemaker study.
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