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Abstract: Urinalysis, an elementary chemical reaction-based method for analyzing color conversion
factors, facilitates examination of pathological conditions in the human body. Recently, considerable
urinalysis-centered research has been conducted on the analysis of urine dipstick colors using
smartphone cameras; however, such methods have a drawback: the problem of reproducibility of
accuracy through quantitative analysis. In this study, to solve this problem, the function values
for each concentration of a range of analysis factors were implemented in an algorithm through
urine dipstick RGB semi-quantitative color analysis to enable real-time results. Herein, pH, glucose,
ketones, hemoglobin, bilirubin, protein (albumin), and nitrites were selected as analysis factors,
and the accuracy levels of the existing equipment and the test application were compared and
evaluated using artificial urine. In the semi-quantitative analysis, the red (R), green (G), and blue
(B) characteristic values were analyzed by extracting the RGB characteristic values of the analysis
factors for each concentration of artificial urine and obtaining linear function values. In addition,
to improve the reproducibility of detection accuracy, the measurement value of the existing test
equipment was set to an absolute value; using a machine-learning technique, the confusion matrix,
we attempted to stabilize test results that vary with environment.

Keywords: linearity; semi-quantitative analysis; RGB; urinalysis; smartphone

1. Introduction

Urinalysis is one of the most frequently performed tests in medical institutions because
it is an inexpensive test that can detect risk signals with respect to major metabolic functions
from a urine sample [1,2]. Urinalysis has three aspects: physical characteristics, such as
urine color; chemical measurement; and microscopic examination [3–5]. The physical and
chemical tests of urine are performed using a urine dipstick, and the public can easily
access urinalysis. Although urinalysis is simple, it requires a significant amount of attention
due to the problems, such as infection, that may occur during the collection and testing
process [6]. In particular, because the test results are obtained through chemical and
enzymatic reactions, errors in results may occur owing to reaction times and environment
changes [7].

The dipstick used for urinalysis is a plastic strip that has pads containing reagents
attached to it [8]. Therefore, by using a dipstick, pH, protein, occult blood, glucose,
leukocytes, esterase, nitrites, bilirubin, and ketones can be simultaneously measured [9].
The dipstick is mainly used for rapid point-of-care testing because it has high sensitivity, a
low cost, and confirms results through visual color analysis [10].

In general, color analysis with the naked eye significantly affects the reading. Bright-
ness is important and white light of approximately 1000 lux is excellent [11]. During visual
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analysis, if the surrounding environment is too dark, the color will appear dark, whereas if
too bright, the color will appear pale, which may cause errors in readings [12]. Therefore,
an objective system that can clearly observe and evaluate dipstick color change is needed.
To increase the accuracy of the test, a mechanical rather than a manual test is required. In
particular, a more accurate method for detecting quantitative changes in urine chemical
elements by change in dipstick color is needed. Considering the speed and accuracy of
the test, the method can be applied using a camera and an application (app) in tandem in
mobile devices.

This study intends to develop an algorithm and app for urinalysis RGB quantitative
analysis using a smartphone to provide a solution to the aforementioned problems and
improve accessibility. First, the range of items that can be inspected with a dipstick was
specified and RGB values were extracted for the specified items on the basis of smartphone
camera images. In addition, a method for semi-quantitatively deriving the color conversion
range by comparing the extracted RGB values with standard RGB values was studied.
When using the smartphone, to maintain the reproducibility of the measurement value,
which varied with environmental changes, the measurement value of the existing test
equipment was set as an absolute value. In addition, this study aimed to increase the
reproducibility of accuracy by applying a confusion matrix-based learning model to the
results of a urine test obtained using a smartphone camera [13,14].

Previous studies have focused on quantitatively converting the color conversion
value of the dipstick, and there was a difference in setting the quantitative range of color
similarity in this process [15,16]. Color-measurement sensitivity is based on the accuracy of
the camera’s complementary metal-oxide-semiconductor sensor, the color uniformity of the
color response, and the number of calibration points [17]. Herein, the method of inputting
the model of the converted color through image processing and the multidimensional
color conversion method through image processing were applied [18]. However, there
was fluidity in the change value according to the environment. Therefore, a quantitative
presentation of the radical RGB values was necessary. In addition, the proposed methods
suggest specific values to maintain the objectivity of extracted values in relation to camera
characteristics [19].

However, if the RGB values recognized by the smartphone camera change depending
on the concentration of the object detected in the urine and the RGB is not presented
quantitatively, there is a high possibility of error in the measurement value. Therefore, this
study aimed to present data within a predictable range by measuring RGB change values
according to the amounts of the analysis factors to be tested. In addition, the accuracy of the
algorithm was ascertained by evaluating the agreement between the results of the existing
test device used in hospitals and the results obtained using the app. Since urinalysis is
analyzed as a chemical reaction, the impact of the surrounding environment should be
minimized, and thus the test should feature a quantitative evaluation factor [20]. Therefore,
an algorithm that can infer changes according to the measurement medium is required.
To maintain a good agreement between the smartphone-measured value and the absolute
value measured by the existing equipment, an attempt was made to increase the accuracy of
reproducibility according to the test environment using a confusion matrix-based machine-
learning model. This study aimed to develop a smartphone app to increase the accessibility
of real-time urine tests at home and to introduce the basic mechanism of a new color
analysis algorithm as a method to increase the reliability of test results.

2. Materials and Methods

The urine dipstick color table is presented as a color comparison table for conventional
visual recognition, as shown in Figure 1 [21]. A method for comparing and tracking the
same color is suggested, but distinguishing and recognizing color with the naked eye is
limited. In this study, an experiment was performed to compare and track changes in
detected RGB values. This was carried out by extracting the dipstick color change as RGB
values of the photographed images and setting the reference values for each standard
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concentration for the test item. After photographing using a smartphone camera (iPhone
11 pro, 2021), RGB values were obtained, as shown in Figure 2, through image processing
(photoshop CS6, 2020).

Figure 1. Urine dipstick color comparison test table.

Figure 2. RGB extraction process for the urine dipstick. (a) The step where a dipstick was dipped
into an artificial urine sample containing analytes. (b) The step where a dipstick was taken with the
smartphone. (c) The step of extracting RGB values from the color pad of the dipstick.

The smartphone used in this study had a screen size of 6.1 inches and a resolution of
1792 × 828 pixels at 326 ppi. It also included basic specifications, such as the Triple 12MP
Ultra-Wide, Wide, and Telephoto cameras. The white balance was set automatically under
the condition of lighting from a fluorescent light bulb. The suggested smartphone camera
was used without changing the camera measurement sensitivity and color correction
and by applying the same steps that an actual user would use. The distance from the
smartphone was set to 50 ± 0.5 mm, and the average illuminance was 1000 lux (the color
temperature was 4000 K). The urine dipstick used was the UroColor 10 Urine Test Strip
made by Abbott Korea Diagnostics [22]. Comparative analysis of the results was performed
using a urine dipstick reading device URiSCAN Pro (YD-Diagnostics, 2006, Yongin-si,
Korea) used in hospitals.

The urine used in the experiment was based on artificial urine [23]. The analysis factors
selected were pH, glucose, ketones, hemoglobin, bilirubin, protein (albumin), and nitrites.
According to these test results, various diseases, such as carbohydrate disorders, liver and
hemolysis disorders, and urinary tract infections, can be successfully suspected [24]. The
urine used herein was prepared by dissolving 0.2, 8, 1.14, 0.2, and 0.05 g of KCl, NaCl,
Na2HPO4, KH2PO4, and food coloring (yellow) in 1 L of triple distilled water, respectively.
In addition, the pH was adjusted to 6.0 by adding HCl. Thereafter, RGB analysis was
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performed by adjusting the concentrations of the relevant analyte factors. For example, in
the case of glucose among the analysis factors, first, a 300 mg/dL solution was prepared
by dissolving 300 mg of glucose in 100 mL of artificial urine. Subsequently, 50 mL of this
glucose solution was mixed with 25 mL of the artificial urine to make a diluted solution
of 200 mg/dL. Subsequently, 50 mL of this prepared solution (200 mg/dL) was mixed
with 50 mL of artificial urine and diluted twice to prepare 100 mg/dL. By diluting the
concentration of the analysis factor, the algorithm was implemented by analyzing the
characteristics and change trend of the RGB values according to the concentration change.
Through this, the program was structured to extract the results in the same way as the
existing results.

To reproduce the accuracy of the values measured by the smartphone camera and
those measured by the existing test equipment, the measured values of the existing test
equipment were set as the reference values. In addition, all specific values of RGB were set
as standard values, and a learning model was implemented through the application of the
confusion matrix [25].

Therefore, the measured value, which was calculated as a similar boundary value, was
implemented to match the existing specific value through the learning model. RGB values
implemented in actual urine tests are widely distributed; as these values are generally
presented as figures that are difficult to distinguish from each other, the definition of
boundary values may be ambiguous. Therefore, the measured values should be corrected
to reduce errors in measurements.

To overcome this limitation, by analyzing the properties of heterogeneous RGB data
values using a learning model, accuracy can be increased by reducing errors in determi-
nation and measurement values [26]. The confusion matrix comprises four sub-elements:
TP (True Positive), FP (False Positive), TN (True Negative), and FN (False Negative) [27].
In this study, to obtain the same results as those of the existing test tools by setting the
testing dataset and the training dataset, the decision value approximate to the testing
dataset was presented as a measurement value and subsequently learned by the model.
Therefore, for multiple users, the same dipstick should be tested more than 1000 times to
maintain accuracy.

Accuracy was confirmed by comparing the results of the testing equipment used
in existing clinical practice with those of the test conducted using the developed app.
Thus, urine dipstick agreement was verified with a Bland–Altman plot [28]. The degree of
agreement was confirmed based on the graphic distribution of the average value, which
was obtained by performing the test 10 times under the same conditions.

3. Results

Changes in RGB values according to the concentration of analysis factors in artificial
urine were observed. First, the change in RGB value according to pH concentration is
shown in Figure 3. The RGB values analyzed as colors are displayed in different regions
depending on the analysis factors. This shows the color conversion characteristics according
to the changes in concentrations. Considering individual characteristics, the change areas
of R, G, and B appeared to be different; hence, it was difficult to distinguish them from
the overall visual image change through color conversion applied to all analysis factors.
Therefore, the individual areas were calculated by estimating the change value based on
the optimization factor among R, G, and B by finding the color change characteristics for
the concentrations of each analysis factor.

In the case of pH among the urine dipstick analysis factors, the color conversion
factor was distinctly observed. The extracted R value exhibits the highest reactivity (linear
coefficient and slope) according to pH change and can be calculated on this basis. In the
case of glucose, the change in G value is quantitatively distributed; hence, it can be used as
an index for color conversion estimation of images taken with a smartphone camera. Table 1
presents the RGB selection criteria for the quantitative changes in each analysis factor. In
particular, a linear coefficient (r-squared) value of 0.9 or higher is presented. Herein, the
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linearity range for the analysis factor corresponds to the limit of color processing obtained
with a real smartphone and suggests that color readings within this range are possible.

Figure 3. RGB change values for concentrations in the urine dipstick.

In this experiment, because the color change values of ketones exhibit the most uniform
pattern, the reliability of readings can be increased. Bilirubin presents the lowest color
conversion values and the RGB values are difficult to distinguish. The same pattern can be
detected in visual inspection. Therefore, it is possible to apply the change values for each
analysis factor by presenting the RGB values obtained as a function, thereby reducing the
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error between the actual and extracted values. In addition, it is possible to use an algorithm
to apply to the app.

Table 1. RGB characteristic values of analysis factors by urine dipstick concentration.

No. Urine Analytes R/G/B
(Optimized) Formula Slope R-

Squared Linearity Reference
Range

1 pH R Y = −40.9 × X + 432.7 −40.9 0.9442 pH 5–9 4.8–7.4
2 Glucose B Y = −0.3983 × X + 122.8 −0.3983 0.9104 50–300 mg/dL <20 mg/dL
3 Ketones G Y = −69.92 × log X + 189.1 −69.92 0.9872 5–100 mg/dL(log) <5 mg/dL
4 Hemoglobin R Y = −141.1 × X + 217 −141.1 0.9461 0.25–1.0 ug/mL -
5 Bilirubin G Y = −22.36 × X + 195.2 −22.36 0.9025 0.5–3.0 mg/dL <0.2 mg/dL
6 Protein (albumin) R Y = −48.88 × log X + 208.3 −48.88 0.9682 10–1000 mg/dL(log) <2 mg/dL
7 Nitrites G Y = −53 × log X + 131 −53 0.963 1–100 mg/dL(log) -

For color analysis, a method involving hue, saturation, and value (HSV) rather than
RGB is used at times [29]. In general, it is known that the HSV color space model has
better detection accuracy than the RGB model in image analysis because it cannot separate
the effect of light from color information. However, this study aims to utilize color space
information for quantitative analysis. Therefore, it is important to analyze the linearity
(coefficient of determination) and slope of RGB and HSV values according to the con-
centrations of urine components. As shown in Figure 4, the color space values for the
urine analysis factor concentrations were extracted as in RGB extraction, and the linear
coefficients and slope values were calculated using a prism (GraphPad Software, Inc., San
Diego, CA, USA) [30]. As a result, the RGB value and the individual HSV value were
plotted according to the concentration of bilirubin, and then a graph was created. The
coefficients of determination (r2) of the R and V values of bilirubin were the highest at
0.9596 and 0.9422, respectively, and the slope was approximately thrice higher. As the
reactivity of the extracted value was high according to the change in concentration, the
concentration could be determined based on the change in color. Therefore, as shown in
the experimental results, RGB extraction analysis tends to be similar to that of HSV.

Figure 4. Comparison of RGB and HSV values for Bilirubin, Hb, and pH. (The values were extracted
and compared using GraphPad software; an iPhone 11 pro was used as the smartphone.)

Figure 5 shows the screen of the application in which the development algorithm is
applied. It was configured to express the same quantitative result as the test result of a
specific item representing the same value. Figure 6 shows the degree of agreement between
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the test result extracted from the device used in hospitals (URiSCAN Pro) and that obtained
from the app using a Bland–Altman plot. In the graph, the black dots denote the results of
testing with the existing urine test device (URiSCAN Pro), whereas the white dots denote
the results extracted using the app developed in this study. The closer the two points, the
more likely it is that the result will be the same. It was found that the seven results for the
presented urine analytes showed the same degree of agreement. Therefore, it was predicted
that there would be no difficulty in applying the algorithm developed as a function using
RGB analysis values to urinalysis.

Figure 5. Urine dipstick test application. 1. Region of interest 2. Button for backward movement.
3. Button for taking a picture.

Figure 6. Comparison for the analysis of urine dipstick test result agreement.

The test values measured by the developed algorithm are consistent when the test is
performed in identical environments; however, the measurement environment may vary
depending on the user. Therefore, a confusion matrix-based model was applied which can
continuously learn the measured values regardless of the current user. The results are listed
in Table 2. The measurement value for the existing equipment is an absolute value, and
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when a new dipstick is tested a new measurement value is learned on the basis of the value
measured by the current test. As a result, an average accuracy of 98.74% can be maintained.

Table 2. Results of application of the urine dipstick confusion matrix model.

New URiscan Pro Smartphone Accuracy

New 1 New 2 New 3 New 4 Test 1 Test 2 Test 3 Test 4 Train 1 Train 2 Train 3 Train 4 98.56%
New 1 New 2 New 3 New 4 Test 1 Test 2 Test 3 Test 4 Train 1 Train 2 Train 3 Train 4 97.67%
New 1 New 2 New 3 New 4 Test 1 Test 2 Test 3 Test 4 Train 1 Train 2 Train 3 Train 4 99.85%
New 1 New 2 New 3 New 4 Test 1 Test 2 Test 3 Test 4 Train 1 Train 2 Train 3 Train 4 98.88%

Average 98.74%

In this study, the standard values for artificial urine analyzed through the linear
semi-quantitative algorithm were consistent with the values measured using the existing
equipment. Considering this result, the proposed method will help improve the repro-
ducibility of the accuracy of data recorded by users in actual clinical trials.

4. Discussion

Generally, urinalysis can test for kidney disease and other systemic diseases at a low
cost. Therefore, accessing the simple test method results should be convenient. A method
for presenting quantitative values by acquiring test results according to the color of urine
in smartphone camera images has been recently developed, and commercialization of
this method is being promoted as an app [30–33]. The urine dipstick color conversion
factor is recognized as a total value; therefore, a change factor may occur depending on
the illuminance or environment. In addition, because the color conversion coefficient is
corrected based on an estimated specific value, there may be differences between each
urinalysis app [34].

In existing research, for the most part, standard color values are inputted and matching
algorithms are applied. In this case, it is difficult to present an accurate quantitative refer-
ence value because errors at the boundary of the color conversion value or corresponding to
an incorrectly recognized value due to environmental conditions may occur. This problem
can be solved through machine learning, which matches RGB values with spectral conver-
sion values [35,36]. In addition, it can be solved using a method that predicts linearity and
suggests semi-quantitative indicators, similar to the method employed in this study.

In general, the RGB or HSV model is used for color image analysis; however, in
this study, the RGB model, which has excellent accessibility because of the availability
of many applicable programs, was used, and similar results were extracted and applied
from comparative experimental results. Semi-quantitative analysis has the advantage of
quantitatively estimating detected amounts of analytes by extracting an optimized linear
relationship according to element concentration and RGB value. The app-based urinalysis
in this study obtained semi-quantitative values using RGB values and then presented a new
algorithm for extracting quantitative values through AI. Therefore, it is useful to provide
a standard for quantitatively predicting the degree of a suspected disease, which can be
presented in the same way as the test result in a hospital, thereby increasing the reliability
of the examiner. In the existing urinalysis app, color interpolation is applied for accuracy
and an analysis method using linear interpolation was applied [37], but this requires that
all RGB values are applied. In addition, the app has its own standard algorithm which
digitally extracts the color table provided by the urine dipstick company; therefore, there
may be differences depending on the app [38]. When analyzing test results with colors
obtained with a smartphone camera, as in this study, linearity can be found through the
formula of specific color values among the extracted R, G, and B values according to the
analysis factors for each concentration. If the optimized RGB value is applied, the accuracy
of the color conversion value can be improved through semi-quantitative analysis.
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In addition, to maintain accuracy, an AI-based measurement service is required, and
because the environment and usage method differ for each user, the test results obtained
through self-diagnosis require reproducibility of accuracy. Accordingly, as an effective
solution, the measured and absolute values are learned using a confusion matrix, and
subsequently the similar measured values are estimated and presented. Accuracy refers to
the degree to which the same result value can be maintained even in the case of repeated
tests, not the classification of boundary values.

In general, color interpretation of digital images using a smartphone camera is influ-
enced by the choice of color space and the method of measuring color similarity [39,40].
The color space provides specific values for all expressed colors, and in this study, RGB,
the basic color space used in camera sensors and computer displays, was applied as a
standard. The linearity of the RGB values was used to determine the similarity between
colors, thereby yielding the same values as the actual test values. Therefore, the same value
can be presented in a constant environment, and the accuracy of the test can be improved
by applying the semi-quantitative linearity. In addition, in the case of a variable environ-
ment, the machine-learning model was applied. Nevertheless, this study has a limitation:
although artificial urine was produced and quantitative values for each concentration were
determined, comparison and verification of results for the urine of patients with actual
diseases will be of paramount importance in future studies.

5. Conclusions

In this study, an algorithm was developed to extract the color of a urine dipstick
from a smartphone camera image and apply the optimized RGB specific color value
through semi-quantitative analysis. By extracting the RGB linear coefficient for each
urine concentration of seven urine dipstick analysis factors, we succeeded in deriving
result values with the same pattern as existing test results. Therefore, both the accuracy
of the test result extracted based on color analysis and the error of the color analysis
quantitative value in the existing algorithm were improved. In addition, considering a
variable measurement environment for each user, a confusion matrix-based learning model
was applied to maintain the reproducibility of accuracy; consequently, an average accuracy
of 98.74% was maintained. These findings contributed to increasing the accessibility of test
results and may be applied in future medical platforms.
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