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Background and Purpose  Achieving favorable postoperative outcomes in patients with 
drug-resistant epilepsy (DRE) requires early referrals for preoperative examinations. The pur-
pose of this study was to investigate the possibility of a user-friendly early DRE prediction model 
that is easy for nonexperts to utilize.
Methods  A two-step genotype analysis was performed, by applying 1) whole-exome sequenc-
ing (WES) to the initial test set (n=243) and 2) target sequencing to the validation set (n=311). 
Based on a multicenter case–control study design using the WES data set, 11 genetic and 2 clin-
ical predictors were selected to develop the DRE risk prediction model. The early prediction 
scores for DRE (EPS-DRE) was calculated for each group of the selected genetic predictors 
(EPS-DREgen), clinical predictors (EPS-DREcln), and two types of predictor mix (EPS-DREmix) 
in both the initial test set and the validation set.
Results  The multidimensional EPS-DREmix of the predictor mix group provided a better 
match to the outcome data than did the unidimensional EPS-DREgen or EPS-DREcln. Unlike 
previous studies, the EPS-DREmix model was developed using only 11 genetic and 2 clinical pre-
dictors, but it exhibited good discrimination ability in distinguishing DRE from drug-respon-
sive epilepsy. These results were verified using an unrelated validation set.
Conclusions  Our results suggest that EPS-DREmix has good performance in early DRE pre-
diction and is a user-friendly tool that is easy to apply in real clinical trials, especially by non-
experts who do not have detailed knowledge or equipment for assessing DRE. Further stud-
ies are needed to improve the performance of the EPS-DREmix model.
Keywords  ‌�epilepsy; drug resistant epilepsy; genome-wide association study;  

genetic predictor.

Multidimensional Early Prediction Score 
for Drug-Resistant Epilepsy

INTRODUCTION

Epilepsy is a common neurological disorder that affects approximately 8 in 1,000 individuals 
worldwide,1 of which more than one-third experience drug-resistant seizures even in indus-
trialized countries where most antiseizure medications (ASMs) are readily available.2 Peo-
ple with drug resistant epilepsy (DRE) are well known to have minimal chances of seizure 
freedom based on additional medication trials,3 and they suffer from substantial disabilities 
including reduced quality of life (QOL), serious psychosocial consequences, cognitive prob-
lems, and increased morbidity and mortality in addition to seizure itself.4-6 Furthermore, stud-
ies of epilepsy subpopulations have revealed a consistent pattern of markedly higher health-
care costs for those with DRE and for those with comorbidities.7 Thus, the early identification 
of DRE during ASM treatment has a high priority over early introduction of late-alternative 
treatment modalities such as epilepsy surgery. This approach is important for preventing the 
associated disability outcomes and improving prognoses. 
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It is well known that epilepsy surgery is an evidence-based 

treatment option for people with DRE that is superior to drug 
therapy.8-13 Also, the only known modifiable factor associated 
with a favorable postsurgical seizure outcome is the duration 
of epilepsy prior to epilepsy surgery.14 Systematic reviews and 
a meta-analysis of the effects of epilepsy surgery time revealed 
that a short epilepsy duration has a favorable effects on QOL, 
cognitive and psychosocial function, cost and mortality as a 
determinant of postoperative seizure-free.14-19 This indicates 
the importance of early referral of patients with DRE, includ-
ing avoiding the delays associated with presurgical investiga-
tions to determine the suitability for epilepsy surgery.14 How-
ever, several studies have shown that the duration of epilepsy 
before temporal lobe epilepsy is about 20 years8,9,20-22 and that 
the delay to surgery has not decreased for more than 10 years, 
despite the increasing evidence for the efficacy of epilepsy 
surgery.23,24 

The reason for delaying surgery includes neurologists find-
ing it difficult to identify DRE or being reluctant to consider 
epilepsy surgery early in the course of the disease.21,22,25-28 This 
difficulty or reluctance is at least partly attributable to general 
neurologists not being able to accurately identify potential 
surgical candidates.22 Despite remarkable advancements in 
the understanding of epilepsy pathogenesis, the mechanism 
underlying ASM resistance is not yet sufficiently clear to al-
low the identification of DRE biomarkers.29 Also, clinical pre-
dictors of DRE identified in outcome studies in epilepsy do 
not fully predict ASM resistance by single or combination.30 
On the other hand, Kwan and Brodie3 proposed that DRE 
may be present from the start of epilepsy rather than evolv-
ing over time, since certain clinical characteristics of this type 
of epilepsy are obvious at the beginning of the disease, rais-
ing the possibility of early DRE diagnosis.

There is accumulating evidence that polygenic inheritance 
with many common genetic variants exerting modest effects 
plays a greater role than rare monogenic mutations in most 
common diseases.31-34 Genome-wide polygenic risk scores 
(PRSs) have recently been developed for five common diseas-
es such as coronary artery disease, atrial fibrillation, and breast 
cancer, and have been demonstrated to be reliable in predict-
ing the risk of disease in individuals with European ances-
try.34,35 Also, such a PRS is the only approach that provides an 
estimate of genetic liability to a trait at the individual level, 
and which can be used to stratify individuals according to 
their risk of a given disease to improve screening and preven-
tion strategies.34,36 Nevertheless, it should be noted that PRSs 
cannot be used for all races because the characteristics of the 
genetic architecture underlying PRSs vary with ancestry,34 
which makes it necessary to develop PRSs based on race-spe-
cific genome-wide association study (GWAS) data. However, 

there are no unique GWAS data to date for estimating the 
DRE risk for Koreans, let alone PRSs for DRE prediction. 

The purpose of this study was to investigate the possibility 
of a user-friendly early DRE prediction model using a rela-
tively small Korean GWAS data set and unambiguous clinical 
information that is easy for nonexperts to utilize at the time 
of an epilepsy diagnosis. Such a model would made it easy for 
nonexperts to decide when to introduce late alternative treat-
ments such as epilepsy surgery as soon as possible in the pro-
cess of managing newly diagnosed epilepsy patients at out-
patient clinics in Korea.

METHODS

Study design and participants
This multicenter case-control study recruited consecutive par-
ticipants from 12 domestic epilepsy referral centers and per-
formed a 2-step genotype analysis. Whole-exome sequencing 
(WES) was applied to 243 participants (test set) who partici-
pated in our previous study (recruited from Jan 2016 to Jun 
2017),37 and target sequencing was applied to 311 participants 
(validation set) who were newly involved in verifying the re-
sults of the initial study (recruited from Jul 2020 to Dec 2021). 
The DRE prediction scores were calculated based on geno-
type data and clinical information of all participants. 

The inclusion and exclusion criteria in this study were iden-
tical to those in our previous study.37 In brief, participants were 
eligible if they were older than 20 years and had DRE or drug-
responsive epilepsy (RSE) according to the following defini-
tions and criteria: To enhance the phenotype contrast between 
the RSE and DRE groups, we defined drug resistance more 
stringently than the conventional definition38 as the occur-
rence of at least 12 unprovoked seizures during 1 year prior 
to recruitment, with trials of 2 or more appropriate ASMs at 
the maximal tolerated doses, which were established on the 
basis of the occurrence of clinical side effects at supramaximal 
doses. RSE was defined as complete freedom from seizures 
for at least 1 year up to the date of the last follow-up visit in pa-
tients treated with a single ASM. However, patients who had 
a definite history of epilepsy in first- or second-degree rela-
tives, frequently exhibited poor compliance with ASM ther-
apy, had experienced nonmotor seizures only without con-
sciousness impairment, or had progressive developmental 
epileptic encephalopathies were excluded. An extensive his-
torical assessment was performed in all participants using a 
standardized form to obtain detailed information on the epi-
demiology, seizure characteristics, epilepsy syndrome, elec-
troencephalography (EEG) and magnetic resonance imaging 
findings, and the family history. 

This study was approved by the Institutional Review Boards 
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at Chonnam National University Hospital (approved num-
bers CNUH-2016-028 and CNUH-2020-208). All research 
protocols were performed in accordance with relevant guide-
lines and regulations, and written informed consent was ob-

tained from all participants.

Selection of candidate genetic variants and clinical 
predictors 
WES data for the test set were produced following the man-
ufacturer’s protocol as described for our previous study.37 Qual-
ity control of WES data was performed mostly according to 
the following standard inclusion guideline recommended by 
Choi et al.36: individual sample or variant fulfilling a genotyp-
ing call rate >0.99, sample missingness <0.02, Hardy-Wein-
berg equilibrium p>1×10-6, and heterozygosity within three 
standard deviations of the mean. 

The workflow for WES data analysis to identify candidate 
genetic variants with a higher prediction potential is shown 
in Fig. 1. First, variants with a read depth of ≥30× and vari-
ants of known epilepsy-associated genes (n=215) (Table 1) 
that cause pure or relatively pure epilepsies or syndromes with 
epilepsy as the core symptom39 or variants of candidate genes 
that are associated with the hypothesized mechanisms of ASM 
resistance40,41 were included. Second, deletion-insertion vari-
ants, variants with ambiguous strand (A/T or C/G), and vari-
ants with a minor allele frequency of <1% in East Asian pop-
ulation (gnomAD; http://gnomad.broadinstitute.org/) were 
excluded. Third, uncorrelated variants (correlation coefficient 
r2<0.9) with lowest p value for association with overall DRE 
were included. Fourth, to achieve the highest prediction ac-
curacy, only variants with a stepwise forward regression for 
which p≤0.05 were retained. For the finally selected target 
variants to be included in calculating the risk score, real-time 
PCR using high resolution melting (HRM) analysis with ap-
propriate primer pairs (Supplementary Table 1 in the online-

243* WES
5.32×105 variants

	 Deletions: 41,864
	 Insertions: 27,897
	 SNPs: 462,642

Read depth ≥30 (included)
Epilepsy-associated genes (included)

2,314 variants

Variants with correlation r2<0.9 (included)
97 variants

Stepwise forward regression of p≤0.05 (included)
44 variants

Deletion-insertion variants (excluded)
Variants with ambiguous strand (excluded)

MAF <1% in East Asian population (excluded)
111 variants

Fig. 1. Workflow of the candidate genetic variants filtering process. 
The customized stringent filtering process was used to identify can-
didate genetic variants with higher predictability of drug resistant 
epilepsy with a high confidence. *1 case was excluded from the final 
analysis due to data ambiguity. MAF, minor-allele frequency; SNPs, 
single nucleotide polymorphisms; WES, whole-exome sequencing. 

Table 1. Epilepsy associated genes

Epilepsy genes (n=105) 

AARS, ADRA2B, ADSL, ALDH7A1 ALG13, ARV1, ATP6AP2, CACNA1A, CACNA1H, CACNB4, CASR, CDKL5, CERS1, CHD2, CHRNA2, CHRNA4, CHRNB2,  
  �CLCN2, CLN3, CLN5, CLN6, CLN8, CNTN2, CPA6, CSTB, CTSD, DEPDC5, DNM1, DOCK7, EEF1A2, EFHC1, EPM2A, FGF12, FOXG1, FRRS1L, GABRA1, 
GABRB1, GABRB3, GABRD, GABRG2, GAL, GAMT, GATM, GNAO1, GOSR2, GPR98, GRIN2A, GRIN2B, GRIN2D, GUF1, HCN1, ITPA, KCNA2, KCNB1, 
KCNC1, KCNMA1, KCNQ2, KCNQ3, KCNT1, KCTD7, LGI1, LMNB2, MFSD8, NECAP1, NHLRC1, NPRL2, NPRL3, NRXN1, PCDH19, PLCB1, PNPO, POLG, 
PPT1, PRDM8, PRICKLE1, PRIMA1, PRRT2, SCARB2, SCN1A, SCN1B, SCN2A, SCN8A, SCN9A, SIK1, SLC12A5, SLC13A5, SLC1A2, SLC25A12, SLC25A22, 
SLC2A1, SLC6A1, SLC9A6, SPTAN1, ST3GAL3, ST3GAL5, STX1B, STXBP1, SZT2, TBC1D24, TCF4, TPP1, UBA5, UBE3A, WWOX, ZEB2 

Neurodevelopment-associated epilepsy genes (n=73) 

ANKLE2, AMPD2, ARFGEF2, ARX, ASPM, ATN1, CASK, CCDC88C, CDK5, CENPE, CENPJ, CLP1, CNTNAP2, COL4A2, DCX, DIAPH1, EMX2, EPSECS, ERMARD,  
  �EXOSC3, FIG4, FLNA, GPR56, HERC1, IER3IP1, KATNB1, KIF11, KIF2A, KIF5C, LAMB1, LAMC3, MED17, MFSD2A, MPDZ, NDE1, NSDHL, OCLN, OPHN1,  
PAFAH1B1, PCLO, PIK3R2, PLEKHG2, PNKP, PPP1R15B, PTCH1, QARS, RELN, RTTN, SASS6, SLC12A6, SLC20A2, SNIP1, SPATA5, SRPX2, STAMBP,  
STRADA, SYN1, TRMT10A, TSC1, TSC2, TSEN15, TSEN2, TSEN54, TUBA1A, TUBA8, TUBB2A, TUBB2B, TUBB3, TUBG1, VPS53, WDR62, WDR73, XPR1

Other genes* associated with the hypothesized mechanisms of ASM resistance (n=37) 

ABCB1, ABCC2, ACTB, ACTG1, AKT3, AVO3, CHD7, COL18A1, CYP1A1, CYP2C19, CYP2C9, DCHS1, DYNC1H1, EOMES, EZH2, FAT4, FH, FMR1, KIAA1279,  
  �KIAA1303, KIAA1999, LIS1, LRP2, MTOR, PAX6, PIK3CA, PTENRAB18, RAB3GAP1, RAB3GAP2, RICTOR, RPTOR, SNAP29, TBR2, TUBB, UGT1A1, UGT2B7, 
VLDR

*The genes common to the previous two categories were omitted. ASM, antiseizure medication.
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only Data Supplement) was performed according to the man-
ufacturer’s protocol42 to determine the genotype of the new 
samples for validation purposes (validation set). Any ambigu-
ous results from HRM analysis were re-examined using Sanger 
sequencing.

Clinical factors associated with DRE were selected through 
a literature review. The following clinical factors were consid-
ered as candidate clinical predictors: age at seizure onset, epi-
lepsy duration, initial responses to treatment, pretreatment 
seizures frequency, symptomatic epilepsy, seizure type, abnor-
mal neuroimaging findings, abnormal EEG findings, febrile 
seizure, and status epilepticus.2,43,44 Seizure type was classified 
into focal and generalized seizures. An abnormal neuroimag-
ing finding was defined as the presence of potential epilepto-
genic lesions in the brain, such as hippocampal sclerosis, tu-
mor, vascular malformation, focal cortical dysplasia, stroke, 
or brain trauma. An asymptomatic periventricular white-
matter hyperintensity was not considered as a potential epi-
leptogenic lesion in this study. Symptomatic epilepsy was 
defined based on the presence of abnormal neuroimaging 
findings as listed above. An abnormal EEG finding was de-
fined as one indicating either epileptiform discharges or ab-
normal slow waves (abnormal EEG1), or epileptiform dis-
charges only (abnormal EEG2). Status epilepticus was defined 
in accordance with the classification of the International 
League Against Epilepsy task force.45 Reported clinical pre-
dictors of DRE2,43,44 that could be subject to observer-based 
bias and thus affect the study outcomes were excluded from 
the analysis for calculating the early prediction score for DRE 
(EPS-DRE). 

Calculating EPS-DRE
The EPS-DRE was developed in accordance with the statisti-
cal methods used in previous studies34,35 to calculate genome-
wide polygenic scores for common diseases, with minor mod-
ifications:

EPS-DRE = β1χ1 + β2χ2 +… + βκχκ + … βnχn,

where βκ is the per-allelic or per-clinical-predictor logarithm 
of the odds ratio (OR) for DRE associated with genetic vari-
ant or clinical predictor κ, which is the effect size (weight) of 
the risk alleles or clinical factors as estimated by a GWAS on 
the phenotype; χκ is the dosage for genetic variant κ or clin-
ical predictor κ (number of risk allele or clinical factors); and 
n is the total number of genetic variants and clinical predic-
tors included in the EPS-DRE. Since the PRS provides a quan-
titative metric of the inherited risk of an individual based on 
the cumulative impact of many common polymorphisms, a 
weight is generally assigned to each genetic variant according 

to the strength of its association with disease risk.34 In calcu-
lating PRSs for a binary (e.g., case/control) phenotype, the ef-
fect sizes used as weights are typically reported as log(OR) val-
ues.36 Therefore, EPS-DREs were generated based on how 
many risk alleles they have for each genetic variant (e.g., 0, 1, 
2 copies)34,35 or whether or not they have each clinical predic-
tor (e.g., 0 or 1) in the present study. More simply, the EPS-
DRE was calculated by computing the sum of the value: [the 
dosage of each risk allele or each clinical predictor × respec-
tive log(OR) value].36 Finally, the standardized EPS-DRE [(each 
calculated EPS-DRE value minus the mean of EPS-DREs)/ 
(standard deviation of EPS-DREs)] was used to measure the 
predictive ability and validity of the EPS-DRE model. For val-
idation testing, the dosage and effect size of each risk allele 
or each clinical predictor generated from the reference test 
set were applied as it was to the validation set. 

 
Statistical analysis
Student’s t-test and chi-square test were used to examine the 
difference of demographic variables between the DRE and 
RSE groups. In addition, EPS-DREs were compared between 
these two groups using t-tests. Univariate linear regression 
analysis was performed to identify the candidate genetic and 
clinical predictors for calculating EPS-DRE using the test set. 
Multivariate linear regression analysis was performed to adjust 
for covariates. If multiple candidate predictors were signifi-
cantly correlated, the predictor with the lowest p value was se-
lected. Furthermore, the missing values for each variable were 
excluded from the analysis. The correlation between the DRE 
and EPS-DREs was also determined using regression analy-
sis. The significance level was evaluated using the Wald test, 
and the explanatory ability was evaluated through Nagelker-
ke’s R2 value. Receiver operating characteristic (ROC) analysis 
was used to determine the effect size of the continuous vari-
able (i.e., seizure-onset age) and to evaluate the accuracy of 
the EPS-DRE model, which distinguishes DRE from RSE. The 
area under the ROC curve (AUC) was categorized into the 
following discrimination abilities:46 excellent discrimination, 
AUC of ≥0.90; good discrimination, 0.80≤AUC<0.90; fair 
discrimination, 0.70≤AUC<0.80; and poor discrimination, 
AUC<0.70. The Youden index47 was used to determine the 
optimal cutoff value for estimating the effect size of the con-
tinuous variable. Analyses were carried out using SPSS statis-
tics (version 26; IBM Corp., Armonk, NY, USA), and all tests 
of statistical significance were two-sided. 

RESULTS

Demographic data
The test set consisted of 120 unrelated patients with RSE and 
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122 patients with DRE (1 patient who was previously classi-
fied into the RSE group was excluded from the analysis due 
to data ambiguity). The validation set consisted of 157 unre-
lated patients with RSE and 154 patients with DRE. There was 
no significant difference in sex (p=0.797) or drug response (p= 
0.864) between the two sets. The mean age at recruitment and 
the mean age at seizure onset were significantly higher in the 
validation set than the test set (43.6 vs. 39.6 years [p=0.001] 
and 25.8 vs. 20.6 years [p<0.001], respectively). The mean age 
at seizure onset was significantly higher in the RES group 
than in the DRE group (25.5 vs. 15.8 years [p<0.001] in the 
test set and 30.3 vs. 21.1 years [p<0.001] in the validation set), 
while the mean age at recruitment did not differ significant-
ly between the RES and DRE groups in each set (Table 2).

Selection of candidate genetic and clinical predictors
WES on 242 samples in the test set yielded about 5.3×105 ge-
netic variants. Among the 2,314 variants of 215 known epi-
lepsy-associated genes with a read depth of ≥30×, 97 variants 
remained after applying a customized stringent filtering pro-
cess to enhance data accuracy (Fig. 1). Since the genotyping 
call rate was complete for the filtered 97 variants, imputation 
was not required to test the association between each variant 
and DRE. To avoid the risk of ignoring information from large 
numbers of variants that are likely to be associated with DRE, 
we adopted a general approach to test the association based 
on a stepwise forward regression with p≤0.05 rather than a 

stringent significance threshold for GWAS such as p=5×10-8.35 
The association study resulted in 44 variants being moved to 
estimate the effect size (OR) of each variant using simple re-
gression analysis (Fig. 1). Finally, 11 variants of the following 
9 genes with an estimated effect (the regression coefficient) 
of p≤0.05 were chosen for calculating EPS-DRE: DOCK7 
(1), LRP2 (1), PLCB1 (2), SIK1 (1), GPR98 (1), DIAPH1 (1), 
LAMB1 (1), CNTNAP2 (2), and TSC1 (1) (Supplementary 
Table 1 in the online-only Data Supplement). Notably, there 
was a large racial difference in the reference-allele frequency 
of some variants based on gnomAD (version 2.1.1) (Supple-
mentary Table 2 in the online-only Data Supplement). 

The initial responses to treatment, the pretreatment seizure 
frequency, and symptomatic epilepsy were excluded from the 
analysis of the candidate clinical predictors of DRE. A previ-
ous retrospective study37 found that the mean epilepsy dura-
tion of the participants with DRE was approximately 24 years 
in the test set (Table 2). Therefore, it was difficult to obtain the 
clinical records of the early treatment period after epilepsy 
diagnosis in most DRE patients. Since symptomatic epilepsy 
was defined based on neuroimaging findings in this study, it 
could be replaced by abnormal neuroimaging. The classifica-
tion of abnormal EEG1 could be replaced by abnormal EEG2 
(epileptiform discharges only) because these two classifica-
tions were strongly correlated (Pearson correlation coefficient 
r=1, p=0.01). Univariate regression analysis (Supplementary 
Table 3 in the online-only Data Supplement) revealed that 

Table 2. Demographic and clinical characteristics of participants by disease status

Characteristic Test set (n=242) Validation set (n=311) p
Drug response 0.864

RSE 120 (49.6) 157 (50.5)

DRE 122 (50.4) 154 (49.5)

Age (yr)

At recruitment 39.6±13.3 (range, 20–84) 43.6±14.9 (range, 20–89) 0.001

RSE 39.3±15.1
(p=0.745)

42.9±16.8
(p=0.447)

DRE 39.9±11.2 44.2±12.8

At seizure onset 20.6±13.7 (range, 0–68) 25.8±16.8 (range, 0–80) <0.001

RSE 25.5±15.2
(p<0.001)

30.3±17.4
(p<0.001)

DRE 15.8±10.1 21.1±14.9

Sex, male 128 (52.9) 168 (54.0) 0.797

RSE 64 (53.3)
(p=0.898)

88 (56.1)
(p=0.496)

DRE 64 (52.5) 80 (51.9)

Epilepsy duration (yr) 19.2±12.2 17.95±13.2 0.255

RSE 14.0±10.1
(p<0.001)

12.6±10.7
(p<0.001)

DRE 24.3±11.9 23.4±13.2

Abnormal imaging (n=RSE:113, DRE:112) (n=RSE:156, DRE:150) 0.593

RSE 38 (33.6)
(p≤0.001)

54 (34.6)
(p<0.001)

DRE 61 (54.5) 102 (68.0)

Values are presented as n (%) or mean±standard deviation unless otherwise indicated.
DRE, drug resistant epilepsy; RSE, drug-responsive epilepsy.
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epilepsy duration (p<0.001), abnormal EEG2 (p<0.001), age 
at seizure onset (p<0.001), seizure type (p=0.002), and abnor-
mal neuroimaging (p=0.002) were significantly associated 
with DRE. Age at seizure onset was strongly correlated with 
epilepsy duration (r=-0.464, p=0.01) and abnormal EEG2 (r= 
-0.197, p=0.01), and abnormal neuroimaging was strongly 
correlated with seizure type (r=0.233, p=0.01). Finally, age at 
seizure onset and abnormal neuroimaging were selected as 
candidate clinical predictors for calculating EPS-DRE. These 
clinical factors were preferred because they are less ambigu-
ous, and moreover they can be obtained at earlier stages of 
epilepsy treatment; for example, epilepsy duration cannot be 
an important DRE predictor in the early stages of epilepsy 
treatment. Also, one of the most intractable types of seizures 
(a focal impaired awareness seizure without motor symp-
toms) might be underrecognized by clinicians who are not 
epilepsy specialists. This exclusion prevented overfitting of the 
prediction model and also simplified it, consistent with the 
aim of this study. ROC analysis determined the cutoff value 
for measuring the effect size (OR) of age at seizure onset as 
13.5 years. The dosage of the effect was assigned as 1 if the age 
at seizure onset was ≤13.5 years, and as 0 otherwise. Simple 
regression analysis was performed to estimate the effect size. 

Early prediction score for DRE

EPS-DRE of test set
The mean EPS-DREgen, EPS-DREcln, and EPS-DREmix values 
in the RSE group differed significantly from the corresponding 
scores in the DRE group (p<0.001 for each test). Logistic re-
gression analysis revealed that each EPS-DREgen, EPS-DREcln, 
and EPS-DREmix model was significantly and independent-
ly associated with DRE: OR=3.725 (95% confidence interval 
[CI], 2.525–5.495), OR=2.915 (95% CI, 2.123–4.003), and 
OR=2.873 (95% CI, 2.195–3.761), respectively. The corre-
sponding Nagelkerke R2 values were 0.314, 0.271, and 0.446, 
respectively, indicating that the EPS-DREmix model provid-
ed the best fit to the outcome data. In ROC analysis (Fig. 2), 
AUC was 0.777 (95% CI, 0.720–0.834), 0.766 (95% CI, 0.706–
0.826), and 0.842 (95% CI, 0.793–0.890), respectively, indi-
cating that the EPS-DREmix model had good discrimination 
ability46 in distinguishing DRE from RSE. 

EPS-DRE of validation set
As in the test set, the mean EPS-DREgen, EPS-DREcln, and EPS-
DREmix values differed significantly between the RSE and 
DRE (p=0.004, p<0.001, and p< 0.001 in t-tests, respectively) 
and each EPS-DRE model was also independently associat-
ed with DRE: OR=1.416 (95% CI, 1.112–1.804), OR=2.514 
(95% CI, 1.923–3.287), and OR=2.093 (95% CI, 1.692–2.590), 

respectively. Also like in the test set, Nagelkerke R2 (0.232) was 
highest in the EPS-DREmix model, whose discrimination abili-
ty was fair (AUC=0.739).46

DISCUSSION

It could have been assumed that the initial efforts to create 
PRS for common diseases were hampered by the smallness of 
the initial GWAS, which affected the precision of the estimat-
ed impact of individual variants on disease risk, and by the 
lack of large data sets needed to test and verify PRS.34 In fact, 
summary statistics of a large GWAS data involving 184,305 
participants were used to create the candidate PRSs of coro-
nary artery disease (PRSCAD) and a total of 6,630,150 variants 
were involved in calculation of the best PRS defined as the 
maximum AUC (0.81).34 More recently, the best PRS for breast 
cancer (PRSBREAST CANCER) with an AUC of 0.630 was developed 
using 313 variants and verified with a data set comprising 
about 30,000 participants.35 These results showed that PRS is 
a powerful and reliable predictor of common polygenic dis-
eases but the burden of developing a prediction model of com-
mon disease is pronounced. To make matter worse, PRS is es-
sentially race-specific, and so individual PRS system for each 
race may be needed for multiracial societies. This is expen-
sive and requires large amounts of time and knowledge of 
basic or clinical science that cannot be accessed at the indi-
vidual level. This suggests that meeting the needs of individ-
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Fig. 2. Receiver operating characteristics (ROC) curves of three early 
prediction score for drug resistant epilepsy (EPS-DRE) models. The area 
under the ROC curve of EPS-DREmix (green) was higher than that of EPS-
DREcln (red) or EPS-DREgen (blue), indicating that EPS-DREmix model 
was the best for distinguishing DRE from drug-responsive epilepsy. 
The reference line is the ROC curve corresponding to random chance. 
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ual races requires the size of the data set for calculating the 
PRS to be much smaller than in previous studies, while also 
maintaining a high prediction accuracy. 

Generally, the larger number of predictors involved in the 
PRS calculation is, the better the fit of the PRS is.36 As noted 
above, PRSBREAST CANCER and PRSCAD needed hundreds to 
millions of predictors for developing PRSs with best perfor-
mance.34,35 However, in practice, the inclusion of too many 
predictors can be a barrier to clinical applications at the indi-
vidual level due to the economic and time burdens of perform-
ing the associated genetic analyses. It is particularly interesting 
that recent studies have shown that the best-performing PRS 
does not necessarily involve the largest number of predic-
tors; for example, the PRSBREAST CANCER calculated from 313 
predictors (PRS313) showed better performance than that cal-
culated using 5,194 predictors (PRS5,194).34,35 

In this study, the EPS-DREmix model had a good discrimi-
nation ability in distinguishing between RSE and DRE (AUC= 
0.842), even though it was derived from much smaller data 
sets than in previous studies,34,35 and using only 13 multidi-
mensional predictors. This shows that assumptions about the 
size of the data set or the number of predictors required to 
develop the best PRS might be invalid, especially under cer-
tain conditions that can improve the performance of the PRS. 
The conditions underlying such a good performance of the 
EPS-DREmix model in this study were presumed as follows: 
First, DRE was more strictly defined than the conventional 
definition38 in order to increase the phenotypic contrast be-
tween the case and control groups. Second, candidate genetic 
variants selected for calculating EPS-DREmix were restricted 
to known epilepsy-related genes or genes associated with po-
tential mechanisms of DRE (Table 1). This consequently seems 
to rule out unnecessary false positive associations between 
possible confusing factors and DRE. Third, any ambiguity was 
also ruled out in selecting candidate genes and clinical pre-
dictors; for example, no imputation that can cause up to 22% 
of the wrong genotypes48 was required, and no clinical pre-
dictors that can cause observer bias were used. Fourth, to im-
prove the performance of DRE prediction model, a multidi-
mensional approach was applied by combining genetic and 
clinical risk scores, as asserted by Rudolph et al.49 

 The present study has several limitations. First, the EPS-
DREmix model is a preliminary result of research to explore 
the possibility of developing a DRE prediction model that can 
be easily used by nonexperts. Therefore, further work might 
be needed before it can be applied directly in the field. The 
discrimination ability of the EPS-DREmix model remained 
statistically significant for both the test and the validation sets, 
but its explanatory power (Nagelkerke R2) in the validation 
set reduced compared to the test set. The difference between 

the two data sets may reflect overfitting associated with choos-
ing the optimal threshold for the p value.35 Adding new effec-
tive genetic or clinical DRE predictors not considered in the 
present study in future studies will improve the performance 
of the EPS-DREmix model. For example, a prospective study 
design could test whether the initial response to treatment or 
pretreatment seizure frequency can improve the model’s per-
formance. Second, since the allele frequencies, linkage dis-
equilibrium patterns, and effect sizes of common polymor-
phisms vary with ancestry, certain PRSs for one racial group 
will not necessarily provide optimal predictive abilities for 
other racial groups.34,50 Such differences by race were observed 
in this study (Supplementary Table 2 in the online-only Data 
Supplement), which means that the application of the EPS- 
DREmix model should be restricted to Koreans and East Asians. 
Third, candidate genetic predictors for calculating EPS-DREmix 
were restricted to known epilepsy-related genes and genes as-
sociated with the potential mechanisms of DRE, thus exclud-
ing the opportunity to identify new genes that cause DRE. 
Fourth, since no functional studies could be conducted to 
determine the impact of the finally selected candidate gene 
predictors on the DRE mechanism, further studies are war-
ranted to determine how the 11 candidate genetic predictors 
contribute to the underlying mechanisms of DRE. Fifth, the 
main purpose of this study was to develop an early prediction 
model for DRE using unambiguous clinical information avail-
able at the time of diagnosis, and so the approach taken did 
not reflect epilepsy being a progressive disease. Sixth, since 
the EPS-DREmix model was developed based on the strict cus-
tomized definition of DRE, care should be taken when apply-
ing the model to DRE patients identified using the conven-
tional definition.38

In conclusion, the new multidimensional EPS-DREmix 
model developed in this study showed good discrimination 
ability in distinguishing between RSE and DRE, even though 
it was derived from a small GWAS data set and only 11 genetic 
and 2 clinical predictors. This suggests that the performance 
of the EPS-DRE is not as strictly dependent on the size of the 
GWAS data set or the number of predictors included when 
developing the score, which contrasts with previous reports.34,35 
The present results suggest that the performance can be im-
proved by developing and adding predictive factors that have 
sufficiently large effect size rather than by maximizing the 
size of the data set. In addition, the predictors involved in the 
calculating the EPS-DREmix model in this study are easily ac-
cessible at the time of an epilepsy diagnosis without ambi-
guity, indicating that clinical application of the EPS-DREmix 
model in the early stage of medical care will be sufficiently 
possible at the individual level of nonexperts. It is hoped that 
these preliminary results will contribute to the early identifi-
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cation of DRE, especially by general neurologists and physi-
cians who do not have detailed knowledge or equipment for 
DRE.

Supplementary Materials
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