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a b s t r a c t 

Background and Objective: Neuromuscular disorders are diseases that damage our ability to control body 

movements. Needle electromyography (nEMG) is often used to diagnose neuromuscular disorders, which 

is an electrophysiological test measuring electric signals generated from a muscle using an invasive nee- 

dle. Characteristics of nEMG signals are manually analyzed by an electromyographer to diagnose the 

types of neuromuscular disorders, and this process is highly dependent on the subjective experience of 

the electromyographer. Contemporary computer-aided methods utilized deep learning image classifica- 

tion models to classify nEMG signals which are not optimized for classifying signals. Additionally, model 

explainability was not addressed which is crucial in medical applications. This study aims to improve 

prediction accuracy, inference time, and explain model predictions in nEMG neuromuscular disorder clas- 

sification. 

Methods: This study introduces the nEMGNet, a one-dimensional convolutional neural network with 

residual connections designed to extract features from raw signals with higher accuracy and faster speed 

compared to image classification models from previous works. Next, the divide-and-vote (DiVote) algo- 

rithm was designed to integrate each subject’s heterogeneous nEMG signal data structures and to utilize 

muscle subtype information for higher accuracy. Finally, feature visualization was used to identify the 

causality of nEMGNet diagnosis predictions, to ensure that nEMGNet made predictions on valid features, 

not artifacts. 

Results: The proposed method was tested using 376 nEMG signals measured from 57 subjects between 

June 2015 to July 2020 in Seoul National University Hospital. The results from the three-class classifica- 

tion task demonstrated that nEMGNet’s prediction accuracy of nEMG signal segments was 62.35%, and 

the subject diagnosis prediction accuracy of nEMGNet and the DiVote algorithm was 83.69 %, over 5-fold 

cross-validation. nEMGNet outperformed all models from previous works on nEMG diagnosis classifica- 

tion, and heuristic analysis of feature visualization results indicate that nEMGNet learned relevant nEMG 

signal characteristics. 

Conclusions: This study introduced nEMGNet and DiVote algorithm which demonstrated fast and accurate 

performance in predicting neuromuscular disorders based on nEMG signals. The proposed method may 

be applied in medicine to support real-time electrophysiologic diagnosis. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

I

h

0

∗ Corresponding authors at: K. Kim, Department of Rehabilitation Medicine, Seoul Nati

nformatics, Keimyung University School of Medicine, Daegu, Republic of Korea. 

E-mail addresses: kksoo716@gmail.com (K. Kim), koreateam23@gmail.com (S.-B. Lee) . 

ttps://doi.org/10.1016/j.cmpb.2022.107079 

169-2607/© 2022 The Authors. Published by Elsevier B.V. This is an open access article u

Downloaded for Anonymous User (n/a) at Keimyung University Do
December 28, 2022. For personal use only. No other uses without pe
onal University Hospital, Seoul, Republic of Korea. SB. Lee, Department of Medical 

1 Authors contributed equally. 

nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

ngsan Medical Center from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2022. Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cmpb.2022.107079
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.107079&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kksoo716@gmail.com
mailto:koreateam23@gmail.com
https://doi.org/10.1016/j.cmpb.2022.107079
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Yoo, I. Yoo, I. Youn et al. Computer Methods and Programs in Biomedicine 226 (2022) 107079 

1

b

H

d

s  

t

t

t

n

d

s

d

n  

i

u

t

f

[

o

e

i

r

o

t

[

m

a

b

c

t

s

fi

N

p

t

l

i

e

g

s

a

c

s

n

A

l

d

a

a

g

f  

w

t

r

f  

b

m

d

s

m

d

Table 1 

Summary of needle electromyography dataset 

Myopathy Neuropathy Normal Total 

Number of subjects 19 19 19 57 

Number of signals 122 160 94 376 

Proximal muscle signals 64 63 17 144 

Distal muscle signals 58 97 77 232 

Total signal length (s) 312.84 422.78 203.50 939.12 
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. Introduction 

The ability to control our movements voluntarily is one of the 

asic functions of humans and is crucial to having a life of purpose. 

owever, such an invaluable biological function may break down 

ue to diabetes [1] , chemotherapy [2] , or other unknown rea- 

ons [ 3 , 4 ], resulting in neuromuscular disorders [ 5 , 6 ]. In the elec-

rophysiologic diagnosis of neuromuscular disorders, needle elec- 

romyography (nEMG) has been widely used, which is an elec- 

rophysiological test that records electrical activity generated from 

erves, muscles, and neuromuscular junctions by inserting a nee- 

le into a muscle at rest or during muscle contraction [7–11] . A 

killed electromyographer diagnoses the types of neuromuscular 

isorders of the subject based on the abnormalities in measured 

EMG signals [ 7 , 12 ]. Despite the effectiveness of nEMG in diagnos-

ng the subtypes of neuromuscular disorders [ 13 , 14 ], the currently 

sed subjective method is highly dependent on the experience of 

he electromyographer, making it vulnerable to errors, as is evident 

rom the inter-rater reliability of 61-81% [15] . 

Among the various machine learning models, deep learning 

16] has shown outstanding performance by leveraging the power 

f large data in nonlinear tasks that are difficult to analyze math- 

matically [17–19] . While deep learning has also been increas- 

ngly applied in medicine [20–23] , its application in nEMG neu- 

omuscular disorder classification remains limited. Previous works 

n deep learning neuromuscular disorder classification using elec- 

romyography signals often utilized surface electromyography data 

24–26] , and existing works that used nEMG signals were pri- 

arily focused on utilizing conventional machine learning models 

nd hand-crafted feature extraction methods [27–31] . There have 

een two studies on deep learning nEMG neuromuscular disorder 

lassification, both of which utilized image classification models 

o classify the nEMG signals. Nodera et. al. [32] generated mel- 

pectrograms from nEMG signals and used pretrained image classi- 

cation models to classify signals into six types of diagnosis labels. 

am et. al. [33] used plotted nEMG signal images and utilized a 

retrained image classification model to classify signals into three 

ypes of diagnosis labels. 

While previous works have demonstrated the potential of deep 

earning application in nEMG diagnosis classification, additional 

mprovements are required to apply deep learning in real nEMG 

lectrophysiologic diagnosis. First, comparable performance is not 

uaranteed when using image classification models in signal clas- 

ification tasks since the models were designed for natural im- 

ge classification [34] . Second, previous works have focused on 

lassifying the signals instead of the individual subjects. However, 

ignals of various lengths are measured from different types and 

umbers of muscles for each subject in nEMG electrodiagnosis. 

n appropriate measure to integrate the heterogeneity in signal 

ength, muscle sources, and number of signals is necessary to pre- 

ict the diagnosis of subjects. Lastly, it is critical to identify how 

 machine learning model makes predictions, especially in medical 

pplications [35–38] . A machine learning model must be investi- 

ated to ensure the model is making predictions based on relevant 

eatures and not artifacts [ 39 , 40 ], a topic not addressed by previous

orks. 

In this study, we propose nEMGNet, a one-dimensional convolu- 

ional neural network (1D-CNN) model that extracts features from 

aw nEMG signals with improved accuracy compared to models 

rom previous works [ 32 , 33 ]. The motivation for nEMGNet was to

uild a domain-specific deep learning model rather than to use 

odels designed for other tasks. This study also introduces the 

ivide-and-vote (DiVote) algorithm to predict the diagnosis of a 

ubject by integrating the heterogeneous muscle signals into a ho- 

ogeneous form. By combining nEMGNet and DiVote algorithm, 

iagnoses of subjects were predicted from a heterogeneous data 
2 
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tructure, which allows for practical implementation in electro- 

hysiologic diagnosis. After the performance of nEMGNet and the 

iVote algorithm was verified, we identified how nEMGNet made 

redictions by applying feature visualization [ 41 , 42 ]. Feature visu- 

lization is a powerful explainable deep learning technique that 

hows the features learned by a deep learning model. 

. Materials and methods 

.1. Data 

The nEMG dataset included information from 57 subjects who 

isited Seoul National University Hospital from June 2015 to July 

020. Each subject was diagnosed with one of three neuromuscu- 

ar disorder types by a certified electromyographer. Types of neuro- 

uscular disorders were categorized into myopathy (M), neuropa- 

hy (N), and normal (NL). The signal characteristics of each neu- 

omuscular disorder type are presented in Fig. 1 . Single-channel 

EMG signals were sampled at 48 kHz. Each subject contained a 

ifferent number of signals acquired from different muscles, and 

ach signal from each muscle was heterogeneous in length. The 

hortest signal was 0.41 seconds long, and the longest signal was 

.00 seconds long. Each signal contained the muscle location in- 

ormation it was recorded from, either a proximal muscle (P) or 

istal muscle (D). A summary of the nEMG dataset is shown in 

able 1 . This study was approved by the Institutional Review Board 

IRB) of Seoul National University Hospital (No. 2008-055-1147) 

nd was conducted in accordance with the Declaration of Helsinki 

nd its later amendments. Informed consent was not obtained as 

he study was retrospective. 

.2. Preprocessing 

Raw nEMG signals were used as input to avoid loss of infor- 

ation content [43] through transformations and reduce the time 

pent in preprocessing. The signals were downsampled to 10 kHz 

o reduce computational complexity. Downsampled frequency was 

elected after inspecting the morphology of downsampled signals 

nder different frequencies. Each waveform was sliced into multi- 

le segments by slicing the waveform with fixed window length 

 and hop size d . T = 0.4 seconds, d = 0.1 seconds was chosen em-

irically after experimentation. The resulting signal segment was 

0 0 0 samples in length. Each signal segment was labeled with the 

iagnosis label of the corresponding subject. There were 2700 my- 

pathic signal segments, 3664 neuropathic signal segments, and 

706 normal signal segments after preprocessing. 

.3. nEMGNet model 

A 1D-CNN model was designed to capture signal characteris- 

ics from raw nEMG signals. The nEMGNet design was inspired by 

GGNet [44] and ResNet [45] , which are neural network models 

hat have demonstrated outstanding performance in image classi- 

cation tasks. nEMGNet comprises three types of blocks that are 

nalogous to the building blocks of VGGNet and Resnet ( Table 2 ). 
ngsan Medical Center from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2022. Elsevier Inc. All rights reserved.
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Fig. 1. Needle electromyography signals of neuromuscular disorder type. Myopathy refers to the damage in the muscle fibers, which results in motor unit action potentials 

with small amplitudes and short durations. Neuropathy refers to the damage in the peripheral nerves, which shows motor unit action potentials with large amplitudes and 

long durations. nEMG signals from normal muscles show motor unit action potentials with medium amplitudes and durations than myopathy or neuropathy. 

Table 2 

Convolutional blocks of nEMGNet. Spatial reduction block-1 reduces the spatial resolution to 50%, 

whereas spatial reduction block-2 reduces the spatial resolution to 25%. Residual blocks have resid- 

ual connections which enable stable training in deep layers. In each block’s title, ‘n’ and ‘k’ inside 

the parentheses refer to the number of output channels and the size of the kernel, respectively. 

Spatial reduction block-1 (n,k) Spatial reduction block-2 (n,k) Residual block (n) 

Conv (k)-n, Conv (k)-n, Conv (5)-n, 

Stride (1) Stride (2) Stride (1) 

BatchNorm BatchNorm BatchNorm 

ReLU ReLU ReLU 

Max-pool (2), Max-pool (2), Conv (5)-n, 

Stride (2) Stride (2) Stride (1) 

BatchNorm 

Sum (Residual connection) 

ReLU 

Fig. 2. nEMGNet model architecture. Blocks in light grey represent spatial reduction 

blocks, and blocks in dark grey represent residual blocks. The number of residual 

blocks between spatial reduction blocks varies with different versions of nEMGNet. 
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patial reduction block-1 (SR block-1) reduces the spatial resolu- 

ion to 50%, and spatial reduction block-2 (SR block-2) reduces 

he spatial resolution to 25%. Residual block has residual connec- 

ions which enable stable training in deep layers [46] . Various ver- 

ions of nEMGNet with different numbers of residual blocks were 

ested since the residual blocks can be repeated an arbitrary num- 

er of times. The configuration of nEMGNet versions is described 

n Table 3 . The rectified linear unit (ReLU) activation function was 

pplied to each hidden layer in the fully connected layers. The soft- 
3 
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ax function was applied to the final output layer. Signal segments 

nd diagnosis labels were used to train nEMGNet. Proximal and 

istal muscle information was not used to train nEMGNet. 

.4. Divide-and-Vote (DiVote) algorithm 

In nEMG electrophysiologic diagnosis, each subject contains a 

ifferent number of signals from different muscles, and the length 

f each muscle signal is heterogeneous. This study proposes the 

Divide-and-Vote (DiVote)” algorithm ( Fig. 3 ) to predict the diag- 

osis of a subject based on a given heterogeneous data structure. 

uring the inference stage, each muscle signal is divided into sig- 

al segments of homogeneous shape, which are equivalent to the 

reprocessed signal segments in this study. Each signal segment is 

hen converted into three-class signal segment prediction score by 

 feature extractor, which contains the probabilities for each diag- 

osis label. nEMGNet is used as a feature extractor in this study. 
ngsan Medical Center from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2022. Elsevier Inc. All rights reserved.
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Fig. 3. DiVote algorithm. The positioning and colors in the signal segment prediction scores, muscle signal prediction scores, subject features, and subject diagnosis predic- 

tions correspond to myopathy, neuropathy, and normal. The color intensity indicates the magnitude of the value. Subject features-PD is created by soft voting muscle signal 

prediction scores over proximal and distal muscle separately. Only subject features-PD is described, and subject features-all is omitted. 

4
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Table 3 

Configuration of nEMGNet. Different numbers of residual blocks are experimented 

with. The numbers inside the parentheses of the blocks refer to the hyperparame- 

ters defined in Table 2 . 

nEMGNet-A nEMGNet-B nEMGNet-C nEMGNet-D 

Block 1 SR block-2 SR block-2 SR block-2 SR block-2 

(64, 11) (64, 11) (64, 11) (64, 11) 

Block 2 SR block-2 SR block-2 SR block-2 SR block-2 

(64, 7) (64, 7) (64, 7) (64, 7) 

Block 3 SR block-2 SR block-2 SR block-2 SR block-2 

(64, 5) (64, 5) (64, 5) (64, 5) 

Block 4 Residual block Residual block Residual block 

(64) × 2 (64) × 4 (64) × 6 

Block 5 SR block-1 SR block-1 SR block-1 SR block-1 

(128, 5) (128, 5) (128, 5) (128, 5) 

Block 6 Residual block Residual block Residual block 

(128) × 2 (128) × 4 (128) × 6 

Block 7 SR block-1 SR block-1 SR block-1 SR block-1 

(256, 5) (256, 5) (256, 5) (256, 5) 

Block 8 Residual block Residual block Residual block 

(256) × 2 (256) × 4 (256) × 6 

Block 9 SR block-1 SR block-1 SR block-1 SR block-1 

(512, 5) (512, 5) (512, 5) (512, 5) 

Block 10 Residual block Residual block Residual block 

(512) × 2 (512) × 4 (512) × 6 

Block 11 SR block-1 SR block-1 SR block-1 SR block-1 

(1024, 5) (1024, 5) (1024, 5) (1024, 5) 

Block 12 Residual block Residual block Residual block 

(1024) × 2 (1024) × 4 (1024) × 6 

FC-512 FC-512 FC-512 FC-512 

FC-256 FC-256 FC-256 FC-256 

FC-64 FC-64 FC-64 FC-64 

FC-16 FC-16 FC-16 FC-16 

FC-3 FC-3 FC-3 FC-3 

Softmax Softmax Softmax Softmax 
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[

he signal segment prediction scores from the same muscle sig- 

al are soft voted to generate the muscle signal’s prediction score. 

he muscle signal prediction score contains prediction probabili- 

ies for each of the three diagnosis labels. Since each subject pos- 

esses different numbers and types of muscle signals, they also 

ossess different numbers and types of muscle signal prediction 

cores. This heterogeneity is integrated by soft voting the muscle 

ignal prediction scores which generates subject features assigned 

o each subject. Two types of subject features were tested: soft 

oting over all muscle types, named “subject feature-all,” and soft 

oting over proximal and distal muscles and concatenating the re- 

ults, named “subject feature-PD.” Therefore, subject feature-all is 

 three-dimensional vector, whereas subject features-PD is a six- 

imensional vector. When deriving subject feature-PD for a subject 

ith no muscle signal prediction score in a specific muscle type, an 

qual prediction score of 1/3 was substituted ( Fig. 3 , myopathy and 

ormal subjects). Finally, a logistic regression classifier was used to 

redict the final three-class diagnosis label of the subject based on 

he subject features. The feature extractor was trained from signal 

egments, and the logistic regression classifier was subsequently 

rained from subject features generated by the trained feature ex- 

ractor. 

.5. Experimental setup 

Evaluation results from 5-fold cross-validation were reported 

s the final performance of the model. Each fold was repeated 

hree times with different nEMGNet weight initializations since the 

erformance of deep learning model is dependent on weight ini- 

ialization [47] . The training lasted 100 epochs using the Adam 

ptimizer [48] with a learning rate of 1e-3 and a batch size of 

2. The model was evaluated using the test set every 50 updates 

o find the weights configuration that produced the best accu- 
5 
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acy and prevent overfitting to the train set. Cross entropy was 

sed as the objective function, and class weights were applied in- 

ersely proportional to the number of signal segments per diagno- 

is label to prevent bias in prediction. Hyperparameters were se- 

ected empirically, and baseline experiments were conducted us- 

ng nEMG classification models from previous works to compare 

he predictive performance of nEMGNet. Baseline nEMG classifi- 

ation models were used as the feature extractor from the DiV- 

te algorithm. In the baseline experiment using a model from 

am et al. [33] , the downsampled signal segments were plot- 

ed as images and were used to train the Inception-v4 [49] im- 

ge classification model. When using baseline models from Nodera 

t al. [32] , mel-spectrograms were generated from the same sig- 

al segments and were used to train the ResNet-50, ResNet- 

52 [45] , VGG16, VGG19 [44] , and Inception-v3 [50] image clas- 

ification models. All experiments were performed on NVIDIA 

100 GPUs. 

.6. Feature visualization 

Feature visualization is an explainable deep learning technique 

hat extracts the features a neural network has learned to accom- 

lish a task [ 41 , 42 ]. Feature visualization was applied to a trained

EMGNet to visualize the features learned by the nEMGNet. Three 

ypes of augmented signal segments were generated by optimizing 

andom noise with respect to each nEMGNet output node, which 

orresponds to each diagnosis label. Initial signal segments were 

enerated from N (0, 1). Random jitter was applied by 12.5% of sig- 

al segment length to prevent over-optimization of the signal seg- 

ents. The learning rate was set to 1e-2, gradient descent was ap- 

lied for 1500 updates, and the Adam [48] optimizer was used to 

ptimize the signal segments. 

.7. Evaluation metrics 

The evaluation was performed in two stages. Signal segment 

lassification was evaluated first, followed by subject diagnosis 

lassification. Both evaluations were three-class classification tasks. 

ccuracy, precision, recall, F1-score, area under the receiver oper- 

ting characteristic curve (AUROC), and Mathew’s correlation coef- 

cient (MCC) [51] were computed. Performance metrics were com- 

uted using Eqs. (1) - (5) . 

ccuracy = 

( T P + T N ) 

( T P + T N + F P + F N ) 
(1) 

 recision = 

T P 

( T P + F P ) 
(2) 

ecall = 

T P 

( T P + F N ) 
(3) 

 1 = 

( 2 × P recision × Recall ) 

( P recision + Recall ) 
(4) 

CC = 

∑ 

k 

∑ 

l 

∑ 

m 

(C kk C lm 

− C kl C mk ) √ ∑ 

k ( 
∑ 

l C kl ) 
(∑ 

l ′ 
∑ 

k ′ � = k C k ′ l ′ 
)√ ∑ 

k ( 
∑ 

l C lk ) 
(∑ 

l ′ 
∑ 

k ′ � = k C l ′ k ′ 
)

(5) 

here TP, TN, FP, and FN represent the number of true positives, 

rue negatives, false positives, and false negatives, respectively. C 

enotes the confusion matrix from n-class classification results, 

ith columns indicating true labels and rows indicating predicted 

abels. Note that accuracy and MCC are computed as three-class 

lassification metrics, whereas all other methods are weighted av- 

rages of metrics from the one-versus-rest classification method 

52] , weighted according to the number of samples per class. 
ngsan Medical Center from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2022. Elsevier Inc. All rights reserved.
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Fig. 4. Signal segments filtered through convolutional layers of nEMGNet. Filtered signals after passing through different convolutional blocks of the nEMGNet are plotted 

by reducing the dimensionality to two dimensions using Uniform Manifold Approximation and Projection. (a) Initial signal, (b) 2nd block, (c) 4th block, (d) 6th block, (e) 9th 

block, and (f) 12th block. z1 and z2 correspond to reduced dimensions. M stands for myopathy, N stands for neuropathy, and NL stands for normal signal segments. 
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Fig. 5. Confusion matrix of signal segment classification accuracy. The values indi- 

cate mean ± standard deviation over all folds and random repetitions. 
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. Results 

.1. EMG segment classification 

The signal segments filtered after different convolutional blocks 

ere plotted to visualize the filtering effect of nEMGNet. Uniform 

anifold approximation and projection [53] was used to reduce 

he dimension of the filtered signal segments to two dimensions. 

he best performing nEMGNet-B among the different nEMGNet 

ersions was used to plot Fig. 4 . Tensors after fully connected lay- 

rs were not used to plot Fig. 4 since the fully connected layers are

ot convolutional operations, and thus, they do not filter the signal 

egments. The signal segments from each label were farther apart 

n the reduced dimension as they were filtered through deeper lay- 

rs. Additionally, the filtered signals of normal signal segments lied 

etween myopathic and neuropathic filtered signal segments. 

The confusion matrix of signal segment classification accu- 

acy was plotted to demonstrate the classification performance 

f nEMGNet for each diagnosis label ( Fig. 5 ). Results from the 

est performing nEMGNet-B were used to plot the confusion ma- 

rix. Confusion matrices were normalized over all folds and ran- 

om repetitions. Total signal segment prediction accuracy over all 

lasses was 62.35 ± 4.60%. Myopathy and neuropathy signal seg- 

ents were classified with prediction accuracies of 71.58% and 

3.20%, respectively, whereas normal signal segments were rela- 

ively more misclassified with a prediction accuracy of 52.26%. 

The DiVote algorithm, which is run after signal segment pre- 

iction, is shown in Fig. 6 . The train and test set from the first

old and nEMGNet-B were used to plot the figure. Fig. 6 A shows 

hat each subject possessed different types and numbers of mus- 
6 
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le signals. In addition, signals from myopathic or neuropathic sub- 

ects tended to be predicted as their respective labels, whereas 

ignals from normal subjects tended to be ambiguous, which is 

otable from the colors of the heatmap ( Fig. 6 A). Note that sub- 

ect features-PD cannot be plotted similarly to Fig. 6 B since sub- 

ect features-PD is six-dimensional and cannot be plotted in three- 

imensional space. Due to ambiguous prediction results of muscle 
ngsan Medical Center from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2022. Elsevier Inc. All rights reserved.
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Fig. 6. Process of DiVote algorithm. (a) Heatmap of muscle signal prediction scores for subjects from the test set. Each square in the heatmap was computed through 

soft voting the signal segment prediction scores within a muscle signal, predicted by nEMGNet. White blocks represent missing signals. The red, green, and blue colors 

represent the probability scores for myopathy, neuropathy, and normal. (b) Subject features-all plotted on a P(M) + P(N) + P(NL) = 1 plane, where P(M), P(N), P(NL) stands for 

muscle signal prediction scores for myopathy, neuropathy, and normal, respectively. Each point in the plot corresponds to each subject feature from the train set, which was 

aggregated through soft voting the muscle signal prediction scores over all muscle types. The same scatterplot is described in (c) and (d). (c) Decision boundary of simple 

argmax function. (d) Decision boundary of the classifier trained with subject features of (b). M stands for myopathy, N stands for neuropathy, and NL stands for normal 

signals and subjects. 
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ignals from normal subjects, subject features of normal subjects 

ere relatively biased toward myopathic and neuropathic features 

 Fig. 6 B). An elementary approach in deriving the final subject di- 

gnosis prediction scores involved using the subject features from 

ig. 6 B as the final subject prediction scores, for which the decision 

oundary is presented in Fig. 6 C. A classifier was trained using the 

ubject features from Fig. 6 B to mitigate the bias of subject fea- 

ures from normal subjects, thus moving the decision boundary in 

eature space ( Fig. 6 D). 

.2. Subject diagnosis prediction 

Subject diagnosis prediction accuracies of different nEMGNet 

ersions and various prediction methods within the DiVote algo- 

ithm were compared ( Table 4 ). The simple averaging setting used 

he average of muscle signal prediction scores as the final sub- 

ect prediction score, which is equivalent to using subject features- 

ll as the final subject prediction score. As there was no addi- 

ional classifier, the decision boundary of simple averaging in fea- 

ure space was equal to the standard argmax function ( Fig. 6 C). Us-

ng an additional classifier always resulted in better performance 

egardless of the nEMGNet version and subject feature type. Us- 

ng subject features-PD resulted in better performance than using 

ubject features-all for most nEMGNet models. nEMGNet-B, which 
7
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ontains two residual blocks between SR blocks, presented the best 

erformance among the different nEMGNet versions. nEMGNet-A, 

hich has no residual blocks, presented the worst performance. 

ncreasing the number of residual blocks did not consistently in- 

rease model performance. 

The performance of nEMGNet was compared to models from 

revious works [ 32 , 33 ] by using baseline models as the feature ex-

ractor in the DiVote algorithm. Table 5 describes subject diagno- 

is prediction results of nEMGNet and baseline models. nEMGNet- 

 presented the best performance in all metrics among the vari- 

us nEMGNet versions, and nEMGNet-B outperformed all models 

rom previous works in all evaluation metrics. nEMGNet-B showed 

n accuracy improvement of 8.08% compared to the best perform- 

ng baseline model (ResNet-152). Models from Nodera et al. [32] , 

hich used mel spectrograms, presented higher scores in all met- 

ics than the model from Nam et al. [33] , which used plotted im- 

ges. Among different models from Nodera et al. [32] , ResNet-152 

resented the best performance in terms of classification accuracy. 

The time spent in the complete subject diagnosis prediction 

ipeline and the number of parameters for each model were mea- 

ured for nEMGNet-B and baseline models ( Table 6 ). Test sets from 

ach fold and random repetition were used to measure inference 

ime, and the average number of signal segments, muscle signals, 

nd subjects in test sets were 1614, 75.2, and 11.4, respectively. As 
ngsan Medical Center from ClinicalKey.com by Elsevier on 
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Table 4 

Subject diagnosis prediction accuracy of nEMGNet and DiVote algorithm. Different types of 

nEMGNet and subject features within the DiVote algorithm are compared. Subject features-all 

refers to those created by soft voting the muscle signal prediction scores over all muscle types. 

Subject features-PD refers to subject features created by soft voting the same scores over proximal 

and distal muscle types and concatenating the results. Best performance is described in bold font. 

Results are expressed in mean ±standard deviation over all folds and random repetitions. 

nEMGNet 

Accuracy (%) 

Simple averaging (No classifier) Subject features-all Subject features-PD 

A 67.17 ± 10.75 76.06 ± 4.90 76.57 ± 10.23 

B 73.64 ± 7.27 81.92 ± 4.83 83.69 ± 5.28 

C 69.95 ± 7.77 81.26 ± 6.35 81.87 ± 6.80 

D 75.35 ± 6.93 81.26 ± 6.35 80.81 ± 5.31 

Table 5 

Subject diagnosis prediction result of nEMGNet and baseline models. Baseline models were used as fea- 

ture extractors within the DiVote algorithm to compare the performance. Subject features-PD was gen- 

erated from the DiVote algorithm. Metrics are mean values over all folds and random repetitions. Best 

evaluation metrics are described in bold font. 

Reference 

Feature 

extractor 

Evaluation Metrics (%) 

Accuracy F1 Precision Recall AUROC MCC 

Current study nEMGNet-A 76.57 74.67 79.17 76.57 89.43 68.33 

nEMGNet-B 83.69 83.59 87.96 83.69 91.45 77.70 

nEMGNet-C 81.87 81.61 85.74 81.87 91.21 74.66 

nEMGNet-D 80.81 80.56 86.65 80.81 90.53 74.16 

Nam et al. [33] Inception-v4 57.47 51.38 56.53 57.47 78.39 42.03 

Nodera et al. [32] ResNet-50 73.84 72.59 81.94 73.84 81.27 64.76 

ResNet-152 75.61 74.90 81.11 75.61 85.30 65.50 

VGG16 68.23 65.47 66.86 68.23 79.85 55.42 

VGG19 72.32 69.66 74.71 72.32 81.10 62.91 

Inception-v3 71.92 70.64 79.29 71.92 83.48 61.60 

Table 6 

Elapsed times for subject diagnosis prediction and model parameter size of nEMGNet and baseline models. nEMGNet-B and baseline feature 

extractors are compared. The time spent to predict subject diagnosis of the test set is measured. Elapsed times are the mean values over all 

folds and random repetitions. Elapsed time for classifier prediction is not described since the classifier is identical across all methods, and the 

time measured was less than 0.01 seconds. Total elapsed time refers to the time required to preprocess the signal segments, load the model 

parameters, extract subject features using the feature extractor, and compute the subject diagnosis prediction scores. The best metrics are shown 

in bold font. 

Reference 

Feature 

extractor 

Elapsed time (s) Number of 

parameters 
Preprocessing Load model parameters Feature extractor prediction Total 

Proposed nEMGNet-B 0.01 0.43 0.54 0.99 33,238,686 

Nam et al. [33] Inception-v4 68.92 1.17 5.32 75.42 41,210,744 

Nodera et al. [32] ResNet-50 19.08 0.61 1.21 20.90 23,567,352 

ResNet-152 19.20 1.45 2.25 22.92 58,301,534 

VGG16 19.61 2.63 1.60 23.87 134,272,835 

VGG19 19.53 2.71 1.78 24.04 139,582,531 

Inception-v3 19.42 2.60 1.38 23.40 21,826,241 
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here was no preprocessing for nEMGNet, the 0.01 second is mea- 

ured from loading the signal segments. Additionally, preprocess- 

ng for baseline models from Nodera et al. [32] is identical and the 

light variations in preprocessing time are empirical variances. The 

EMGNet requires significantly less time for preprocessing than 

ther baseline models because no preprocessing was applied. The 

ime consumed in loading the model parameters corresponds to 

he number of parameters but is not directly proportional. The 

ime spent in feature extractor prediction was the lowest for the 

EMGNet, with 0.54 seconds. The total time required from prepro- 

essing to subject diagnosis prediction was also the fastest for the 

EMGNet, with 0.99 seconds. nEMGNet presented a 96.7% reduc- 

ion in total inference time compared to the best performing base- 

ine model (ResNet-152), from 22.92 seconds to 0.99 seconds. The 

umber of parameters includes the weights and biases of layers 

nd the running mean and variance of batch normalization layers. 

EMGNet-B was smaller in model size compared to the ResNet- 

52, which was the best performing model among baseline mod- 

ls. Inception-v3 was the smallest in terms of model size. 
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.3. Learned features of trained nEMGNet 

Feature visualization results of nEMGNet are presented in Fig. 7 . 

he bottom row of Fig. 7 contains the signal segments generated 

hrough feature visualization, which the nEMGNet best perceives 

s myopathy, neuropathy, and normal. The maximum absolute sig- 

al amplitude was 1.35mV, 1.27mV, 10.50mV, 19.10mV, 3.54mV, 

nd 4.19mV from Fig. 7 A, B, C (E), D (F), G, and H, respectively. The

mplitudes of the signal segments generated through feature vi- 

ualization resembles those of each corresponding real signal seg- 

ent. 

. Discussion 

In clinical trials of electrophysiologic diagnosis, the electromyo- 

rapher records nEMG signals from various muscles and considers 

he signal characteristics along with muscle locations. Significant 

nformation regarding the patient’s pathology is nested within the 

ignals and muscle types, which must be extracted to successfully 
ngsan Medical Center from ClinicalKey.com by Elsevier on 
rmission. Copyright ©2022. Elsevier Inc. All rights reserved.
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Fig. 7. Learned features of nEMGNet. The top row contains real signals, and the bottom row contains signals generated through feature visualization. nEMGNet-B from the 1st 

fold was used to plot the figure. (a) Real myopathic signal, (b) generated myopathic signal, (c) real neuropathic signal, (d) generated neuropathic signal, (e) real neuropathic 

signal with 20mV y-axis limit, (f) generated neuropathic signal with 20 mV y-axis limit, (g) real normal signal, and (h) generated normal signal. Note that (a), (b), (c), (d), 

(g), (h) are plotted with a 5 mV y-axis limit for better comparison between signals of different labels, whereas (e) and (f) are plotted with a 20 mV y-axis limit to show the 

overall shape of the neuropathic signals. (c)&(e) and (d)&(f) are identical signals. 
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redict the diagnosis label of the given subject. This study pro- 

osed nEMGNet, a one-dimensional CNN suitable for nEMG sig- 

al classification, to extract features from raw signals. Four types 

f nEMGNet architectures were evaluated, and the results demon- 

trated that nEMGNet could learn signal characteristics of each 

iagnosis label. Comparing nEMGNet with models from previous 

orks showed that nEMGNet outperformed all previous models. 

dditionally, the DiVote algorithm was introduced to mitigate data 

eterogeneity in subjects and leverage relevant information within 

roximal and distal muscle types. The DiVote algorithm could han- 

le data heterogeneity and adjust bias in subject features, which 

mproved subject diagnosis prediction performance compared to 

he case with no additional classifier. Lastly, the learned features 

f nEMGNet were visualized by applying feature visualization to a 

rained nEMGNet, in which the features resembled the signal seg- 

ents from each diagnosis label. 

.1. Attributes of nEMGNet 

Throughout the DiVote algorithm, values corresponding to nor- 

al subjects such as the signal segment classification result 

 Fig. 5 ), muscle signal prediction scores ( Fig. 6 A), and soft voted

ubject features ( Fig. 6 B) were inclined to have impartial predic- 

ion results. Likewise, it was observed from filtered signal seg- 

ents ( Fig. 4 F) that normal signals lie between myopathic and 

europathic signals in latent space, and that the latent features are 

ot distinctly clustered for each diagnosis label. This is attributed 

o normal signal segments having similar latent features with my- 

pathic and neuropathic signals. Some signals labeled as myopa- 

hy or neuropathy exhibit signal characteristics of normal muscles 

ince not all muscles from myopathic or neuropathic subjects show 

ypical pathologic signal characteristics. Consequently, signal seg- 

ents labeled as myopathy or neuropathy contain signal charac- 

eristics of normal subjects, while signals from normal subjects do 

ot contain any features which indicate myopathy or neuropathy. 

This imbalance in feature distribution among different labels 

aused the nEMGNet to classify normal signals more ambiguously 

han other labels, as it was trained to classify normal features as 

yopathy and neuropathy as well. Note that this phenomenon was 

lso identified from the signal segment classification result of base- 

ine models (Supplementary Figure 1-6). Additionally, the signal 
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mplitude is the largest for neuropathic signals, medium for nor- 

al signals, and smallest for myopathic signals, which could also 

nduce intermediate prediction scores of normal signals. Further- 

ore, the signal segment classification performance was evaluated 

sing the test set, which contains noisily labeled signal segments, 

owering the prediction accuracy of signal segments. These over- 

apping labels in terms of signal segment features produced a sig- 

al segment prediction accuracy of 52.26% for normal signal seg- 

ents ( Fig. 5 ), which is the lowest among the three diagnosis la- 

els. 

Nevertheless, the loss function of nEMGNet converged to a 

alue close to zero during training, indicating that the model was 

ully capable of learning features from the data. Moreover, filtering 

he signal segment through deeper layers of nEMGNet resulted in 

istant groups in latent space ( Fig. 4 ), implying that nEMGNet had 

earned to distinguish signals of different diagnosis labels. There- 

ore, the relatively ambiguous signal segment accuracy of normal 

abels was explained by the signal segment data with ambiguous 

abels consisting of the train and test set, not by the capacity of 

EMGNet to learn relevant features. The signal segment prediction 

esults were still useful as long as they were sufficiently diver- 

ent to generate distinct subject features, since this study primarily 

imed to classify the subjects instead of the signal segments. 

Using 1D-CNN presents several advantages over image classifi- 

ation models in signal processing applications, as indicated by the 

aseline experiment results. The 1D-CNN computes tensors and 

radients in a one-dimensional direction, whereas the image clas- 

ification models operate in two dimensions. This significantly re- 

uces training and inference times under similar number of model 

arameters ( Table 6 ). In addition, less runtime memory is con- 

umed during training and inference since gradients and hidden 

ayer activation tensors are smaller [54] . The number of parame- 

ers within a deep learning model is also smaller in 1D-CNN under 

dentical number of layers and kernel size ( Table 6 ). Furthermore, 

ptimizing the neural architecture in image classification models 

s difficult because the search space is larger due to the greater 

umber of hyperparameters, such as the width and height of the 

onvolution kernel. 

Additionally, the higher performance presented by nEMGNet 

ver the image classification models could be attributed to its 

roximity to raw signals. When a preprocessing operation is ap- 
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lied to a signal, the information content is bound to be equal or 

maller due to data processing inequality [43] . Preprocessing oper- 

tions must be carefully applied to prevent the loss of important 

eatures within the data. However, conventional signal features 

uch as the mel-spectrogram or discrete wavelet transform require 

anual selection of preprocessing hyperparameters. In contrast, 

EMGNet makes predictions based on raw signals. A convolution 

peration with a linear filter is equivalent to frequency filtering 

 55 , 56 ], and training linear convolutional layers optimizes a fre- 

uency filter to extract features from a given signal. The nEMGNet 

an similarly be interpreted as a nonlinear filter based on 1D-CNN, 

hich optimizes its filters to directly extract the features from raw 

ignals. The 1D-CNN is also implemented for other signal applica- 

ions in medicine [ 57 , 58 ], which implies the potential of leveraging

D-CNN in signal processing applications. 

.2. Significance of DiVote algorithm 

There are several points of significance in terms of the DiVote 

lgorithm. First, the DiVote algorithm is a robust pipeline for sub- 

ects with heterogeneous data structures. A pipeline that converts 

he heterogeneous data into a homogeneous form is required when 

ubjects possess different types and numbers of signals which also 

ary in length. The division, feature extraction, and soft voting pro- 

ess successfully extract and integrate meaningful features from 

arying data structures in a homogeneous manner. 

Second, the DiVote algorithm can classify subjects with incon- 

istent features. The features and labels are not well labeled in 

erms of signal segments because all muscle signals from the same 

ubject are labeled as the diagnosis of the subject, as explained 

arlier. Inaccurately labeled signal segments limit the nEMGNet 

rom learning acute features, reducing the prediction accuracy of 

ignal segments. This limitation was mitigated by using the DiV- 

te algorithm since a classifier makes subject diagnosis predic- 

ions based on subject features. While the signal segment predic- 

ion scores and the subject features are impartial, the subject fea- 

ures for each diagnosis label are distinguishable in feature space 

 Fig. 6 C). The additional classifier from the DiVote algorithm shifts 

he decision boundary of the subject features to better classify 

he subject diagnosis labels ( Fig. 6 D). Therefore, the DiVote algo- 

ithm successfully classifies the given subjects despite the ambigu- 

us features of muscle signals. 

Furthermore, generating the subject features from the DiVote 

lgorithm can prevent undesired inductive bias in the deep learn- 

ng model. Metadata such as the proximal or distal muscle infor- 

ation could be used as a feature vector to train the deep learning 

odel [ 59 , 60 ], but the model may learn irrelevant features from 

he metadata. For instance, if the muscle type information was 

sed as a feature vector in nEMGNet, the model may predict prox- 

mal muscles as non-normal regardless of the signal segment char- 

cteristics, because of the small number of proximal muscle sig- 

als in normal subjects ( Table 1 ). Applying metadata in the form 

f subject features may enable the feature extractor to learn the 

esired features and leverage the information from the metadata, 

hus improving the task performance. 

In medical applications, multiple measurements are often 

ecorded for a subject in different time and space, generating het- 

rogeneous data structures. For instance, longitudinal data are cre- 

ted when a subject visits a medical institution at different points 

n time, or various nEMG measurements are recorded from dif- 

erent muscles in the electrophysiologic diagnosis of neuromus- 

ular disorders. While homogeneous data structure is preferable 

n developing machine learning models, data with heterogeneous 

tructure is inevitable. In such medical applications where the data 

tructure is heterogeneous within a given subject [ 61 , 62 ], the DiV-

te algorithm may leverage all data from the subject and integrate 
10 
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he heterogeneity to predict the diagnosis of the subject. In addi- 

ion, the metadata may be used to generate new types of subject 

eatures, which could improve task performance. 

.3. Learned features of nEMGNet 

Fig. 7 shows that the learned signal features of nEMGNet have 

 similar magnitude as the signal segments of corresponding diag- 

osis labels. In addition, the signal characteristics of each diagnosis 

abel were similar to the feature visualization results. Myopathic 

ignals are characterized by small amplitude and higher frequency 

11] , similar to the augmented signal segment in Fig. 7 B. Neuro- 

athic signals are characterized by large amplitude and lower fre- 

uency [11] , which was similar to the augmented signal segment 

n Fig. 7 D and F. Learned features of normal signals were slightly 

ifferent from real normal signals because the latent features for 

ormal signals were not as concise as those of myopathic or neu- 

opathic signals. Meticulous details of real signals were not simu- 

ated in feature visualization results, indicating that very fine de- 

ails were unnecessary to distinguish the normal signals from myo- 

athic or neuropathic signals. Heuristic analysis conducted by elec- 

romyographers suggested that the signals generated for myopathy 

nd neuropathy exhibit typical pathologic characteristics. These re- 

ults demonstrated that nEMGNet had learned the desired signal 

haracteristics of each diagnosis type, addressing the causality of 

he deep learning model [63–65] . 

.4. Limitation and future works 

There are a few limitations of this study. First, only 57 subjects 

ere analyzed, which was not sufficient to validate the evalua- 

ion results. As deep learning model requires abundant high qual- 

ty data to train up to its full potential [66–68] , larger clinical 

EMG dataset may improve the subject diagnosis prediction per- 

ormance of the nEMGNet over the 83.69% accuracy measured in 

his study. Additionally, while the small difference between the 

wo learning curves of the nEMGNet indicate that the model was 

ble to learn generalizable features [69] (Supplementary Figure 7), 

-fold cross-validation was performed due to the small subject size 

hich constricted greater generalizability of the model. Therefore, 

dditional nEMG subjects must be collected to better train the 

EMGnet and further validate the study. Second, this study only 

ocused on distinguishing crude categories of neuromuscular dis- 

rders. However, several subtypes of myopathies include inflam- 

atory myositis, myotonic dystrophy, muscular dystrophies, and 

ongenital myopathies. While these subtypes share common major 

yopathic motor unit action potential (MUAP) features, they also 

xhibit subtle differences in MUAP [11] . Similarly, there are vari- 

us subtypes of neuropathies, including compressive neuropathies, 

uillain-Barre syndrome, radiculopathies, and amyotrophic lateral 

clerosis, which share common neurogenic MUAP features but ex- 

ibit subtle differences [11] . In the future, the proposed method 

ay be able to perform a detailed diagnosis based on nEMG pat- 

erns if a larger nEMG dataset including various subtype labels is 

vailable. 

. Conclusion 

This study introduced nEMGNet, a 1D-CNN model to extract 

eatures from raw nEMG signals, and the DiVote algorithm to 

ediate the heterogeneous data structure in differentiation be- 

ween myopathy, neuropathy, and normal subjects. The proposed 

ethod was verified using single-channel needle electromyogra- 

hy signals of 57 subjects from Seoul National University Hospi- 

al. The nEMGNet and DiVote algorithm achieved a subject diag- 

osis prediction accuracy of 83.69%, outperforming all other base- 
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ine nEMG deep learning models. The subject diagnosis prediction 

erformance was increased by using an additional classifier in the 

iVote algorithm, which shifts the decision boundary to mitigate 

ias in subject features. In addition, leveraging muscle type meta- 

ata improved subject diagnosis prediction performance. The typ- 

cal signal segment features that the model predicts as each di- 

gnosis type were identified using feature visualization, and it was 

erified that the model was making predictions based on valid fea- 

ures. This study contributed to the application of deep learning in 

EMG electrophysiologic diagnosis by improving feature extraction 

erformance, introducing a method to mediate the heterogeneous 

ata structure of subjects, and suggesting the causality of the deep 

earning model. In future works, the proposed method may be uti- 

ized in real electrophysiologic diagnosis of neuromuscular disor- 

ers when nEMG data from sufficient subjects are acquired to ver- 

fy the performance stability further. 
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