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1. Introduction

Epithelial ovarian cancer (EOC) is one of the most common cancers in
women worldwide and ranks the first leading cause of gynaecological
cancer-associated mortality (1,2). The standard of EOC treatment
includes the tumor debulking surgery and platinum/taxane-based
chemotherapy (2). Regimes containing single-agent or combination of
platinum and/or taxane have been the first-line chemotherapeutic
methods in both early or advanced stage of ovarian cancer (3). Although
these chemotherapy treatments could be highly successful and remain
efficacious over four decades, unfortunately, approximately 50-70% of
chemotherapy-received patients experience chemoresistance—associated
recurrence (4). Paclitaxel resistance also occurs in numerous patients,
leading to poor progression (5). The molecular mechanisms of paclitaxel
resistance in ovarian cancer cells still remain unknown (6,7).
Overcoming chemoresistance of ovarian cancer 1s one of the main
challenges that helps to increase overall and disease—free survival of
patients. Hence, the development of alternative or combination therapies
to overcome chemoresistance is needed.

Protein arginine methyltransferase 5 (PRMT5) is classified as the
major type II arginine methyltransferase in PRMT family. PRMTb5
catalyzes symmetric methylation of the arginine residues of target
proteins in various types of cancer (8). Recent studies have found that
PRMT5 functions as an oncogene that promotes proliferation,
differentiation, migration and stem-cell like properties of cancer cells (9).
For example, PRMT5 which serves as the binding protein partner of
sterol regulatory element binding protein la (SREBPla) symmetrically
dimethylates SREBPla on R321, thereby accelerating the growth of lung,
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liver and breast cancer cells in vivo and in vitro (10). In breast cancer
cells, PRMT5 accelerates tumor growth by suppressing programed cell
death 4 (PDCD4). Elevated level of PRMT5 positively correlates with
worse clinical outcome of  Tbreast cancer patients (11). In
myeloproliferative neoplasm (MPN) pathogenesis, PRMT5 1S
overexpressed in primary MPN cells, and inhibition of PRMTb5
potentially decreases MPN cell proliferation ex vivo. Inhibition of
PRMT5 also increases apoptotic cells through downregulating the
expression of E2F transcription factor 1 (E2F1) (12). In EOC, elevated
expression of PRMT5 promotes tumor cell growth and is associated
with poor disease prognosis (13). PRMT5 regulates cancer stem cell
markers such as octamer-binding transcription factor 4 (Oct4),
Kriippel-like factors 4 (KLF4) and c-Myc, rendering cancer cells to be
sensitive to doxorubicin in breast cancer (14).

KLF4 is a key transcriptional regulator that regulates diverse cellular
processes such as cell growth, migration or stemness (15). In
osteosarcoma cancer cells, KLF4 expression is upregulated and closely
associated with cancer stemness through activation of the p38
mitogen-activated  protein  kinase @ (MAPK) signaling pathway.
Conversely, KLF4 knockdown reduces cancer stemness in vivo (16). In
breast cancer cells, accumulated KILLF4 leads to increase cell migration,
cell invasion and cancer stem cell population (17). In similar, KLF4
plays an integral function as an oncogene promoting growth and
migration of melanoma, bladder, pancreatic and esophageal cancer cells
(18-21).

The relation between PRMTS5 and KLF4 was indicated in several
studies (22-24). In breast cancer cells, PRMT5 stabilizes the protein
levels of the KLF4 (25). PRMT5 methylates triple arginine sites on
KLF4 and prevents KLF4 from ubiquitin—-mediated proteasomal



degradation (26). PRMTb5-mediated KLF4 methylation is required to
license DNA resection and homologous recombination in cellular
processes (27).

Recently, amongst PRMT5 inhibitors, GSK3326596 was identified as a
potential anti-cancer drug (28). GSK3326595 inhibits tumor growth and
activates pb3 pathway by regulating murine douple minute 4 protein
(MDM4) (29,30). In breast cancer, GSK3326595 inhibits AKT signaling
pathway and its oncogenic function (31). In addition, the combination of
GSK3326595 with immune checkpoint therapy limits growth of murine
melanoma tumor (32,33). A clinical phase I/II study of GSK3326595
identified the safety and effects of PRMT5 in advanced solid tumors and
non-Hodgkin lymphoma (34,35). In this study, I investigated the
anti—tumor activity of GSK3326595 in chemoresistant ovarian cancer
cells. GSK3326595 suppresses the proliferation, migration,
epithelial-mesenchymal transition (EMT) and stem-cell like properties of
chemoresistant cancer cells. These results suggest that GSK3326595 is a
potent anti—-tumor candidate for overcoming the chemoresistance of

ovarian cancer.



2. Materials and Methods

2.1. Cell culture and reagents:

Human ovarian cancer cell line OVCAR-3 (Ovcar3) was purchased
from American Type Culture Collection (ATCC, Manassas, VA, USA).
Paclitaxel-resistant ovarian cancer cells, Ovcar3ptx, were generated by
exposing Ovcar3 cells to gradually increasing doses of paclitaxel, then
were subcultured until resistance to 10 nM paclitaxel. Cells were
cultured in culture media Roswell Park Memmorial Institue (RPMI 1640)
supplemented with 10%% fetal bovine serum (FBS), 1%
penicillin/streptomycine at 37 °C in an incubator with 5% CO,.

Paclitaxel and GSK3326595 were purchased from Medchemexpress
(Monmouth Junction, NJ, USA).

2.2. Cell proliferation assay:

Ovarian cancer cells were plated in 96-well plates (3 x 10° cells/well)
and then treated with paclitaxel or GSK3326595 for 72 hr. Cell viability
was evaluated using cell counting kit 8 (CCK-8, Dojindo Molecular
Technologies, Kumamoto, Japan). Cells were incubated with CCK-8
reagent for 1 hr at 37 °C. The plates were read at 450 nm with TECAN
microplate reader (TECAN, Mannedolf, Switzerland).

2.3. Fluorescence-activated cell sorting (FACS):

Cells were seeded in 6-well plates (1 x 10° cells/well) and then



treated with paclitaxel or GSK3326595 for 72 hr. Cells were harvested
and then stained with FITC annexin V apoptosis detection kit with
7-AAD (BioLegend, San Diego, CA, USA). The population of apoptotic
cells was detected by flow cytometry BD FACSCanto I (BD, Franklin,
NJ, USA).

2.4. Western blotting:

Harvested cell pellets were lysed in radioimmunoprecipitation assay
(RIPA) buffer (Thermo Fisher Scientific, Waltham, MA, USA) including
protease inhibitor cocktail (PI) (Thermo Fisher Scientific) and
phenylmethylsulfonyl fluoride (PMSF) (Thermo Fisher Scientific) and
then centrifuged at 12000 rpm for 30 min at 4 °C.

Supernatants were quantified using bicinchoninic acid (BCA) protein
assay kit (Thermo Fisher Scientific). Thirty png protein in each sample
was separated by sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE) and then transferred to nitrocellulose
membranes (GE Healthcare Life Sciences, Piscataway, NJ, USA). After
being blocked in 5% skim milk in TBS-T (10 mmol/L Tris-HCI, 50
mmol/L. NaCl, and 0.25% Tween-20) for 1 hr at room temperature,
membranes were incubated with primary antibodies overnight at 4 °C.
In the next day, membranes were incubated with the second antibodies
for 2 hr. The protein signals were detected using LAS-3000 (Fujifilm,
Tokyo, Japan).

2.5. Wound healing assay:

Cells were seeded in 6-well plates (5 x 10° cells/well). Cells were



wounded with 1 mL pipette tips and treated with 500 uyM of thymidine
and GSK3326595 for 24 hr. The migrated cells were captured by a

MICroSCope.

2.6. Immunofluorescencent staining:

Cells were seeded in 24-well plate (1 x 10" cells/well). After that,
cells were treated with GSK3326595 for 72 hr. Cells were fixed in 4%
paraformaldehyd (PFA) for 30 min at room temperature. Permeabilization
was carried out by 0.1% Triton X-100 and non-specific binding was
blocked with 1% bovine serum albumin (BSA). Cells were stained using
the primary antibody overnight at 4 °C. Then, samples were incubated
with the secondary antibody for 1 hr. Nucleus of cells were stained by
1 pg/ml 4',6'-diamidino-2-phenylindole (DAPI). Mounted samples were
dried for 24 hr. Protein expressions were Imaged by fluorescence

microscope (Carl Zeiss, Oberkochen, Germany).

2.7. Tumorsphere formation:

Cells were resuspended in 24-well ultra-low attachment plates (1 x 10*
cells/well) and treated with GSK3326595 in serum free B-27/neurobasal
media (Thermo Fisher Scientific) including 20 ng/ml EGF, 10 ng/ml
bFGF (R&D system, Minneapolis, MN, USA), 2 mM L-glutamine, 20
mM HEPES (Sigma Aldrich, Saint Louis, MO, USA), 25 pg/ml
amphotericin B (Thermo Fisher Scientific) and 1% penicillin/streptomycin

for 7 days. The number of spheres was calculated using a microscope.



2.8. Cell migration assay:

Cells were resuspended with serum-free medium and seeded (1 x 107
cells/well) in the upper chamber of transwell with 8 pm chamber
(Corning, Tewksbury, MA, USA). Complete medium was added into the
lower portion. After 24 hr incubation, the upper chambers were fixed in
4% PFA for 30 min and then stained with 0.196 crystal violet for 30

min. Migrated cells were captured and calculated using a microscope.

2.9. Reverse transcription polymerase chain reaction
(RT-PCR) & real-time PCR:

Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). Complementary DNA (cDNA) was synthesized with M-MLV
reverse transcriptase (Promega, Madison, WI, USA) using 2 pg of RNA.
PCR amplification was performed using specific primer for targeted gene
and Go Taq Flexi DNA Polymerase (Promega). Amplified PCR product
was assessed by electrophoresis on 1.2% agarose gel and visualized by
ethidium bromide (Sigma Aldrich).

For real-time PCR, cDNA was amplified with SYRBR green PCR
master mix using a LightCycler 96 instrument (Roche, Basel,

Switzerland).

2.10. Statistical analysis:

Data were generated with at least three independent experiments and

were represented as means = S.D. Data were analyzed by Student’s



t-test with p < 0.05 being considered as statistical significance.



Table 1. Details of PCR Primer Pair Sequences

Name Sequences of primers T bp

Forward : 5= GAAACCTTACCACTGTGACTG - 3
KLF4 60 175
Reverse : 5 - CAGTCACAGACCCCATCTGTIT - 3

Forward : 5 - GGCCTCCAAGGAGTAAGACC - 3
GAPDH 60 147
Reverse : 5 - AGGGGTCTACATGGCAACTG - 3

KLF4: Kruppel-like factor 4.
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.



3. Results

3.1. Establishment of chemoresistant ovarian cell line:

Paclitaxel-resistant ovcar3 cells (Ovcar3ptx) were generated by
exposing paclitaxel with gradually increasing doses. The cytotoxic effect
of paclitaxel on parental Ovcar3 and Ovcar3ptx was examined by cell
proliferation assay. After 72 hr paclitaxel treatment at the indicated
doses, paclitaxel showed significant inhibitory effects on non-resistant
cells, not Ovcar3ptx cells (Figure 1A). The morphology of 2D cultured
cells displayed cellular shrinkage, a further trait of apoptosis. Paclitaxel
strongly induced cell shrinkage in Ovcar3, but not in Ovcar3ptx as
shown in Figure 1B.

To further investigate whether paclitaxel could induce cell apoptosis,
the population of apoptotic cells was determined by flow cytometry with
annexin V/7-AAD staining 72 hr after paclitaxel treatment. As shown in
Figure 1C, paclitaxel clearly increased the number of apoptotic cells in
Ovcar3 compared with Ovcardptx. I also checked apoptotic marker
proteins containing cleaved PARP and cleaved caspase-3. Paclitaxel
induced an increase in apoptotic marker expressions in Ovcar3 compared
with Ovcar3dptx 3 days after paclitaxel treatment as shown in Figure
1D. These results demonstrate that paclitaxel induces apoptosis in
chemosensitive ovarian cancer cells compared with its chemoresistant

cells.

3.2. The essential role of PRMT5 for chemoresistance in

ovarian cancer cells:
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Previous study showed that the elevated expression of PRMTbH
protein was correlated with poor survival of ovarian cancer patients
(13). PRMT5 is well-known to enhance cell proliferation and
tumorigenesis (22-24). However, the role of PRMT5 in chemoresistance
1s still unclear. As shown in Figure 2A, 1 observed that PRMTbH
expression was upregulated in Ovcar3ptx compared with Ovcar3.
Notably, either knockdown of PRMT5 or inhibition of PRMT5 activity
using GSK3326595 restored the chemosensitivity of Ovcar3ptx to
paclitaxel as shown in Figure 2B&C. These results suggest that PRMTbH
1s required for the survival of chemoresistant cancer cells against
paclitaxel treatment.

To determine whether GSK3326595 or knockdown of PRMTS5 could
trigger apoptosis signalling pathway, western blot assay was performed
to analyze apoptotic marker proteins. As shown in Figure 2D&E, both
GSK3326595 and PRMT5 depletion elevated the cleavage of caspase—3
and PARP following exposure to paclitaxel. These results suggest that
PRMT5S is essential for the acquirement of chemoresistance in ovarian

cancer cells.

3.3. The stimulation of cell migration by PRMT5 in

chemoresistant ovarian cancer cells:

Cancer cell migration and invasion are the initial steps of the tumor
cells metastasis (36). As shown in Figure 3A, compared to sensitive
Ovcar3 cells, resistant Ovcar3ptx cells increased cell migration. The
percentage of wound closure rose to 40% in Ovcar3ptx compared to
Ovcar3 cells. Previous studies showed that PRMT5 regulates cell

migration and invasion in colorectal, breast and pancreatic cancer cells
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(37-39). To investigate whether PRMT5 stimulated cell migration and
invasion of chemoresistant ovarian cancer cells, cell migration assay was
performed. Knockdown of PRMT5 and GSK3326595 treatment decreased
cellular migration of Ovcar3ptx (Figure 3B&C). The proportion of wound
closure exhibited approximately 30-40% and 50-60% reduction,
respectively, compared to control group. These results suggest that
PRMT5 enhances migration and invasion of chemoresistant ovarian

cancer cells.

3.4. The activation of EMT by PRMTS5 in

chemoresistant ovarian cancer cells:

EMT 1s the essential process for tumor dissemination and metastasis.
Cancer cells become more motile and display invasive abilities through
EMT (40,41). To further determine the role of PRMT5 in cancer cell
metastasis and EMT, protein expressions of E-cadherin (E-cad), an
epithelial marker, N-cadherin (N-cad) and vimentin, mesenchymal
markers, were examined. As shown in Figure 4A, the expression of
E-cad was downregulated in Ovcar3ptx compared with Ovcar3.
However, N-cad and vimentin were upregulated in Ovcar3ptx. These
results indicate that EMT phenotype is strongly associated with the
chemoresistance in ovarian cancer cells.

Intriguingly, depletion of PRMT5 or PRMT5 inhibitor reversed
EMT-related protein expressions in chemoresistant Ovcar3ptx (Figure
4B&C). For further -confirmation, immunofluorescence staining was
performed with E-cad, N-cad and vimentin antibodies. As shown in
Figure 4D, elevated mesenchymal marker expression and reduced

epithelial marker expression were observed in Ovcar3ptx compared to
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Ovcar3. In addition, mesenchymal marker expression were reduced in
Ovcar3ptx after depleting PRMT5 and treating with PRMT5 inhibitor
(Figure 4E&F). These results demonstrate PRMT5 plays a major role in

promoting EMT in chemoresistant ovarian cancer cells.

3.5. The increase of stem cell-like properties by PRMT5

in chemoresistant ovarian cancer cells:

Cancer stem cells (CSCs) present a small subpopulation of cancer
cells with an increase in tumor-initiating potential, self-renewal,
differentiation and tumorigenicity (42). In addition, stem cell-like
characteristics are known to contribute to chemoresistance of ovarian
cancer cells (44). As shown in Figure 5A, the number of sphere
increased 1n Ovcardptx compared with Ovcar3. Consistent with this
result, the expression of stemness markers, including sox2, nanog and
octd4, increased in Ovcar3ptx compared to Ovcar3 (Figure 5C). To
investigate the function of PRMT5 on cancer stemness, sphere formation
assay was carried out with PRMT5 inhibitor. As shown in Figure 5B,
GSK3326595 treatment decreased the number of sphere formation.
Consistently, PRMT5-knockdown and the inhibition of PRMT5 activity
reduced expressions of stemness markers (Figure SD&E). These results
suggest that PRMT5 attributes to stemness in chemoresistant ovarian

cancer cells.

3.6. The regulation KLF4 protein stability by PRMT5 in

chemoresistant ovarian cancer cells:

,13,



Previous studies revealed the key interaction of PRMT5 with other
binding proteins such as pb3, FOXP3, BCL6, NF-xB, E2F1 or KLF4
(9,22). Among of these proteins, KLF4 was significantly increased in
Ovcar3ptx compared with Ovcar3 (Figure 6A). Meanwhile, the
methylation of PRMT5 on triple arginine sites of KLF4 led to KLF4
protein stabilization from ubiquitin—-mediated proteasomal degradation
pathway (25,26). As shown in Figure 6B&C, knockdown of PRMT5 and
PRMT5 inhibitor reduced KLF4 protein level in Ovcar3ptx. However,
there were no significant changes in the mRNA level of KLLF4 following
the indicated doses of GSK3326595 exposure (Figure 6D).

To further verify whether PRMT5 regulates the protein stability of
KLF4 in chemoresistant ovarian cancer cells, I treated cells with a
proteasome inhibitor MG132. The results showed that MG132 reversed
the decrease of KLF4 protein that was induced by GSK3326595 as
shown in Figure 6E. For further confirmation, cycloheximide (CHX), an
inhibitor of protein biosynthesis, was administrated into chemoresistant
ovarian cancer cells, with or without GSK3326595. KLF4 protein level
was strongly reduced by GSK3326595 treatment. However, the protein
level of KLF4 was slightly decreased in the absence of GSK3326595
after CHX treatment (Figure 6F). These results suggest that PRMT5
enhances the protein stability of KLF4 by inhibiting its degradation.

3.7. The effect of KLF4 on EMT and stemness of

chemoresistant ovarian cancer cells:

To confirm the regulation of PRMT5 on chemoresistance of ovarian
cancer cells through stabilization of KLF4 protein level, I investigated

the role of KLF4 in stimulation of EMT and cancer stemness. As
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shown in Figure 7A, the number of migrated cells was reduced
approximately 50% in KLF4-depleted Ovcar3ptx cells. In addition, the
number of spheres also decreased after knockdown of KLF4 in
Ovcar3ptx cells (Fiugre 7B). Next, the role of KLF4 in drug sensitivity
of Ovcar3ptx was examined. As shown in Figure 7C, depletion of KLF4
reversed drug sensitivity of chemoresistant ovarian cancer cells.
Furthermore, depletion of KLF4 also activated the apoptosis pathway
after paclitaxel exposure in chemoresistant ovarian cancer cells (Figure
7D). These results suggest that KLF4 modulates EMT signalling and
stem cell-like properties in Ovcar3ptx. Likewise, PRMT5 contributes to
chemoresistance of ovarian cancer cells via the accumulation of KLF4

protein in chemoresistant ovarian cancer cells.
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Figure 1. Establishment of chemoresistant ovarian cancer cell line. (A)
PTX showed significant inhibitory effects on Ovcar3 compared
with Ovcar3ptx. Cells were treated with PTX at the indicated
doses for 3 days. Cell wviability was measured by CCK-8
assay. (B) PTX strongly induced cell shrinkage in Ovcar3, but
not in Ovcar3ptx. The morphology of 2D cultured cells were
captured under a microscope 3 days after PTX exposure. (C)
PTX clearly increased apoptotic cells in Ovcar3 as opposed to
Ovcar3ptx. Apoptosis analysis was performed by flow
cytometry with annexin V/7-AAD staining. (D) PTX
increased protein levels of apoptosis markers in Ovcar3. Cells
were treated with different concentrations of PTX for 3 days.
B-actin was detected as a control. All values were presented
as the mean £ SD (n = 3). PTX: paclitaxel; Significant

differences were indicated; ***, p < 0.001.
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Figure 2. The essential role of PRMT5 for chemoresistance in ovarian

cancer cells. (A) PRMT5 protein level was upregulated in
Ovcar3ptx compared with Ovcar3. Cell lysates were subjected
to western blotting analysis. (B) Knockdown of PRMT5
decreased cell viability of Ovcar3ptx. Cells were treated with
PTX at the indicated doses for 3 days. Cell viability was
determined by CCK-8 assay. (C) PRMT5 inhibitor, GSK
reduced Ovcar3ptx viability. Ovcar3ptx cells were treated with
GSK at the indicated concentrations for 3 days. (D) Depletion
of PRMT5 increased the level of apoptosis markers in
Ovcar3ptx following PTX treatment. (E) GSK elevated
apoptosis marker proteins in Ovcar3ptx. Cells were treated
with GSK at indicated doses for 3 days. B—actin was detected
as a control. All values were presented as the mean = S.D (n =
3). PTX: paclitaxel; GSK: GSK3326595; Significant differences
were indicated; *** p<0.001, **p<0.001, *p<0.05.
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Figure 3. The stimulation of cell migration by PRMT5 in chemoresistant
ovarian cancer cells. (A) Ovcar3ptx exhibited the increase in
cell migration compared with Ovcar3 (upper panel). The
percentage of wound closure was determined (lower panel).
(B) Depletion of PRMT5 decreased migration of Ovcar3ptx
cells (upper panel). The proportion of wound closure was
measured (lower panel). (C) GSK decreased migration of
Ovcar3ptx. Cells were treated with 1uM GSK (upper panel).
The percentage of wound closure was determined (lower
panel). Cells were scratched for wound healing assay. Images
were captured 24 hr after wounding. All values were
presented as the mean = S.D (n = 3). GSK: GSK3326595;

Significant differences were indicated; ***, p<0.001.
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4. The activation of EMT by PRMT5 in chemoresistant ovarian

cancer cells. (A) The expression of E-cad was
down-regulated and N-cad, vimentin were upregulated in
Ovcar3ptx compared with Ovcar3. (B) PRMT5 depletion in
Ovcar3ptx reversed EMT-related proteins expression (E-cad,
N-cad and vimentin). (C) GSK converted EMT-related
proteins expression in Ovcar3ptx. PB-actin was detected as a
control. (D) Elevated mesenchymal markers and reduced
epithelial marker expression were observed in Ovcar3ptx
compared to Ovcar3. (E) Expressions of mesenchymal markers
reduced in Ovcar3ptx after depleting PRMT5. (F) Expressions
of mesenchymal markers decreased in Ovcar3ptx after treating
with  PRMT5  inhibitor. Images were obtained by
immunocytochemistry. DAPI was used to stain the nuclel

(Blue, x 200). GSK: GSK3326595.
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Figure 5. The increase of stem cell-like properties by PRMT5 in
chemoresistant ovarian cancer cells. (A) Ovcar3ptx increased
the number of spheres compared with Ovcar3. (B) PRMT5
inhibitor treatment in Ovcar3ptx reduced the number of
spheres. (C) Stemness marker expression including sox2,
nanog, oct4d increased in Ovcar3ptx compared to Ovcar3. (D)
Knockdown of PRMT5 reduced the expression of stemness
markers. (E) PRMT5 inhibitor decreased protein level of
stemness markers. GAPDH was detected as a control. All
values were presented as the mean * S.D (n = 3). GSK:
GSK3326595; Significant differences were indicated;
p<0.001.
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Figure 6.

The regulation KILF4 protein stability by PRMT5 in
chemoresistant ovarian cancer cells. (A) KLF4 protein level
was upregulated in Ovcar3ptx compared with Ovcar3 cells.
(B) Knockdown of PRMT5 and (C) inhibition of PRMT5
by GSK reduced KLF4 protein level in Ovcar3ptx. (D,E)
Relative mRNA levels of KILF4 were not changed by
treatment of PRMT5 inhibitor. (F) MGI132 treatment
abolished the effect of PRMT5 inhibitor on KLF4 protein
level. (G) PRMT5 inhibitor enhanced the degradation of
KLF4 protein. Graph in the lower panel represented the
quatification of avarage protein expression of three
independent experimental groups. All values were presented
as the mean + S.D (n = 3). GSK: GSK3326595; Significant
differences were indicated; *xx, p<0.001, =**p<0.001,
#*p<0.05.
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Figure 7. The effect of KLF4 on EMT and stemness in chemoresistant
ovarian cancer cells. (A) Depletion of KLF4 decreased the
number of migrated cells of Ovcar3ptx. (B) Depletion of KLF4
inhibited the sphere formation of Ovcar3ptx cells. (C)
Knockdown of KLF4 rendered Ovcar3ptx to become more
sensitive to PTX. (D) KLF4 depletion induced apoptosis in
Ovcar3ptx following 3 days paclitaxel exposure. P-actin was
detected as a control. All values were presented as the mean =+
SD (n = 3). PTX: paclitaxel; GSK: GSK3326595; Significant
differences were indicated; ***, p<0.001, **p<0.001, *p<0.05.
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4. Discussion

PRMT5 has been recently characterized as an oncogene in various
types of cancer such as lung, prostate, bladder and ovarian cancers (8).
Accumulated PRMT5 in cancer tissues is positively related with poor
overall survival, high-grade tumor and metastasis. Previous study
reported that PRMT5 expression was highly upregulated in ovarian
cancer (13). In this study, the protein level of PRMT5 was highly
increased 1In chemoresistant ovarian cancer cells compared to
non-resistant cancer cells. PRMT5 inhibition restored chemosensitivity of
resistant cancer cells. These results support the oncogenic function of
PRMTS5 in ovarian cancers.

Targeting PRMT5 activity may represent multiple therapeutic
approaches to strengthen anti—-tumor treatment. There are plenty of
selective  PRMT5  inhibitors such as GSK3235025. LLY-283,
JNJ-64619178 or GSK3326595 (28). Amongst numerous selective PRMT5
inhibitors, GSK3326595 showed its potential anti—tumor effect in multiple
types of cancer. GSK3326595 displayed specificity and high potency in
vitro with ICsy value of 3-99 nM. Previous study investigated that
GSK3326595 decreased tumorigenesis through inhibiting AKT signal
pathway or pb3-MDM4 regulatory axis (31). GSK3326595 was also
demonstrated as a candidate in anti-tumor immunity response (32). In
addition, GSK3326595 was designed in Phasel/II clinical trials from 2016
and showed its safety, mechanisms and efficacy in multiple tumor
models (34,35). Therefore, further studies regarding GSK3326595 would
be of great merit.

Chemoresistance in ovarian cancer 1s closely related to tumor

metastasis and stemness (43/44). Tumor recurrence accounted for
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approximately 70% of chemotherapy-treated patients (45). In spite of the
promising chemotherapy response, frequent relapses highly raise a major
therapeutic challenge in the field cancer research. EMT and stem
cell-like properties contribute to chemoresistance. EMT governs the
biochemical alterations by which cancer cells become more motile and
migrate nearby tissues. A study showed that chemoresistant ovarian
cancer cells exhibits mesenchymal morphology and higher migratory
ability (46). Cancer stem cell markers, such as CD44, CD133 and sox2,
also enhance the development of drug resistance in ovarian cancer (47).
Therefore, in this study, I investigated whether the progressive
development of chemoresistance in ovarian cancer is related with EMT
and stemness. The results confirmed the critical relation between
chemoresistance and cell migration and stem cell-like properties. Indeed,
GSK3326595 decreased cell migration and invasion of resistant cancer
cells. Moreover, PRMT5 knockdown strongly reduced the expressions of
stemness markers and sphere formation. These results are supported by
previous studies, demonstrating that the changes in EMT and stemness
show a reversible response in chemoresistance. Therefore, PRMT5 plays
an integral role in chemoresistance of ovarian cancer cells through
promoting cell migration and stimulating stemness properties.

I investigated the molecular mechanism of PRMT5 in regulating
metastasis, stemness and chemoresistance. Previous studies showed that
PRMT5 methylates several targeted proteins such as EZ2F1, FAMA4TE,
KLF4 and others. In this study, I observed that KLF4 protein level
was highly upregulated in chemoresistant ovarian cancer cells. These
results show that KLF4 is a crucial candidate of PRMT5 regulation in
chemoresistance of ovarian cancer cells.

In conclusion, I propose that PRMT5-KLF4 axis is a decisive

pathway in chemoresistance of ovarian cancer. Inhibition of PRMTb5
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activity by GSK3326595 could reverse the chemosensitivity of resistant
cancer cells to paclitaxel. Furthermore, EMT and cancer stemness are
downregulated by inhibition of PRMT5. Therefore, targeting
PRMT5-KLF4 axis could be a potential therapeutic strategy of

overcoming chemoresistance of ovarian cancer.
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5. Summary

This study aimed to investigate the role of PRMT5 in
chemoresistance of ovarian cancer cells. PRMT5 is overexpressed in
paclitaxel-resistant ovarian cancer cells compared to non-resistant
cancer  cells. Otherwise, PRMT5 inhibitor  could overcome
paclitaxel-resistance in ovarian cancer cells. Furthermore, PRMT5
enhances stem cell-like properties and motility of resistant cancer cells.
Regarding to molecular mechanism, PRMT5 regulates the protein
stability of KLF4. Taken together, this study suggests that
PRMT5-KLF4 axis i1s a potential target for treatment of chemoresistant

ovarian cancer.
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(Abstract)

Protein arginine methyltransferase 5 (PRMT5) is a methyltransferase
enzyme which symmetrically dimethylates arginine residues of target
proteins. Recently, many studies reported that PRMT5 is elevated in
various types of cancer such as lung, gastric, colorectal, and ovarian
cancer and that high expression of PRMT5 in cancer tissues is related
to poor outcomes of cancer patients.

In this study, I found that PRMT5 was upregulated iIn
paclitaxel-resistant ovarian cancer cells compared to non-resistant
cancer cells. PRMT5 inhibitor or PRMT5 depletion diminished
paclitaxel-resistance of ovarian cancer cells. In addition, both knockdown

of PRMT5 and inhibition of PRMT5 activity using GSK3326595
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decreased cell migration, EMT and cancer stemness. Regarding

molecular mechanism, I found that PRMT5 regulated KLF4 protein

stability. Similar to PRMT5 depletion, knockdown KILF4 inhibited cell

proliferation, reduced EMT signalling and stem cell-like properties in

chemoresistant ovarian cancer cells. Therefore, PRMT5-KLF4 axis

enhances the chemoresistance of ovarian cancer cells by increasing stem

cell-like characteristics and promoting cell migration and invasion.
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