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Abstract: Renal fibrosis is a common feature of chronic kidney disease and is a promising therapeutic
target. However, there is still limited treatment for renal fibrosis, so the development of new
anti-fibrotic agents is urgently needed. Accumulating evidence suggest that oxidative stress and
endoplasmic reticulum (ER) stress play a critical role in renal fibrosis. Carnosol (CS) is a bioactive
diterpene compound present in rosemary plants and has potent antioxidant and anti-inflammatory
properties. In this study, we investigated the potential effects of CS on renal injury and fibrosis in a
murine model of unilateral ureteral obstruction (UUO). Male C57BL/6J mice underwent sham or
UUO surgery and received intraperitoneal injections of CS (50 mg/kg) daily for 8 consecutive days.
CS improved renal function and ameliorated renal tubular injury and interstitial fibrosis in UUO
mice. It suppressed oxidative injury by inhibiting pro-oxidant enzymes and activating antioxidant
enzymes. Activation of ER stress was also attenuated by CS. In addition, CS inhibited apoptotic and
necroptotic cell death in kidneys of UUO mice. Furthermore, cytokine production and immune cell
infiltration were alleviated by CS. Taken together, these findings indicate that CS can attenuate renal
injury and fibrosis in the UUO model.

Keywords: carnosol; renal fibrosis; oxidative stress; endoplasmic reticulum stress; apoptosis; necroptosis;
inflammation

1. Introduction

Chronic kidney disease (CKD) is defined as the presence of decreased kidney function
and/or kidney damage for at least 3 months, irrespective of the underlying cause [1]. The
prevalence of CKD has steadily increased over the past 3 decades, becoming a global health
problem [1]. CKD is also considered a risk factor for cardiovascular disease and is related
to increased mortality [2]. The pathogenesis of CKD still remains incompletely understood
despite intensive research because it is complex and involves multiple factors [3]. Renal
fibrosis is a common hallmark of CKD and is characterized by an excessive deposition of
extracellular matrix (ECM) [4]. Myofibroblasts express α-smooth muscle actin (α-SMA) and
produce large amounts of ECM proteins during fibrosis [5]. Differentiation and activation of
myofibroblasts are modulated by pro-fibrogenic cytokines including tumor growth factor-β
(TGF-β) and connective tissue growth factor (CTGF) [5]. Current treatments for CKD
include life modification, medication, dialysis and kidney transplantation [1]. However,
specific treatments for renal fibrosis are limited, so the development of new anti-fibrotic
agents is urgent.

Accumulating evidence suggests that oxidative stress plays a critical role in the devel-
opment of renal fibrosis [6]. The kidney is the organ with the second highest requirement for
oxygen consumption and mitochondrial contents [7]. Indeed, a large amount of ATP is re-
quired for the reabsorption of solutes by tubular epithelial cells. In pathological conditions,
excessive reactive oxygen species (ROS) are produced, leading to progressive mitochondrial
damage [7,8]. Damaged mitochondria exhibit a loss of efficiency of the electron transport
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chain, enhancing ROS generation and decreasing ATP production. The oxidative stress-
induced mitochondrial dysfunction can perturb various cellular processes and contribute
to the development of inflammation, tubular cell apoptosis, and fibrosis [7,8]. In addi-
tion, inflammation and tubular cell apoptosis further promote renal fibrosis. Therefore,
anti-oxidative agents could be served as potential anti-fibrotic therapies for renal fibrosis.

Over the past few decades, natural products have played a critical role in drug discov-
ery for a variety of human diseases, such as cancer, infectious diseases and cardiovascular
diseases [9]. The use of natural products in drug development has several distinct advan-
tages [10,11]. They exhibit chemical novelty and can provide lead drug candidates for
complex targets compared to other sources. In addition, natural products have unparal-
leled chemical diversity compared to synthetic chemicals [10,11]. Even with a complex
molecular structure, they can be absorbed and metabolized in the body. Accumulating
evidence suggests that natural products with antioxidant properties, such as berberine
and curcumin, have beneficial effects in preclinical models of CKD [6]. Carnosol (CS)
is a natural diterpene compound found in rosemary plants and has several biological
effects, including anti-tumor, antioxidant and anti-inflammatory properties [12,13]. This
compound has been shown to exhibit protective effects on various inflammatory diseases,
such as experimental autoimmune encephalomyelitis [14], inflammatory bowel disease [15],
spinal cord injury [16], nonalcoholic fatty liver disease [17], allergic asthma [18] and atopic
dermatitis [19]. Furthermore, CS ameliorated ischemia/reperfusion-induced acute kidney
injury in rats [20]. However, the effect of CS on renal fibrosis has not yet been investigated

The unilateral ureteral obstruction (UUO) model is a well-established model of pro-
gressive renal interstitial fibrosis [21]. This model has been widely used to obtain new
therapeutic agents for renal fibrosis [22]. In this study, we investigated the potential
protective effects and underlying mechanisms of CS against renal fibrosis in the UUO
mouse model.

2. Materials and Methods
2.1. Animal Experiments

Seven-week-old male C57BL/6J mice were purchased from HyoSung Science (Daegu,
Republic of Korea). Before starting experiments, the mice were acclimated for 1 week under
20–24 ◦C on a 12/12 h light/dark cycle. Animal experiments were approved by the Institu-
tional Animal Care and Use Committee of the Daegu Catholic University Medical Center
(DCIAFCR-211220-30-Y). The mice were randomly grouped into four groups (n = 8 in each
group): (1) sham-operated control (Sham) group; (2) Sham+CS group; (3) UUO group;
(4) UUO+CS group. To establish UUO model, the left kidney was exposed through a flank
incision under general anesthesia and the left ureter was ligated with 5-0 silk sutures. The
sham-operated group underwent surgical procedure similar to UUO but not subjected to
ureteral ligation. The Sham+CS and UUO+CS group were given intraperitoneal injections
of CS (50 mg/kg, dissolved in DMSO) daily for 8 consecutive days, starting from 1 day
prior to the sham or UUO operation. The Sham and the UUO group were injected intraperi-
toneally with an equal volume of DMSO. CS was purchased from Cayman Chemical (Ann
Arbor, MI, USA). The dose of CS was chosen based on previous studies [14,15]. One week
after the sham or UUO operation, all mice were anesthetized and sacrificed. Blood samples
were collected by cardiac puncture and then the kidneys were rapidly isolated.

2.2. Determination of Creatinine, Blood Urea Nitrogen (BUN) and Cytokine Levels

Serum levels of creatinine and BUN were analyzed using an autoanalyzer (Hitachi,
Osaka, Japan). Serum and renal levels of tumor necrosis factor-α (TNF-α), interleukin-
6 (IL-6) and IL-1β were measured using ELISA kits (R&D Systems, Minneapolis, MN,
USA). Renal levels of monocyte chemoattractant protein-1 (MCP-1) were determined using
the mouse MCP-1 Quantikine ELISA kit (R&D Systems). All analyses were performed
following the manufacturers’ instructions.
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2.3. Histological Analysis and Immunohistochemical (IHC) Staining

Kidney tissues were fixed, dehydrated, and embedded in paraffin for periodic acid-
Schiff (PAS) and Masson’s trichrome staining. The degree of tubular injury was scored
based on the percentage of injured tubules: 0, 0%; 1, ≤10%; 2, 11–25%; 3, 26–45%; 4, 46–75%;
and 5, 76–100% [23,24]. Tubular injury was analyzed in 10 random cortical fields (×400)
per sample. For IHC staining, the sections were deparaffinized and rehydrated. After
antigen retrieval, the sections were incubated with antibodies against α-smooth muscle
actin (α-SMA; Sigma-Aldrich, St. Louis, MO, USA), 4-hydroxynonenal (4-HNE; Abcam,
Cambridge, MA, USA), NADPH oxidase 4 (NOX-4; Novus Biologicals, Littleton, CO,
USA) and F4/80 (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Then, the sections
were reacted with secondary antibodies. Slides were viewed and captured using a slide
scanner (3DHISTECH Pannoramic MIDI, Budapest, Hungary). Quantification of positive
staining for Masson’s trichrome, α-SMA, 4-HNE or NOX-4 was analyzed using the IMT
i-Solution software (IMT i-Solution, Inc., Coquitlam, BC, Canada) in 10 random cortical
fields (×400) per sample according to the manufacturer’s instructions. This computer-
assisted automated image analyzer has been widely used to analyze positively stained
areas [25–27]. The number of F4/80-postive cells was counted in 10 random cortical fields
(×600) per sample.

2.4. Immunofluorescent (IF) Staining

Kidney sections were incubated with anti-8-hydroxy-2’-deoxyguanosine (8-OHdG)
antibody (Santa Cruz Biotechnology) and anti-Ly6B.2 antibody (Abcam). After washing,
the sections were probed with secondary antibodies conjugated with Alexa Fluor 647
or Alexa Fluor 594. To detect the brush border of proximal tubules, the FITC-labeled
lotus tetragonolobus lectin (LTL; Vector Laboratories, Burlingame, CA, USA) was used.
Nuclei were counterstained with DAPI. Images were viewed and captured using a confocal
microscope (Nikon, Tokyo, Japan). Quantification of positive staining for LTL was analyzed
using the IMT i-Solution software (IMT i-Solution, Inc.) in random cortical fields (×400)
per sample according to the manufacturer’s instructions. The number of 8-OHdG-positive
cells or Ly6B.2-positive cells was counted in 10 random cortical fields (×600) per sample.

2.5. Western Blotting

Total protein was extracted from tissues using a RIPA lysis buffer (Cayman Chemical).
Protein samples (10 µg) were loaded onto precast gradient polyacrylamide gels (Bio-Rad
Laboratories, Hercules, CA, USA). After electrophoresis, the separated proteins were trans-
ferred to nitrocellulose membranes. The, the membranes were reacted with antibodies
against fibronectin (Abcam), TGF-β1 (R&D Systems), CTGF (Abcam), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH; Cell Signaling Technology, Danvers, MA, USA),
vimentin (Cell Signaling Technology), α-SMA (Sigma-Aldrich), NOX-4 (Novus Biologicals),
catalase (Abcam), manganese superoxide dismutase (MnSOD; Abcam), spliced X-box bind-
ing protein 1 (XBP1s; Cell Signaling Technology), eukaryotic initiation factor 2α (eIF2α;
Cell Signaling Technology), p-eIF2α (Cell Signaling Technology), activating transcription
factor 4 (ATF4; Cell Signaling Technology), ATF6 (Abcam), CCAAT/enhancer-binding pro-
tein homologous protein (CHOP; Thermo Fisher Scientific, Waltham, MA, USA), cleaved
caspase-3 (Cell Signaling Technology), cleaved poly(ADP-ribose) polymerase-1 (cleaved
PARP-1; Cell Signaling Technology), p53 (Cell Signaling Technology), Bax (Santa Cruz
Biotechnology), receptor-interacting serine/threonine-protein kinase 1 (RIPK1; Cell Sig-
naling Technology), RIPK3 (Cell Signaling Technology), mixed lineage kinase domain-like
pseudokinase (MLKL; Cell Signaling Technology), inhibitor κB-α (IκB-α; Cell Signaling
Technology), p-IκB-α (Cell Signaling Technology), nuclear factor-κB (NF-κB) p65 (Cell
Signaling Technology), p-NF-κB p65 (Cell Signaling Technology) and intercellular adhesion
molecule-1 (ICAM-1; Santa Cruz Biotechnology). Then, the membranes were incubated
with secondary antibodies. The blots were visualized using the iBright CL1500 Imaging
System (Thermo Fisher Scientific) and enhanced chemiluminescence reagents (Thermo



Antioxidants 2022, 11, 2341 4 of 24

Fisher Scientific). Relative protein levels were quantified with ImageJ software (NIH, USA)
using GAPDH as an internal control.

2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA were extracted from tissues using TRIzol reagent (Sigma-Aldrich). The
reverse transcription of extracted RNA was conducted for cDNA synthesis. Real-time PCR
was performed using the specific primers (Table 1) in the Thermal Cycler Dice Real Time
System III (TaKaRa, Tokyo, Japan). Relative expression was calculated by using the 2−∆∆CT

method. All data were normalized to GAPDH.

Table 1. List of primers.

Gene Primer Sequence
(5′→3′) Accession No.

NGAL F: GGCCAGTTCACTCTGGGAAA
R: TGGCGAACTGGTTGTAGTCC NM_008491

KIM-1 F: ACATATCGTGGAATCACAACGAC
R: ACTGCTCTTCTGATAGGTGACA NM_134248

Fibronectin F: CGAGGTGACAGAGACCACAA
R: CTGGAGTCAAGCCAGACACA NM_010233

TGF-β1 F: GCCCTGGATACCAACTATTGCTT
R: AGTTGGCATGGTAGCCCTTG NM_011577

CTGF F: CAAAGCAGCTGCAAATACCA
R: AGTGGAGCGCCTGTTCTAAG NM_010217

Vimentin F: GATCGATGTGGACGTTTCCAA
R: GTTGGCAGCCTCAGAGAGGT NM_011701

α-SMA F: ACTACTGCCGAGCGTGAGAT
R: AAGGTAGACAGCGAAGCCAG NM_007392

N-cadherin F: AGCGCAGTCTTACCGAAGG
R: TCGCTGCTTTCATACTGAACTTT NM_007664

E-cadherin F: CAGGTCTCCTCATGGCTTTGC
R: GGTAGCCAGTGAGCTGAACAC NM_009864

NOX4 F: CCCAAGTTCCAAGCTCATTTCC
R: TGGTGACAGGTTTGTTGCTCCT NM_015760

5-LOX F: ATTGTTCCCATTGCCATCCAGCTCA
R: TCGTTCTCATAGTAGATGCTCACCA NM_009662

XO F: CAGGGTCTTGGTCTTTTCAC
R: CGTTGGTTTCAGCGTCAGGA NM_011723

COX-2 F: AACCGCATTGCCTCTGAAT
R: CATGTTCCAGGAGGATGGAG NM_011198

iNOS F: CGAAACGCTTCACTTCCAA
R: TGAGCCTATATTGCTGTGGCT NM_010927

Catalase F: CAAGTACAACGCTGAGAAGCCTAAG
R: CCCTTCGCAGCCATGTG NM_009804

MnSOD F: AACTCAGGTCGCTCTTCAGC
R: CTCCAGCAACTCTCCTTTGG NM_0136671

GPX1 F: GCAATCAGTTCGGACACCAG
R: CACCATTCACTTCGCACTTCTC NM_008160

PRDX5 F: CGGAAAGAAGCAGGTTGGGA
R: CATCTGGCTCCACGTTCAGT NM_012021

GRP78 F: TGGTATTCTCCGAGTGACAGC
R: AGTCTTCAATGTCCGCATCC NM_001163434

IRE1α
F: GCATCACCAAGTGGAAGTATC
R: ACCATTGAGGGAGAGGCATAG NM_023913

PERK F: AAAAAGCAGTGGGATTTGGA
R: CTGGAATATACCGAAGTTCAAAG NM_
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Table 1. Cont.

Gene Primer Sequence
(5′→3′) Accession No.

ATF4 F: GAGCTTCCTGAACAGCGAAGTG
R: TGGCCACCTCCAGATAGTCATC NM_009716

ATF6 F: CCCAAGCTCTCCGCATAGTC
R: TAAAATGCCCCATAACTGACCAA NM_001081304

CHOP F: GTCCCTAGCTTGGCTGACAGA
R: TGGAGAGCGAGGGCTTTG NM_007837

TNF-α F: CACAGAAAGCATGATCCGCGACGT
R: CGGCAGAGAGGAGGTTGACTTTCT NM_013693

IL-6 F: TAGTCCTTCCTACCCCAATTTCC
R: TTGGTCCTTAGCCACTCCTTC NM_031168

IL-1β
F: CGCAGCAGCACATCAACAAGAGC
R: TGTCCTCATCCTGGAAGGTCCACG NM_008361

CXCL5 F: TCATGAGAAGGCAATGCT
R: ACATTATGCCATACTACGAAGA NM_009141

MCP-1 F: TAAAAACCTGGATCGGAACCAA
R: GCATTAGCTTCAGATTTACGGGT NM_011333

ICAM-1 F: AACTGTGGCACCGTGCAGTC
R: AGGGTGAGGTCCTTGCCTACTTG NM_010493

VCAM-1 F: CCCAGGTGGAGGTCTACTCA
R: CAGGATTTTGGGAGCTGGTA NM_011693

GAPDH F: ACTCCACTCACGGCAAATTC
R: TCTCCATGGTGGTGAAGACA NM_001289726

2.7. Assessment of Oxidative Stress and Antioxidant Enzyme Activities

Malondialdehyde (MDA) and 8-OHdG levels were measured using the MDA assay
kit (Sigma-Aldrich) and the 8-OHdG assay kit (Abcam), respectively. Reduced glutathione
(GSH) and oxidized glutathione (GSSG) levels were determined using the GSH detection kit
(Enzo Life Sciences, Farmingdale, NY, USA). Activities of catalase and SOD were measured
using commercial kits (Invitrogen, Carlsbad, CA, USA). MPO activity was determined
using the MPO activity assay kit (Abcam). All analyses were performed following the
manufacturers’ instructions.

2.8. TdT-Mediated dUTP Nick End Labeling (TUNEL) Staining

Apoptosis were detected in tissues using a TUNEL assay kit (Roche Diagnostics,
Indianapolis, IN, USA) following the manufacturer′s protocol. Briefly, the sections were
deparaffinized, permeabilized, and incubated in the TUNEL reaction mixture. Images were
viewed and captured using a confocal microscope (Nikon). Positive cells were counted in
10 random cortical fields (×600) per sample.

2.9. Statistical Analysis

Data were expressed as the mean ± SEM. Statistical significance was assessed by
one-way analysis of variance (ANOVA) with Bonferroni’s multiple comparison tests. A
p-value less than 0.05 was considered significant.

3. Results
3.1. CS Ameliorated Renal Dysfunction and Tubular Injury in UUO Mice

To first evaluate the effect of CS on renal function in UUO mice, we measured serum
levels of creatinine and BUN, established indicators of renal function [28,29], in each group.
Serum levels of creatinine and BUN were increased after UUO surgery (Creatinine: Sham,
0.30 ± 0.04 mg/dL vs. UUO, 0.64 ± 0.07 mg/dL, p < 0.001; BUN: Sham, 36.3 ± 2.2 mg/dL
vs. UUO, 65.8 ± 5.7 mg/dL, p < 0.001) (Figure 1A,B). CS treatment significantly reduced
serum levels of both indicators in UUO mice (Creatinine: UUO, 0.64 ± 0.07 mg/dL vs.
UUO+CS, 0.42 ± 0.05 mg/dL, p < 0.05; BUN: UUO, 65.8 ± 5.7 mg/dL vs. UUO+CS,
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44.4 ± 4.4 mg/dL, p < 0.01) (Figure 1A,B). PAS staining showed that UUO mice developed
tubular dilatation, tubular atrophy and infiltration of inflammatory cells (Figure 1C). CS
attenuated these histological alterations in UUO mice, while CS alone had no effect on
tubular morphology (Figure 1C). As a result of semi-quantitative analysis, the increased
tubular injury score in UUO mice was significantly reduced by CS (UUO, 3.5 ± 0.3 vs.
UUO+CS, 1.6 ± 0.3, p < 0.001) (Figure 1D).

Antioxidants 2022, 11, 2341 7 of 25 
 

 
Figure 1. Effects of CS on renal dysfunction and histological abnormalities in UUO-operated mice. 
(A) Serum creatinine levels. (B) BUN levels. (C) PAS staining of kidney sections. Red arrows indicate 
tubular atrophy. Black arrows indicate tubular dilatation. Scale bars in the upper panel = 500 μm. 
Scale bars in the lower panel = 40 μm. (D) Tubular injury score. *** p < 0.001 vs. Sham. # p < 0.05 and 
## p < 0.01 vs. UUO. 

Figure 1. Effects of CS on renal dysfunction and histological abnormalities in UUO-operated mice.
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Scale bars in the lower panel = 40 µm. (D) Tubular injury score. *** p < 0.001 vs. Sham. # p < 0.05 and
## p < 0.01 vs. UUO.

Staining with LTL, a specific marker for the brush border of proximal tubules [30,31],
showed a higher percentage of LTL-stained area in the UUO group than in the Sham
group (Sham, 22.6 ± 1.7 % vs. UUO, 5.8 ± 1.0 %, p < 0.001) (Figure 2A,B). However,
UUO-induced loss of the proximal tubule brush border was significantly attenuated by
CS (UUO, 5.8 ± 1.0 % vs. UUO+CS, 12.9 ± 1.0 %, p < 0.01) (Figure 2A,B). Furthermore, CS
treatment reduced mRNA expression of neutrophil gelatinase-associated lipocalin (NGAL)
and kidney injury molecule-1 (KIM-1), tubular injury markers [32,33], in kidneys of UUO



Antioxidants 2022, 11, 2341 7 of 24

mice (NGAL: UUO, 27.9 ± 4.5 vs. UUO+CS, 7.6 ± 1.5, p < 0.001; KIM-1: UUO, 24.6 ± 4.6 vs.
UUO+CS, 9.4 ± 1.3, p < 0.001) (Figure 2C).
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Figure 2. Effects of CS on loss of proximal tubule brush border and expression of tubular injury
markers in UUO mice. (A) IF staining of kidney sections for LTL. Scale bar = 50 µm. (B) Percentages
of LTL-stained area. (C) Renal NGAL and KIM-1 mRNA levels. *** p < 0.001 vs. Sham. ## p < 0.01 and
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3.2. CS Alleviated Renal Fibrosis in UUO Mice

Masson’s trichrome staining showed that the area with positive staining for collagen
was increased after UUO surgery (Sham, 1.3 ± 0.2 % vs. UUO, 16.2 ± 1.7 %, p < 0.001)
and CS remarkably decreased the fibrotic area (UUO, 16.2 ± 1.7 % vs. UUO+CS, 5.2 ± 1.0,
p < 0.001) (Figure 3A,B). In addition, renal mRNA levels of fibronectin, TGF-β1 and CTGF
were reduced by CS (fibronectin: UUO, 16.6 ± 1.4 vs. UUO+CS, 3.6 ± 0.7, p < 0.001; TGF-
β1: UUO, 11.4 ± 1.5 vs. UUO+CS, 2.0 ± 0.3, p < 0.001; CTGF: UUO, 8.6 ± 1.4 vs. UUO+CS,
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2.0 ± 0.3, p < 0.001) (Figure 3C). These results were confirmed by the results of Western
blotting (fibronectin: UUO, 8.1 ± 0.5 vs. UUO+CS, 2.0 ± 0.2, p < 0.001; TGF-β1: UUO,
5.7 ± 0.4 vs. UUO+CS, 1.5 ± 0.3, p < 0.01; CTGF: UUO, 4.5 ± 0.4 vs. UUO+CS, 0.8 ± 0.1,
p < 0.01) (Figure 3D,E).
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blotting of fibronectin, TGF-β1 and CTGF. (E) Quantification of Western blots for fibronectin, TGF-β1
and CTGF. ** p < 0.01 and *** p < 0.001 vs. Sham. ## p < 0.01 and ### p < 0.001 vs. UUO.

CS treatment reduced renal mRNA levels of vimentin, α-SMA and N-cadherin while de-
creasing E-cadherin mRNA expression in UUO mice (vimentin: UUO, 7.8 ± 1.1 vs. UUO+CS,
2.3 ± 0.5, p < 0.001; α-SMA: UUO, 10.6 ± 1.4 vs. UUO+CS, 4.2 ± 0.4, p < 0.001; N-
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cadherin: UUO, 7.3 ± 1.0 vs. UUO+CS, 2.0 ± 0.3, p < 0.001; E-cadherin: UUO, 0.31 ± 0.05 vs.
UUO+CS, 0.87± 0.11, p < 0.001) (Figure 4A). Protein levels of vimentin and α-SMA were
also decreased by CS (vimentin: UUO, 4.4 ± 0.2 vs. UUO+CS, 0.9 ± 0.1, p < 0.001; α-SMA:
UUO, 6.0 ± 0.6 vs. UUO+CS, 2.3 ± 0.5, p < 0.05) (Figure 4B,C). IHC staining confirmed the
inhibitory effect of CS on α-SMA expression in kidneys of UUO mice (UUO, 41.2 ± 3.9 %
vs. UUO+CS, 16.3 ± 1.5 %, p < 0.001) (Figure 4D,E).

3.3. CS Alleviated Oxidative Damage in UUO Mice

Oxidative stress is a key contributor to renal fibrosis [6]. Thus, we evaluate the effect
of CS on UUO-induced oxidative stress to explore the potential mechanism of action of CS.
IHC staining for the lipid peroxidation product 4-HNE [34,35] revealed that the percentage
of 4-HNE-stained area was higher in the UUO group than in in the Sham group (Sham,
0.8 ± 0.2 % vs. UUO, 38.3 ± 5.0 %, p < 0.001) (Figure 5A,B). CS treatment significantly
decreased the area of 4-HNE staining in kidneys of UUO mice (UUO, 38.3 ± 5.0 % vs.
UUO+CS, 14.0 ± 1.4 %, p < 0.001) (Figure 5A,B). Renal amount of the lipid peroxidation
product MDA [34,35] was also reduced by CS (UUO, 6.3 ± 0.6 nmol/mg protein vs.
UUO+CS, 3.1 ± 0.4 nmol/mg protein, p < 0.001) (Figure 5C). In addition, IF staining for
8-OHdG, an oxidative nucleoside product [36], revealed that the number of 8-OHdG-
positive cells increased after UUO surgery (Sham, 1.1 ± 0.4 vs. UUO, 40.3 ± 4.4, p < 0.001)
(Figure 5D,E). However, CS treatment remarkably reduced the number of 8-OHdG-positive
cells (UUO, 40.3 ± 4.4 vs. UUO+CS, 6.4 ± 1.3, p < 0.001) (Figure 5D,E). Serum 8-OHdG
levels were also decreased by CS (UUO, 47.1 ± 4.3 ng/mL vs. UUO+CS, 25.8 ± 5.4 ng/mL,
p < 0.01) (Figure 5F).

To elucidate the mechanism by which CS inhibits UUO-induced oxidative damage,
we first examined the expression of the pro-oxidant enzyme NOX4 in each group. The
UUO group showed increased levels of NOX4 mRNA and protein in kidneys compared
to the Sham group (NOX4 mRNA: Sham, 1.0 ± 0.1 vs. UUO, 5.7 ± 0.9, p < 0.001; NOX4
protein: Sham, 1.0 ± 0.1 vs. UUO, 3.2 ± 0.4, p < 0.05) (Figure 6A–C). CS treatment
remarkable reduced UUO-induced NOX4 mRNA and protein expression (NOX4 mRNA:
UUO, 5.7 ± 0.9 vs. UUO+CS, 2.0 ± 0.3, p < 0.001; NOX4 protein: UUO, 3.2 ± 0.4 vs.
UUO, 1.6 ± 0.1, p < 0.05) (Figure 6A–C). IHC staining confirmed the inhibitory effect of
CS on NOX4 expression in UUO mice (UUO, 34.5 ± 4.6 % vs. UUO+CS, 20.9 ± 2.2 %,
p < 0.01) (Figure 6D,E). Renal mRNA levels of 5-lipoxygenase (5-LOX), xanthine oxidase
(XO), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were also
reduced by CS (5-LOX: UUO, 3.6± 0.6 vs. UUO+CS, 1.8± 0.2, p < 0.01; XO: UUO, 6.3 ± 0.7
vs. UUO+CS, 2.6 ± 0.3, p < 0.001; COX-2: UUO, 6.6 ± 0.6 vs. UUO+CS, 3.5 ± 0.3, p < 0.001;
iNOS: UUO, 4.2 ± 0.4 vs. UUO+CS, 1.6 ± 0.1, p < 0.001) (Figure 6F).

In addition, CS treatment significantly increased renal levels of GSH, a major endoge-
nous antioxidant [37], and decreased renal GSSG levels, thereby increasing the GSH/GSSG
ratio in UUO mice (GSH: UUO, 3.5± 0.2 nmol/mg protein vs. UUO+CS, 4.5± 0.2 nmol/mg
protein, p < 0.05; GSSG: UUO, 2.4 ± 0.3 nmol/mg protein vs. UUO+CS, 1.4 ± 0.2 nmol/mg
protein, p < 0.01; GSH/GSSG: UUO, 1.4± 0.3 vs. UUO+CS, 3.4± 0.3, p < 0.001) (Figure 7A–C).
CS reduced renal mRNA expression of the antioxidant enzymes catalase, MnSOD, glu-
tathione peroxidase 1 (GPX1) and peroxiredoxin-5 (PRDX5) (catalase: UUO, 0.41 ± 0.05
vs. UUO+CS, 0.70 ± 0.06, p < 0.05; MnSOD: UUO, 0.30 ± 0.04 vs. UUO+CS, 0.90 ± 0.05,
p < 0.001; GPX1: UUO, 0.52 ± 0.05 vs. UUO+CS, 0.78 ± 0.04, p < 0.05; PRDX5: UUO,
0.45 ± 0.05 vs. UUO+CS, 0.76 ± 0.03, p < 0.05) (Figure 7D). Reduced renal protein ex-
pression of catalase and MnSOD in UUO mice was also increased by CS (catalase: UUO,
0.23 ± 0.03 vs. UUO+CS, 0.50 ± 0.03, p < 0.05; MnSOD: UUO, 0.17 ± 0.04 vs. UUO+CS,
0.96 ± 0.06, p < 0.01) (Figure 7E,F). Furthermore, CS treatment increased enzymatic activi-
ties of catalase and SOD in kidneys of UUO mice (catalase: UUO, 4.1 ± 0.7 U/mg protein
vs. UUO+CS, 7.2 ± 0.8 U/mg protein, p < 0.05; MnSOD: UUO, 5.4 ± 1.0 U/mg protein vs.
UUO+CS, 13.2 ± 1.7 U/mg protein, p < 0.001) (Figure 7G,H).
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Figure 6. Effects of CS on pro-oxidant enzymes in UUO mice. (A) Renal NOX4 mRNA levels.
(B) Western blotting of NOX4. (C) Quantification of Western blots for NOX4. (D) IHC staining
of kidney sections for NOX4. Scale bars in the upper panel = 200 µm. Scale bars in the lower
panel = 40 µm. (E) Percentages of NOX4-stained area. (F) Renal 5-LOX, XO, COX-2 and iNOS mRNA
levels. * p < 0.05 and *** p < 0.001 vs. Sham. # p < 0.05, ## p < 0.01 and ### p < 0.001 vs. UUO.
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Figure 7. Effects of CS on antioxidant enzymes in UUO mice. (A) Renal GSH levels. (B) Renal
GSSG levels. (C) GSH/GSSG ratio. (D) Renal catalase, MnSOD, GPX1 and PRDX5 mRNA levels.
(E) Western blotting of catalase and MnSOD. (F) Quantification of Western blots for catalase and
MnSOD. (G) Catalase activities in kidney tissues. (H) SOD activities in kidney tissues. ** p < 0.01 and
*** p < 0.001 vs. Sham. # p < 0.05, ## p < 0.01 and ### p < 0.001 vs. UUO.

3.4. CS Suppressed Endoplasmic Reticulum Stress (ER Stress) in UUO Mice

Oxidative stress can induce ER stress, leading to cell death and inflammation [38,39].
ER stress is known to play an important role in the pathogenesis of CKD [40,41]. Therefore,
we next examined the effect of CS on ER stress in UUO mice. Renal mRNA levels of
glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), protein kinase
RNA-like ER kinase (PERK), ATF4, ATF6 and CHOP were increased after UUO surgery
(GRP78: Sham, 1.00 ± 0.06 vs. UUO, 5.9 ± 0.6, p < 0.001; IRE1α: Sham, 1.00 ± 0.07 vs.
UUO, 10.3 ± 0.7, p < 0.001; PERK: Sham, 1.00 ± 0.11 vs. UUO, 8.6 ± 0.6, p < 0.001; ATF4:
Sham, 1.00 ± 0.10 vs. UUO, 11.1 ± 1.0, p < 0.001; ATF6: Sham, 1.00 ± 0.06 vs. UUO,
11.8 ± 1.1, p < 0.001; CHOP: Sham, 1.00 ± 0.09 vs. UUO, 11.0 ± 1.3, p < 0.001) (Figure 8A).
CS treatment remarkably downregulated renal expression of the ER stress markers (GRP78:
UUO, 5.9 ± 0.6 vs. UUO+CS, 2.4 ± 0.4, p < 0.001; IRE1α: UUO, 10.3 ± 0.7 vs. UUO+CS,
5.6 ± 0.6, p < 0.001; PERK: UUO, 8.6 ± 0.6 vs. UUO+CS, 3.5 ± 0.3, p < 0.001; ATF4: UUO,
11.1 ± 1.0 vs. UUO+CS, 5.7 ± 0.6, p < 0.001; ATF6: UUO, 11.8 ± 1.1 vs. UUO+CS, 5.5 ± 0.7,
p < 0.001; CHOP: UUO, 11.0 ± 1.3 vs. UUO+CS, 3.5 ± 0.5, p < 0.001) (Figure 8A). Protein
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expression of XBP1s, p-eIF2α, ATF4, ATF6 and CHOP was also reduced by CS (XBP1s:
UUO, 4.3 ± 0.8 vs. UUO+CS, 0.8 ± 0.1, p < 0.05; p-eIF2α: UUO, 2.7 ± 0.2 vs. UUO+CS,
0.9 ± 0.1, p < 0.01; ATF4: UUO, 5.4 ± 0.4 vs. UUO+CS, 2.2 ± 0.3, p < 0.001; ATF6: UUO,
5.7 ± 0.6 vs. UUO+CS, 2.7 ± 0.2, p < 0.05; CHOP: UUO, 4.5 ± 0.4 vs. UUO+CS, 1.7 ± 0.2,
p < 0.01) (Figure 8B,C).
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3.5. CS Inhibited Tubular Cell Death in UUO Mice

Tubular cell death also plays an important role in renal fibrosis [42,43]. Emerging
evidence highlights the pathogenic role of apoptosis and necroptosis in the pathogenesis
of renal fibrosis [44,45]. TUNEL staining on kidney sections was performed to detect
apoptotic cells. UUO mice displayed increased number of TUNEL-stained cells in kidneys
(Sham, 0.4 ± 0.2 vs. UUO, 40.1 ± 3.9, p < 0.001) (Figure 9A,B). CS treatment significantly
inhibited UUO-induced renal cell apoptosis (UUO, 40.1 ± 3.9 vs. UUO+CS, 8.9 ± 1.4,
p < 0.001) (Figure 9A,B). Increased protein levels of cleaved caspase-3, cleaved PARP-1, p53
and Bax after UUO surgery were also decreased by CS (cleaved caspase-3: UUO, 2.6 ± 0.1
vs. UUO+CS, 1.1 ± 0.3, p < 0.05; cleaved PARP-1: UUO, 4.4 ± 0.4 vs. UUO+CS, 1.0 ± 0.2,
p < 0.01; p53: UUO, 6.8 ± 0.3 vs. UUO+CS, 1.8 ± 0.3, p < 0.001; Bax: UUO, 3.6 ± 0.4 vs.
UUO+CS, 1.8± 0.4, p < 0.05) (Figure 9C,D). Furthermore, CS treatment remarkably reduced
protein expression of RIPK1, RIPK3 and MLKL (RIPK1: UUO, 3.1 ± 0.3 vs. UUO+CS,
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1.7 ± 0.2, p < 0.05; RIPK3: UUO, 3.3 ± 0.5 vs. UUO+CS, 1.2 ± 0.1, p < 0.05; MLKL: UUO,
5.1 ± 0.3 vs. UUO+CS, 1.2 ± 0.1, p < 0.001) (Figure 9E,F).

3.6. CS Attenuated Inflammatory Responses in UUO Mice

Severe and prolonged inflammation can promote renal fibrosis [46]. UUO mice exhib-
ited increased serum levels of TNFα, IL-6 and IL-1β (TNF-α: Sham, 23.4 ± 2.2 pg/mL
vs. UUO, 117.8 ± 10.0 pg/mL, p < 0.001; IL-6: Sham, 19.9 ± 1.6 pg/mL vs. UUO,
82.6 ± 7.3 pg/mL, p < 0.001; IL-1β: Sham, 16.1 ± 1.6 pg/mL vs. UUO, 50.4 ± 4.1 pg/mL,
p < 0.001) (Figure 10A). CS treatment reduced serum levels of these pro-inflammatory
cytokines (TNF-α: UUO, 117.8 ± 10.0 pg/mL vs. UUO+CS, 81.9 ± 8.8 pg/mL, p < 0.01;
IL-6: UUO, 82.6 ± 7.3 pg/mL vs. UUO+CS, 54.5 ± 5.3 pg/mL, p < 0.01; IL-1β: UUO,
50.4 ± 4.1 pg/mL vs. UUO+CS, 34.5 ± 4.3 pg/mL, p < 0.01) (Figure 10A). Increased renal
mRNA expression of TNFα, IL-6 and IL-1β was also significantly decreased by CS (TNF-α:
UUO, 11.4 ± 1.1 vs. UUO+CS, 4.9 ± 0.6, p < 0.001; IL-6: UUO, 9.2 ± 1.2 vs. UUO+CS,
3.9 ± 0.5, p < 0.001; IL-1β: UUO, 6.0 ± 0.4 vs. UUO+CS, 2.9 ± 0.5, p < 0.001) (Figure 10B).
Quantitative measurement of TNFα, IL-6 and IL-1β proteins in kidneys also confirmed the
inhibitory effect of CS on cytokine production (TNF-α: UUO, 157.6 ± 14.4 pg/mg protein
vs. UUO+CS, 63.5± 10.9 pg/mg protein, p < 0.001; IL-6: UUO, 82.6± 7.3 pg/mg protein vs.
UUO+CS, 34.5 ± 5.3 pg/mg protein, p < 0.001; IL-1β: UUO, 50.4 ± 4.1 pg/mg protein vs.
UUO+CS, 23.8 ± 5.4 pg/mg protein, p < 0.001) (Figure 10C). Phosphorylation of IκBα and
NFκB p65 proteins was increased in the UUO mice than in the Sham group (p-IκBα: Sham,
1.0 ± 0.1 vs. UUO, 4.6 ± 0.3, p < 0.01; p-NFκB p65: Sham, 1.0 ± 0.1 vs. UUO, 2.4 ± 0.1,
p < 0.01) (Figure 10D,E). CS remarkably inhibited UUO-induced phosphorylation of IκBα
and NFκB p65 (p-IκBα: Sham, UUO, 4.6 ± 0.3 vs. UUO+CS, 2.0 ± 0.2, p < 0.01; p-NFκB
p65: UUO, 2.4 ± 0.1 vs. UUO+CS, 0.7 ± 0.2, p < 0.01) (Figure 10D,E).

Previous studies have shown that immune cells such as neutrophils and macrophages
contribute to the development and progression of renal fibrosis [46]. We measured renal
activity of MPO, an enzyme secreted by activated neutrophils and macrophages, in each
group. Renal MPO activity was largely increased in the UUO group compared to the Sham
group (Sham, 0.8 ± 0.1 U/g protein vs. UUO, 3.7 ± 0.6 U/g protein, p < 0.01) (Figure 11A).
Increased activity of MPO was remarkably inhibited by CS (UUO, 3.7 ± 0.6 U/g protein
vs. UUO+CS, 2.0 ± 0.3 U/g protein, p < 0.01) (Figure 11A). CS treatment reduced mRNA
levels of C-X-C motif chemokine ligand 5 (CXCL5), MCP-1, ICAM-1, vascular cell adhesion
protein 1 (VCAM-1) in kidneys of UUO mice (CXCL5: UUO, 20.3 ± 2.0 vs. UUO+CS,
8.7 ± 1.6, p < 0.001; MCP-1: UUO, 10.7 ± 1.6 vs. UUO+CS, 4.1 ± 0.5, p < 0.001; ICAM-1:
UUO, 8.4 ± 1.2 vs. UUO+CS, 3.5 ± 0.5, p < 0.001; VCAM-1: UUO, 15.1 ± 2.0 vs. UUO+CS,
8.6 ± 1.4, p < 0.01) (Figure 11B). Renal levels of MCP-1 protein were reduced by CS (UUO,
112.1 ± 10.9 pg/mg protein vs. UUO+CS, 44.6 ± 6.8 pg/mg protein, p < 0.001) (Figure 11C).
Western blot analysis showed that CS also decreased ICAM-1 protein expression in kidneys
of UUO mice (UUO, 2.5 ± 0.2 vs. UUO+CS, 1.5 ± 0.2, p < 0.05) (Figure 11D,E).
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protein levels. (D) Western blotting of ICAM-1. (E) Quantification of Western blots for ICAM-1.
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IF staining for Ly6B.2, a neutrophil marker [47], showed that the number of Ly6B.2-
stained cells was decreased by CS (UUO, 53.8 ± 9.9 vs. UUO+CS, 22.5 ± 3.9, p < 0.001)
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(Figure 12A,B). CS treatment also reduced macrophage accumulation as indicated by a
decrease in cells stained with the macrophage marker F4/80 [48] (UUO, 11.6 ± 1.1 vs.
UUO+CS, 5.4 ± 0.7, p < 0.001) (Figure 12C,D).
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4. Discussion

Rosemary is an herb that has long been used as an anti-inflammatory and analgesic
agent [49]. Recent studies have shown that rosemary also has anti-tumor and anti-diabetic
properties [50]. In addition, rosemary is considered an important source of natural antioxi-
dants [51]. The diterpenes CS and carnosic acid are two of the most abundant bioactive
compounds found in rosemary. These compounds contribute up to 90% of the rose-
mary’s antioxidant potential [49] and exert beneficial effects on various inflammatory
diseases [13,52]. Carnosic acid has been shown to have a protective effect on acute kid-
ney injury induced by lipopolysaccharide (LPS), cisplatin [53] or cadmium [54]. Carnosic
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acid also attenuated UUO-induced renal fibrosis [55] and streptozotocin-induced diabetic
nephropathy [56]. On the other hand, CS treatment alleviated ischemia/reperfusion-
induced acute kidney injury [20]. However, whether CS has a beneficial effect on renal
injury and fibrosis induced by UUO has not yet been investigated. In this study, we found
that CS improved renal function in UUO mice, as reflected by a decrease in serum crea-
tinine and BUN levels. UUO mice displayed histopathological features of CKD such as
tubular dilatation, tubular atrophy, inflammatory cell infiltration, loss of the brush border of
proximal tubules, and interstitial fibrosis. These structural abnormalities were remarkably
attenuated by CS. Increased expression of the tubular injury markers NGAL and KIM-1
was also reduced by CS. Collectively, these data suggest that CS has a protective effect
on UUO-induced renal injury and fibrosis. In this study, we also found using qRT-PCR,
Western blot analysis and IHC staining that CS treatment decreased the renal expression
of TGF-β1, CTGF, vimentin, α-SMA and N-cadherin while increasing E-cadherin. Renal
fibrosis is characterized by excessive deposition of ECM and is the final common outcome
of CKD [4]. Differentiated myofibroblasts during fibrosis are the main source of ECM
and express the mesenchymal markers vimentin, α-SMA and N-cadherin with loss of
epithelial markers such as E-cadherin [5]. TGF-β has been known to play an important
role in myofibroblast differentiation and activation [57,58]. The TGF-β family consists of
three isoforms: TGF-β1, TGF-β2 and TGF-β3. Among them, TGF-β1 is considered as a
key mediator in renal fibrosis [57]. TGF-β1 induces the differentiation of fibroblasts into
myofibroblasts and activates myofibroblasts to produce ECM proteins [58]. CTGF is also
an important regulator of renal fibrosis and potentiates the TGF-β signaling pathway [59].

In this study, we observed increased oxidative stress in injured kidneys of UUO mice,
as evidenced by an increase in 4-HNE stained area, MDA levels and the number of 8-
OHdG-positive cells. Consistent with our findings, previous studies also showed that
UUO mice had increased oxidative stress [60,61]. Interestingly, CS treatment remarkably
attenuated UUO-induced oxidative stress. Our data support the notion that CS has a
potent antioxidant activity [49]. Kalantar et al. showed that CS treatment ameliorated
bleomycin-induced lung injury by inhibiting oxidative stress [62]. Saeed et al. reported
that CS attenuated chronic stress-related brain damage through its antioxidant effect [63].
Therefore, the antioxidant action of CS may be a main contributor to its protective effect on
UUO-induced renal injury and fibrosis. An imbalance between pro-oxidant and antioxidant
systems has been shown to cause oxidative stress, contributing to renal fibrosis [6]. NOX4
is a main source of ROS in the kidney and plays an important role in renal fibrosis [64].
Previous studies have reported NOX4 upregulation in the UUO model [65,66]. Reduced
expression of NOX4 contributed to the improvement of renal interstitial fibrosis in the
UUO model [67,68]. In this study, we observed that CS treatment reduced NOX4 mRNA
and protein expression in kidneys of UUO mice. Other pro-oxidant enzymes including
5-LOX, XO, COX-2 and iNOS were also downregulated by CS. These results indicate that
CS inhibited UUO-induced oxidative injury through suppressing pro-oxidant enzymes.
We also found that UUO surgery induced depletion of the endogenous antioxidant GSH
and downregulation of catalase, MnSOD, GPX1 and PRDX5 in the kidney. Depletion of
GSH and decreased expression of the antioxidant enzymes was markedly reversed by
CS. CS treatment also increased the activity of catalase and SOD in kidneys of UUO mice.
Previous studies have shown that besides upregulation of pro-oxidant enzymes, UUO
mice displayed decreased renal expression of antioxidant enzymes [69,70]. In addition, CS
treatment increased the activity of antioxidant enzymes, including catalase and SOD, in
animal models of spinal cord injury [16], bleomycin-induced lung injury [62] and chronic
stress-related brain damage [63]. Taken together, our findings suggest that CS regulates
antioxidant enzymes to inhibit UUO-induced oxidative stress.

ER stress occurs when the capacity of ER to fold proteins is exceeded and plays an
important role in the pathogenesis of many diseases, including CKD [40,71]. Previous
studies have shown induction of ER stress and the subsequent unfolded protein response
(UPR) in the UUO model [72,73]. In this study, CS treatment inhibited ER stress in kidneys
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of UUO mice, as evidenced by reduced mRNA or protein expression of UPR signaling
molecules (GRP78, IRE1α, PERK, ATF4, ATF6, CHOP, XBP1s and p-eIF2α). Consistently,
CS inhibited ER stress in intestinal epithelial cells and maintained intestinal barrier function
in an animal model of colitis [15]. CA also suppressed ER stress in mucosal tissues of
patients with ulcerative colitis [15]. Moreover, ER stress can be induced by accumulation of
ROS [38,39]. It has been known that the crosstalk between oxidative stress and ER stress
can further induce or exacerbate oxidative stress [39]. NOX4 plays a role in mediating the
interplay between oxidative stress and ER stress [74]. NOX4-mediated ROS generation can
activate UPR pathways, leading to cell death and inflammation [75,76]. NOX4 inhibition
has been shown to suppress cell death and inflammatory responses via attenuating UPR
pathways [77,78]. Therefore, the protective effect of CS against UUO-induced renal injury
and fibrosis may be at least partially due to inhibition of NOX4-mediated ER stress.

Accumulating evidence has demonstrated that tubular injury causes interstitial fibrosis,
capillary rarefaction, and glomerulosclerosis, suggesting that damaged tubular epithelium
plays a direct and important role in the pathophysiology of CKD [42,43]. Inhibition of
tubular cell apoptosis ameliorated interstitial fibrosis in UUO mice [79,80]. In addition to
apoptosis, necroptosis has recently been shown to play an important role in organ fibrosis
and has been proposed as a potential target for anti-fibrotic therapies [45]. Necroptosis
is a programmed necrotic cell death and is regulated by RIPK1-RIPK3-MLKL signaling
cascade [45]. A previous study showed that necroptosis plays a more significant role
in mediating tubular cell injury than apoptosis in the subtotal nephrectomy model of
CKD [81]. Moreover, recent studies have shown that inhibition of necroptosis attenuated
UUO-induced renal interstitial fibrosis and inflammation [82,83]. In this study, CS treatment
remarkably inhibited UUO-induced apoptosis and necroptosis, as evidenced by a decrease
in the number of TUNEL-positive cells and the expression of key factors related to apoptosis
(cleaved caspase-3, cleaved PARP-1, p53 and Bax) and necroptosis (RIPK1, RIPK3 and
MLKL). Because both types of cell death can be induced by ER stress [84,85], the interplay
between oxidative stress and ER stress can cause or exacerbate tubular cell apoptosis and
necroptosis in UUO mice. Therefore, suppression of oxidative stress induced by CS may
inhibit apoptosis and necroptosis through inhibiting UPR pathways.

In response to renal injury, inflammation initially acts as a protective response, but
prolonged inflammation can promote the fibrotic process [46]. The inflammatory response
in UUO mice is characterized by pro-inflammatory cytokine production and immune cell
infiltration [21,22]. During necroptosis, intracellular components are released from dying
cells and trigger an innate immune response [45]. In this study, CS treatment reduced serum
and renal levels of TNFα, IL-6 and IL-1β with inhibition of IκBα/NFκB cascade in UUO
mice. Consistently, Cs has been reported to attenuate LPS-induced cytokine production
in cardiomyoblasts by inhibiting the NFκB pathway [86]. Schwager et al. also showed
that CS inhibits cytokine production and NFκB activation in murine macrophages and
human chondrocytes [87]. In addition to its in vitro effects, CS also reduced serum or tissue
levels of cytokines with inhibition of the NFκB pathway in animal models of inflammatory
diseases such as spinal cord injury [16], atopic dermatitis [19] and rheumatoid arthritis [88].
In this study, we also found that CS suppressed infiltration of neutrophils and macrophages
in kidneys of UUO mice, as indicated by reduced MPO activity and decreased numbers
of Ly6B.2-positive cells and F4/80-positive cells. Consistently, CS reduced expression of
the chemokines CXCL5 and MCP-1 in kidneys of UUO mice. The adhesion molecules
ICAM-1 and VCAM-1 were also downregulated by CS. Previous studies have shown that
both immune cells play an important role in UUO-induced renal injury and fibrosis [89,90].
Immune cells, including neutrophils and macrophages, produce many pro-fibrogenic
cytokines that induce the accumulation and activation of myofibroblasts, resulting in
excessive production of ECM [43].
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5. Conclusions

In conclusion, our data show that CS treatment ameliorates renal injury and fibrosis in
the UUO model. These effects of CS were accompanied by suppression of oxidative stress,
tubular cell death and inflammation. The inhibitory effect of CS on oxidative stress was
mediated by the regulation of pro-oxidant and antioxidant enzymes. These results suggest
that CS might be a potential therapeutic agent for renal fibrosis.
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